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Polynomial Reductions between Problems

There is a polynomial reduction of problem P1 to problem P2 if there
exists an algorithm Alg with a polynomial time complexity that reduces
problem P1 to problem P2.
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Polynomial Reductions between Problems

Let us say that problem A can be reduced in polynomial time to
problem B , i.e., there is a polynomial algorithm P realizing this reduction.

If problem B is in the class PTIME then problem A is also in the class
PTIME.

A solution of problem A for an input x :

Call P with input x and obtain a returned value P(x).
Call a polynomial time algorithm solving problem B with the
input P(x).
Write the returned value as the answer for A.

That means:

If A is not in PTIME then also B can not be in PTIME.
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Polynomial Reductions between Problems

There is a big class of algorithmic problems called NP-complete problems
such that:

paťŕı do ťŕıdy NPTIME, tj. jsou řešitelné v polynomiálńım čase
nedeterministickým algoritmem

these problems can be solved by exponential time algorithms

no polynomial time algorithm is known for any of these problems

on the other hand, for any of these problems it is not proved that
there cannot exist a polynomial time algorithm for the given problem

every NP-complete problem can be polynomially reduced to any other
NP-complete problem

Remark: This is not a definition of NP-complete problems. The precise
definition will be described later.
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Problem SAT

A typical example of an NP-complete problem is the SAT problem:

SAT (boolean satisfiability problem)

Input: Boolean formula ϕ.

Question: Is ϕ satisfiable?

Example:
Formula ϕ1 = x1 ∧ (¬x2 ∨ x3) is satisfiable:
e.g., for valuation v where v(x1) = 1, v(x2) = 0, v(x3) = 1, the
formula ϕ1 is true.

Formula ϕ2 = (x1 ∧ ¬x1) ∨ (¬x2 ∧ x3 ∧ x2) is not satisfiable:
it is false for every valuation v .
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Problem 3-SAT

3-SAT is a variant of the SAT problem where the possible inputs are
restricted to formulas of a certain special form:

3-SAT

Input: Formula ϕ is a conjunctive normal form where every clause
contains exactly 3 literals.

Question: Is ϕ satisfiable?
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Problem 3-SAT

Recalling some notions:

A literal is a formula of the form x or ¬x where x is an atomic
proposition.

A clause is a disjuction of literals.

Examples: x1 ∨ ¬x2 ¬x5 ∨ x8 ∨ ¬x15 ∨ ¬x23 x6

A formula is in a conjuctive normal form (CNF) if it is a conjuction
of clauses.

Example: (x1 ∨ ¬x2) ∧ (¬x5 ∨ x8 ∨ ¬x15 ∨ ¬x23) ∧ x6

So in the 3-SAT problem we require that a formula ϕ is in a CNF and
moreover that every clause of ϕ contains exactly three literals.

Example:
(x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4)
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Problem 3-SAT

The following formula is satisfiable:

(x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4)

It is true for example for valuation v where

v(x1) = 0
v(x2) = 1
v(x3) = 0
v(x4) = 1

On the other hand, the following formula is not satisfiable:

(x1 ∨ x1 ∨ x1) ∧ (¬x1 ∨ ¬x1 ∨ ¬x1)
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Polynomial Reductions between Problems

As an example, a polynomial time reduction from the 3-SAT problem to
the independent set problem (IS) will be described.

Remark: Both 3-SAT and IS are examples of NP-complete problems.
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Independent Set (IS) Problem

Independent set (IS) problem

Input: An undirected graph G , a number k .

Question: Is there an independent set of size k in the graph G?

k = 4

Remark: An independent set in a graph is a subset of nodes of the
graph such that no pair of nodes from this set is connected by an edge.
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Independent Set (IS) Problem

An example of an instance where the answer is Yes:

k = 4

An example of an instance where the answer is No:

k = 5
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A Reduction from 3-SAT to IS

We describe a (polynomial-time) algorithm with the following properties:

Input: An arbitrary instance of 3-SAT, i.e., a formula ϕ in a
conjunctive normal form where every clause contains exactly three
literals.

Output: An instance of IS, i.e., an undirected graph G and a number
k .

Moreover, the following will be ensured for an arbitrary input (i.e., for
an arbitrary formula ϕ in the above mentioned form):

There will be an independent set of size k in graph G iff formula ϕ

will be satisfiable.
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A Reduction from 3-SAT to IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)
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A Reduction from 3-SAT to IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

For each occurrence of a literal we add a node to the graph.
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A Reduction from 3-SAT to IS
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We connect with edges the nodes corresponding to occurrences of literals
belonging to the same clause.
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A Reduction from 3-SAT to IS
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For each pair of nodes corresponding to literals xi and ¬xi we add an edge
between them.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 5, 2024 14 / 52



A Reduction from 3-SAT to IS
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k = 4

We put k to be equal to the number of clauses.
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A Reduction from 3-SAT to IS
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k = 4

The constructed graph and number k are the output of the algorithm.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 5, 2024 14 / 52



A Reduction from 3-SAT to IS
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k = 4

v(x1) = 1
v(x2) = 1
v(x3) = 0
v(x4) = 1

If the formula ϕ is satisfiable then there is a valuation v where every
clause contains at least one literal with value 1.
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A Reduction from 3-SAT to IS
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k = 4

v(x1) = 1
v(x2) = 1
v(x3) = 0
v(x4) = 1

We select one literal that has a value 1 in the valuation v , and we put the
corresponding node into the independent set.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 5, 2024 14 / 52



A Reduction from 3-SAT to IS

(x1 ∨¬x2 ∨ x3) ∧ (x2 ∨¬x3 ∨ x4) ∧ (x1 ∨¬x3 ∨¬x4) ∧ (¬x1 ∨ x2 ∨ x4)

x1

¬x2

x3

x2

¬x3

x4

x1

¬x3

¬x4

x2

¬x1

x4

k = 4

v(x1) = 1
v(x2) = 1
v(x3) = 0
v(x4) = 1

We can easily verify that the selected nodes form an independent set.
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A Reduction from 3-SAT to IS

The selected nodes form an independent set because:

One node has been selected from each triple of nodes corresponding
to one clause.

Nodes denoted xi and ¬xi could not be selected together.
(Exactly of them has the value 1 in the given valuation v .)
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A Reduction from 3-SAT to IS

On the other hand, if there is an independent set of size k in graph G ,
then it surely has the following properties:

At most one node is selected from each triple of nodes corresponding
to one clause.

But because there are k clauses and k nodes are selected, exactly one
node must be selected from each triple.

Nodes denoted xi and ¬xi cannot be selected together.

We can choose a valuation according to the selected nodes, since it follows
from the previous discussion that it must exist.
(Arbitrary values can be assigned to the remaining variables.)

For the given valuation, the formula ϕ has surely the value 1, since in each
clause there is at least one literal with value 1.
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A Reduction from 3-SAT to IS

It is obvious that the running time of the described algorithm polynomial:

Graph G and number k can be constructed for a formula ϕ in time O(n2),
where n is the size of formula ϕ.

We have also seen that there is an independent set of size k in the
constructed graph G iff the formula ϕ is satisfiable.

The described algorithm shows that 3-SAT can be reduced in polynomial
time to IS.
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NP-Complete Problems

Let us consider a set of all decision problems.
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NP-Complete Problems

By an arrow we denote that a problem A can be reduced in polynomial
time to a problem B .

A B
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NP-Complete Problems

For example 3-SAT can be reduced in polynomial time to IS.

3-SAT IS
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NP-Complete Problems

Let us consider now the class NPTIME and a problem P .

P

NPTIME
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NP-Complete Problems

A problem P is NP-hard if every problem from NPTIME can be reduced
in polynomial time to P .

P

NPTIME
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NP-Complete Problems

A problem P is NP-complete if it is NP-hard and it belongs to the class
NPTIME.

P

NPTIME
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NP-Complete Problems

If we have found a polynomial time algorithm for some NP-hard
problem P , then we would have polynomial time algorithms for all
problems P

′
from NPTIME:

At first we would apply an algorithm for the reduction from P
′
to P

on an input of a problem P
′
.

Then we would use a polynomial algorithm for P on the constructed
instance of P and returned its result as the answer for the original
instance of P

′
.

Is such case, PTIME = NPTIME would hold, since for every problem from
NPTIME there would be a polynomial-time (deterministic) algorithm.
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NP-Complete Problems

On the other hand, if there is at least one problem from NPTIME for
which a polynomial-time algorithm does not exist, then it means that for
none of NP-hard problems there is a polynomial-time algorithm.

It is an open question whether the first or the second possibility holds.
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NP-Complete Problems

It is not difficult to see that:

If a problem A can be reduced in a polynomial time to a problem B and
problem B can be reduced in a polynomial time to a problem C , then
problem A can be reduced in a polynomial time to problem C .

So if we know about some problem P that it is NP-hard and that P can
be reduced in a polynomial time to a problem P

′
, then we know that the

problem P
′
is also NP-hard.
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NP-Complete Problems

Věta (Cook, 1971)

Problem SAT is NP-complete.

It can be shown that SAT can be reduced in a polynomial time to 3-SAT
and we have seen that 3-SAT can be reduced in a polynomial time to IS.

This means that problems 3-SAT and IS are NP-hard.

It is not difficult to show that 3-SAT and IS belong to the class NPTIME.

Problems 3-SAT and IS are NP-complete.
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NP-Complete Problems

By a polynomial reductions from problems that are already known to be
NP-complete, NP-completeness of many other problems can be shown:

IS

3−SAT

3−CG

SUBSET−SUM

ILP

SAT

VC

CLIQUE

HC TSPHK
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Examples of Some NP-Complete Problems

The following previously mentioned problems are NP-complete:

SAT (boolean satisfiability problem)

3-SAT

IS — independent set problem

On the following slides, examples of some other NP-complete problems are described:

CG — graph coloring (remark: it is NP-complete even in the special case where we
have 3 colors)

VC — vertex cover

CLIQUE — clique problem

HC — Hamiltonian cycle

HK — Hamiltonian circuit

TSP — traveling salesman problem

SUBSET-SUM

ILP — integer linear programming
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Graph Coloring

Graph coloring

Input: An undirected graph G , a natural number k .

Question: Is it possible to color nodes of the graph G using k colors in
such a way that there is no pair of nodes where both nodes
are colored with the same color and connected with an edge?

Example: k = 3
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Graph Coloring

Graph coloring

Input: An undirected graph G , a natural number k .

Question: Is it possible to color nodes of the graph G using k colors in
such a way that there is no pair of nodes where both nodes
are colored with the same color and connected with an edge?

Example: k = 3

Answer: Yes
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VC – Vertex Cover

VC – vertex cover

Input: An undirected graph G and a natural number k .

Question: Is there some subset of nodes of G of size k such that every
edge has at least one of its nodes in this subset?

Example: k = 6
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CLIQUE

CLIQUE

Input: An undirected graph G and a natural number k .

Question: Is there some subset of nodes of G of size k such that every
two nodes from this subset are connected by an edge?

Example: k = 4
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CLIQUE

CLIQUE

Input: An undirected graph G and a natural number k .

Question: Is there some subset of nodes of G of size k such that every
two nodes from this subset are connected by an edge?

Example: k = 4

Answer: Yes
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Hamiltonian Cycle

HC – Hamiltonian cycle

Input: A directed graph G .

Question: Is there a Hamiltonian cycle in G (i.e., a directed cycle going
through each node exactly once)?

Example:
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Hamiltonian Circuit

HK – Hamiltonian circuit

Input: An undirected graph G .

Question: Is there a Hamiltonian circuit in G (i.e., an undirected cycle
going through each node exactly once)?

Example:

Answer: No
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Hamiltonian Circuit

HK – Hamiltonian circuit

Input: An undirected graph G .

Question: Is there a Hamiltonian circuit in G (i.e., an undirected cycle
going through each node exactly once)?

Example:

Answer: Yes
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Traveling Salesman Problem

TSP - traveling salesman problem

Input: An undirected graph G with edges labelled with natural
numbers and a number k .

Question: Is there a closed tour going through all nodes of the graph G

such that the sum of labels of edges on this tour is at
most k?

Example: k = 70

8

18 16

20

1

5 1

2

10
3

4

5

13

6
14

4

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 5, 2024 30 / 52



Traveling Salesman Problem

TSP - traveling salesman problem

Input: An undirected graph G with edges labelled with natural
numbers and a number k .

Question: Is there a closed tour going through all nodes of the graph G

such that the sum of labels of edges on this tour is at
most k?

Example: k = 70
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6
14

4

Answer: Yes, since there is a tour with the sum 69.
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SUBSET-SUM

Problem SUBSET-SUM

Input: A sequence a1, a2, . . . , an of natural numbers and a natural
number s.

Question: Is there a set I ⊆ {1, 2, . . . , n} such that ∑
i∈I

ai = s ?

In other words, the question is whether it is possible to select a subset
with sum s of a given (multi)set of numbers.

Example: For the input consisting of numbers 3, 5, 2, 3, 7 and number
s = 15 the answer is Yes, since 3 + 5 + 7 = 15.

For the input consisting of numbers 3, 5, 2, 3, 7 and number s = 16 the
answer is No, since no subset of these numbers has sum 16.
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SUBSET-SUM

Remark:
The order of numbers a1, a2, . . . , an in an input is not important.

Note that this is not exactly the same as if we have formulated the
problem so that the input is a set {a1, a2, . . . , an} and a number s —
numbers cannot occur multiple times in a set but they can in a sequence.
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SUBSET-SUM

Problem SUBSET-SUM is a special case of a knapsack problem:

Knapsack problem

Input: Sequence of pairs of natural numbers
(a1, b1), (a2, b2), . . . , (an, bn) and two natural numbers s
and t.

Question: Is there a set I ⊆ {1, 2, . . . , n} such that ∑
i∈I

ai ≤ s and
∑

i∈I
bi ≥ t ?
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SUBSET-SUM

Informally, the knapsack problem can be formulated as follows:

We have n objects, where the i-th object weights ai grams and its price
is bi dollars.

The question is whether there is a subset of these objects with total
weight at most s grams (s is the capacity of the knapsack) and with total
price at least t dollars.

Remark:
Here we have formulated this problem as a decision problem.

This problem is usually formulated as an optimization problem where the
aim is to find such a set I ⊆ {1, 2, . . . , n}, where the value ∑

i∈I
bi is

maximal and where the condition ∑
i∈I

ai ≤ s is satisfied, i.e., where the
capacity of the knapsack is not exceeded.
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SUBSET-SUM

That SUBSET-SUM is a special case of the Knapsack problem can be
seen from the following simple construction:

Let us say that a1, a2, . . . , an, s1 is an instance of SUBSET-SUM.
It is obvious that for the instance of the knapsack problem where we have
the sequence (a1, a1), (a2, a2), . . . , (an, an), s = s1 and t = s1, the answer
is the same as for the original instance of SUBSET-SUM.
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SUBSET-SUM

If we want to study the complexity of problems such as SUBSET-SUM or
the knapsack problem, we must clarify what we consider as the size of an
instance.

Probably the most natural it is to define the size of an instance as the
total number of bits needed for its representation.

We must specify how natural numbers in the input are represented – if in
binary (resp. in some other numeral system with a base at least 2 (e.g.,
decimal or hexadecimal) or in unary.

If we consider the total number of bits when numbers are written in
binary as the size of an input, no polynomial time algorithm is known
for SUBSET-SUM.

If we consider the total number of bits when numbers are written in
unary as the size of an input, SUBSET-SUM can be solved by an
algorithm whose time complexity is polynomial.
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ILP – Integer Linear Programming

Problem ILP (integer linear programming)

Input: An integer matrix A and an integer vector b.

Question: Is there an integer vector x such that Ax ≤ b?

An example of an instance of the problem:

A =

⎛
⎜⎜
⎝

3 −2 5
1 0 1
2 1 0

⎞
⎟⎟
⎠

b =

⎛
⎜⎜
⎝

8
−3
5

⎞
⎟⎟
⎠

So the question is if the following system of inequations has some integer
solution:

3x1 − 2x2 + 5x3 ≤ 8
x1 + x3 ≤ −3
2x1 + x2 ≤ 5
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ILP – Integer Linear Programming

One of solutions of the system

3x1 − 2x2 + 5x3 ≤ 8
x1 + x3 ≤ −3
2x1 + x2 ≤ 5

is for example x1 = −4, x2 = 1, x3 = 1, i.e.,

x =

⎛
⎜⎜
⎝

−4
1
1

⎞
⎟⎟
⎠

because
3 ⋅ (−4) − 2 ⋅ 1 + 5 ⋅ 1 = −9 ≤ 8

−4 + 1 = −3 ≤ −3
2 ⋅ (−4) + 1 = −7 ≤ 5

So the answer for this instance is Yes.
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ILP – Integer Linear Programming

Remark: A similar problem where the question for a given system of linear
inequations is whether it has a solution in the set of real numbers, can be
solved in a polynomial time.
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PSPACE-Complete and EXPTIME-Complete Problems

A problem P is PSPACE-hard if for every problem P
′
from PSPACE

there is a polynomial time reduction of P
′
to P .

A problem P is PSPACE-complete if it is PSPACE-hard
and belongs to PSPACE.

A problem P is EXPTIME-hard if for every problem P
′

from EXPTIME there is a polynomial time reduction of P
′
to P .

A problem P is EXPTIME-complete if it is EXPTIME-hard
and belongs to EXPTIME.

⋮
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PSPACE-Complete and EXPTIME-Complete Problems

Generally, for arbitrary complexity class C we can introduce classes of
C-hard and C-complete problems:

Definition

A problem P is C-hard if for every problem P
′
from the class C there

is a polynomial time reduction of P
′
to P .

A problem P is C-complete if it is C-hard and belongs to the class C.

So in addition to NP-complete problems, we have PSPACE-complete
problems, EXPTIME-complete problems, EXPSPACE-complete problems,
2-EXPTIME-complete problems, . . .

Generally speaking, C-complete problems are always the hardest problems
in the given class C.
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PTIME-Complete Problems, NL-Complete Problems, . . .

Remark: The notions of C-hard and C-complete problems defined as
above, where a polynomial time reductions are used, do not make much
sense for the class PTIME and other classes, which are subsets of this
class (such as NLOGSPACE).

For such classes, the notions of C-hard and C-complete problems are
defined in a similar way as before but instead of polynomial time
reductions they use so called logspace reductions:

an algorithm performing the given reduction must be deterministic
and to have a logarithmic space complexity

For example, the following classes are defined this way:

PTIME-complete and PTIME-hard problems

NLOGSPACE-complete and NLOGSPACE-hard problems (they are
usually denoted with a shorter name as NL-complete and NL-hard)
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An Example of NL-Complete Problem

A typical example of NL-complete problem:

Reachability in a Graph

Input: A directed graph G and two of its nodes s and t.

Question: Is there a path from the node s to the node t in the
graph G ?
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An Example of a PTIME-Complete Problem

A typical example of PTIME-complete problem:

Circuit Value Problem

Input: An acyclic boolean circuit C consisting of gates and wires,
and boolean values x1, x2, . . . , xn on inputs of this circuit.

Question: Is the value on the output of the circuit C equal to 1 for the
given values of inputs?

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 5, 2024 44 / 52



Examples of PSPACE-Complete Problems

A typical example of a PSPACE-complete problem is the problem of
quantified boolean formulas (QBF):

QBF

Input: A quantified boolean formula of the form

∃x1∀x2∃x3∀x4⋯∃xn−1∀xn ∶ ϕ,

where ϕ is a (standard) boolean formula containing
variables x1, x2, . . . , xn.

Question: Is the given formula true?
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Examples of PSPACE-Complete Problems

EqNFA

Input: Nondeterministic finite automata A1 and A2.

Question: Is L(A1) = L(A2) ?

Universality of NFA

Input: A nondeterministic finite automaton A.

Question: Is L(A) = Σ
∗
?
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Examples of PSPACE-Complete Problems

EqRE

Input: Regular expressions α1 and α2.

Question: Is L(α1) = L(α2) ?

Universality of RE

Input: A regular expression α.

Question: Is L(α) = Σ
∗
?
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Examples of PSPACE-Complete Problems

Consider the following game played by two players on a directed graph G :

Players alternately move a pebble on the nodes of graph G .

In moves they mark those nodes that have been already visited.

A play starts on the specified node v0.

Let us say that the pebble is currently on a node v . The player who is
on turn choses a node v

′
such that there is an edge from v to v

′
and

v
′
has not been visited yet.

A player that does not have any possible move, loses, and his/her
opponent wins.

Generalized Geografy

Input: A directed graph G with a denoted initial node v0.

Question: Does the player that plays first have a winning strategy in
the game played on the graph G with the initial node v0 ?
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Examples of EXPTIME-Complete Problems

A typical example of EXPTIME-complete problem:

Input: A Turing machine M, a word w , and number k written in
binary.

Question: Does the computation of the machine M on the word w

halt in k steps?
(I.e., does the machine M perform at most k steps in the
computation on the word w?)
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Examples of EXPTIME-Complete Problems

Other examples of EXPTIME-complete problems are for example
generalized variants of games such chess, checkers, or Go, played on
a board of an arbitrary size (e.g., on a chessboard of size n × n):

the input is a position in the given game (e.g., in chess, a particular
placement of pieces on a chessboard and information whose player is
on turn)

the question is if the player who is currently on turn, has a winning
strategy in the given position
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Examples of EXPSPACE-Complete Problems

Regular expressions with squaring are defined similarly as standard regular
expressions but in addition to the standard operators +, ⋅, and

∗
, they can

contain unary operator
2
with the following meaning:

α
2
is a shorthand for α ⋅ α.

The following two problems are EXPSPACE-complete:

Input: Regular expressions with squaring α1 and α2.

Question: Is L(α1) = L(α2) ?

Input: A regular expression with squaring α.

Question: Is L(α) = Σ
∗
?
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Presburger Arithmetic

An example of a problem that is decidable but its computational
complexity is very high:

Problem

Input: A closed formula of the first order predicate logic where the
only predicate symbols are = and <, the only function
symbol is +, and the only constant symbols are 0 and 1.

Question: Is the given formula true in the domain of natural numbers
(using the natural interpretation of all function and predicate
symbols)?

A deterministic algorithm with time complexity 2
2
2
O(n)

is known for this
problem, and it is also known that every nondeterministic algorithm

solving this problem must have a time complexity at least 2
2
Ω(n)

.
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