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Complexity of an Algorithm

Computers work fast but not infinitely fast. Execution of each
instruction takes some (very short) time.

The same problem can be solved by several different algorithms. The
time of a computation (determined mostly by the number of executed
instructions) can be different for different algorithms.

We would like to compare different algorithms and choose a better
one.

We can implement the algorithms and then measure the time of their
computation. By this we find out how long the computation takes on
particular data on which we test the algorithm.

We would like to have a more precise idea how long the computation
takes on all possible input data.
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Complexity of an Algorithm

A running time is affected by many factors, e.g.:

the algorithm that is used
the amount of input data
used hardware (e.g., the frequency at which a CPU is running can be
important)
the used programming language — its implementation
(compiler/interpreter)
. . .

If we need to solve problem for “small” input data, the running time
is usually negligible.

With increasing amount of input data (the size of input), the running
time can grow, sometimes significantly.
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Complexity of an Algorithm

Time complexity of an algorithm — how the running time of the
algorithm depends on the amount of input data

Space complexity of an algorithm — how the amount of a memory
used during a computation grows with respect to the size of input

Remark: The precise definitions of these notion will be given in a moment.

Remark:

There are also other types of computational complexity, which we will
not discuss here (e.g., communication complexity).
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Complexity of an Algorithm

Consider some particular machine executing some algorithm —
e.g., a random-access machine, a Turing machine, . . .

We will assume that for the given machine M we have somehow defined
for every input w from the set of all possible inputs In the following two
functions:

timeM ∶ In → N — it expresses the running time of machine M on
input w

spaceM ∶ In → N — it expresses the amount of memory used by
machine M in a computation on input w

Remark: We assume that a computation on an arbitraty input w will halt
after some finite number of steps.
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Complexity of an Algorithm

Example:

One-tape Turing machine M:

timeM(w) — the number of steps performed by during
a computation on word w

spaceM(w) — the number of cells on the tape visited during
a computation on input w

Random-access machine:

timeM(w) — the number of steps performed by the given RAM
in a computation on input w

spaceM(w) — the number of memory cells that were used
during a computation on input w (in they were written to or if
a value was read from them)
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Size of Input

For different input data the program performs a different number of
instructions.

If we want to analyze somehow the number of performed instructions, it is
useful to introduce the notion of the size of an input.

Typically, the size of an input is a number specifying how “big” is the
given instance (a bigger number means a bigger instance).

Remark: We can define the size of an input as we like depending on what
is useful for our analysis.

The size of an input is not strictly determinable but there are usually some
natural choices based on the nature of the problem.
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Size of Input

Examples:

For the problem “Sorting”, where the input is a sequence of numbers
a1, a2, . . . , an and the output the same sequence sorted, we can take
n as the size of the input.

For the problem “Primality” where the input is a natural number x
and where the question is whether x is a prime, we can take the
number of bits of the number x as the size of the input.

(The other possibility is to take directly the value x as the size of the
input.)
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Size of Input

Sometimes it is useful to describe the size of an input with several
numbers.

For example for problems where the input is a graph, we can define the
size of the input as a pair of numbers n,m where:

n – the number of nodes of the graph

m – the number of edges of the graph

Remark: The other possibility is to define the size of the input as one
number n +m.
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Size of Input

In general, we can define the size of an input for an arbitrary problem as
follows:

When the input is a word over some alphabet Σ:
the length of word w

When the input as a sequence of bits (i.e., a word over {0, 1}):
the number of bits in this sequence

When the input is a natural number x :
the number of bits in the binary representation of x
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Time Complexity

We want to analyze a particular algorithm (its particular implementation).

We want to know how many steps the algorithm performs when it gets an
input of size 0, 1, 2, 3, 4, . . ..

It is obvious that even for inputs of the same size the number of performed
steps can be different.

Let us denote the size of input w ∈ In as size(w).
Now we define a function T ∶ N → N such that for n ∈ N is

T (n) = max { timeM(w) ∣ w ∈ In, size(w) = n }
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Time Complexity in the Worst Case

20 1 3 5 6 8 94 7 10 1511 12 13 14 n

timeM(w)
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Time Complexity in the Worst Case

20 1 3 5 6 8 94 7 10 1511 12 13 14 n

timeM(w)T (n)
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Time Complexity in the Worst Case

Such function T (n) (i.e., a function that for the given algorithm and the
given definition of the size of an input assignes to every natural number n
the maximal number of instructions performed by the algorithm if it
obtains an input of size n) is called the time complexity of the

algorithm in the worst case.

T (n) = max { timeM(w) ∣ w ∈ In, size(w) = n }

Analogously, we can define space complexity of the algorithm in the
worst case as a function S(n) where:

S(n) = max { spaceM(w) ∣ w ∈ In, size(w) = n }
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Time Complexity in an Average Case

Sometimes it make sense to analyze the time complexity in an average

case.

In this case, we do not define T (n) as the maximum but as the arithmetic
mean of the set

{ timeM(w) ∣ w ∈ In, size(w) = n }

It is usually more difficult to determine the time complexity in an
average case than to determine the time complexity in the worst case.

Often, these two function are not very different but sometimes the
difference is significant.

Remark: It usually makes no sense to analyze the time complexity in the
best case.
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Time Complexity in an Average Case

20 1 3 5 6 8 94 7 10 1511 12 13 14 n

timeM(w)T (n)
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Computational Complexity of an Algorithm

It is obvious from this definition that the time complexity of an algorithm
is a function whose precise values depend not only on the given
algorithm Alg but also on the following things:

on a machine M, on which the algorithm Alg runs,

on the precise definition of the running time t(w) of algorithm Alg

on machine M with input w ∈ In,

on the precise definition of the size of an input (i.e., on the definition
of function size).
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Computational Complexity of an Algorithm

To determine the precise running time or the precise amount of used
memory just by an analysis of an algorithm can be extremely difficult.

Usually the analysis of complexity of an algorithm involves many
simplifications:

It is usually not analysed how the running time or the amount of used
memory depends precisely on particular input data but how they
depend on the size of the input.

Functions expressing how the running time or the amount of used
memory grows depending on the size of the input are not computed
precisely — instead estimations of these functions are computed.

Estimations of these functions are usually expressed using asymptotic

notation — e.g., it can be said that the running time of MergeSort is
O(n log n), and that the running time of BubbleSort is O(n2).
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Time Complexity of an Algorithm

An example of an analysis of the time complexity of algorithm without

the use of asymptotic notation:

Such precise analysis is almost never done in practice — it is too
tedious and complicated.

This illustrates what things are ignored in an analysis where
asymptotic notation is used and how much the analysis is simplified
by this.

We will compute with constants c0, c1, . . . , ck , which specify the
execution time of individual instructions — we won’t compute with
concrete numbers.
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Running Time

Let us say that an algorithm is represented by a control-flow graph:

To every instruction (i.e., to every edge) we assign a value specifying
how long it takes to perform this instruction once.

The execution time of different instructions can be different.

For simplicity we assume that an execution of the same instruction
takes always the same time — the value assigned to an instruction is
a number from the set R+ (the set of nonnegative real numbers).
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Running Time

Example:

Algorithm: Finding the maximal element in an array

Find-Max (A, n):
k ∶= 0
for i ∶= 1 to n − 1 do

if A[i] > A[k] then

k ∶= i

return A[k]
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Running Time

k ∶= 0

i ∶= 1

[i < n]
[i ≥ n]

[A[i] > A[k]]
[A[i] ≤ A[k]]

k ∶= i

i ∶= i + 1
result ∶= A[k]

0

1

2

3

4

5

6

7

Instr. time

k ∶= 0 c0

i ∶= 1 c1[i < n] c2[i ≥ n] c3[A[i] ≤ A[k]] c4[A[i] > A[k]] c5

k ∶= i c6

i ∶= i + 1 c7

result ∶= A[k] c8
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Running Time

Example: The execution times of individual instructions could be for
example:

Instr. symbol time

k ∶= 0 c0 4
i ∶= 1 c1 4[i < n] c2 10[i ≥ n] c3 12[A[i] ≤ A[k]] c4 14[A[i] > A[k]] c5 12
k ∶= i c6 5

i ∶= i + 1 c7 6
result ∶= A[k] c8 5

For a particular input w , e.g., for w = ([3, 8, 4, 5, 2], 5), we could simulate
the computation and determine the precise running time t(w).
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Time Complexity of an Algorithm

The inputs are of the form (A, n), where A is an array and n is the number
of elements in this array (where n ≥ 1).

We take n as the size of input (A, n).
Consider now some particular input w = (A, n) of size n:

The running time t(w) on input w can be expressed as

t(w) = c0 ⋅m0(w) + c1 ⋅m1(w) + ⋯ + c8 ⋅m8(w),
where m0,m1, . . . ,m8 are functions specifying how many times is
each instruction performed in the computation on input w .
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Time Complexity of an Algorithm

Instr. time occurences value of mi(w)
k ∶= 0 c0 m0(w) 1
i ∶= 1 c1 m1(w) 1[i < n] c2 m2(w) n − 1[i ≥ n] c3 m3(w) 1[A[i] ≤ A[k]] c4 m4(w) n − 1 − ℓ[A[i] > A[k]] c5 m5(w) ℓ

k ∶= i c6 m6(w) ℓ

i ∶= i + 1 c7 m7(w) n − 1
result ∶= A[k] c8 m8(w) 1

ℓ — the number of iterations of the cycle where A[i] > A[k]
(obviously 0 ≤ ℓ < n)
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Time Complexity of an Algorithm

By assigning values to

t(w) = c0 ⋅m0(w) + c1 ⋅m1(w) + ⋯ + c8 ⋅m8(w),
we obtain

t(w) = d1 + d2 ⋅ (n − 1) + d3 ⋅ (n − 1 − ℓ) + d4 ⋅ ℓ,

where

d1 = c0 + c1 + c3 + c8 d3 = c4
d2 = c2 + c7 d4 = c5 + c6

After simplification we have

t(w) = (d2 + d3) ⋅ n + (d4 − d3) ⋅ ℓ + (d1 − d2 − d3)
Remark: t(w) is not the time complexity but the running time for
a particular input w
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Time Complexity of an Algorithm

For example, if the execution times of instructions will be:

Instr. symb. time

k ∶= 0 c0 4

i ∶= 1 c1 4[i < n] c2 10[i ≥ n] c3 12[A[i] ≤ A[k]] c4 14[A[i] > A[k]] c5 12

k ∶= i c6 5

i ∶= i + 1 c7 6

result ∶= A[k] c8 5

then d1 = 25, d2 = 16, d3 = 14, and d4 = 17.

In this case is t(w) = 30n + 3ℓ − 5.

For the input w = ([3, 8, 4, 5, 2], 5) is n = 5 and ℓ = 1, therefore
t(w) = 30 ⋅ 5 + 3 ⋅ 1 − 5 = 148.
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Time Complexity of an Algorithm

It can depend on details of implementation and on the precise values of
constants, for which inputs of size n the compution takes the longest time
(i.e., which are the worst cases):

The running time of algorithm Find-Max for an input w = (A, n) of
size n:

t(w) = (d2 + d3) ⋅ n + (d4 − d3) ⋅ ℓ + (d1 − d2 − d3)
If d3 ≥ d4 — the worst cases are those where ℓ has the smallest value

ℓ = 0 — for example inputs of the form [0, 0, . . . , 0] or of the form[n, n − 1, n − 2, . . . , 2, 1]
If d3 ≤ d4 — the worst are those cases where ℓ has the greatest value

ℓ = n − 1 — for example inputs of the form [0, 1, . . . , n − 1]
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Time Complexity of an Algorithm

The time complexity T (n) of algorithm Find-Max in the worst case is
given as follows:

If d3 ≥ d4:

T (n) = (d2 + d3) ⋅ n + (d1 − d2 − d3)
If d3 ≤ d4:

T (n) = (d2 + d3) ⋅ n + (d4 − d3) ⋅ (n − 1) + (d1 − d2 − d3)
= (d2 + d4) ⋅ n + (d1 − d2 − d4)

Example: For d1 = 25, d2 = 16, d3 = 14, d4 = 17 is

T (n) = (16 + 17) ⋅ n + (25 − 16 − 17)
= 33n − 8
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Time Complexity of an Algorithm

In both cases (when d3 ≥ d4 or when d3 ≤ d4), the time complexity of the
algorithm Find-Max is a function

T (n) = an + b

where a and b are some constants whose precise values depend on the
execution time of individual instructions.

Remark: These constants could be expressed as

a = d2 +max{d3, d4} b = d1 − d2 −max{d3, d4}
For example

T (n) = 33n − 8
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Time Complexity of an Algorithm

If it would be sufficient to find out that the time complexity of the
algorithm Find-Max is some function of the form

T (n) = an + b,

where the precise values of constants a and b would not be important for
us, the whole analysis could be considerably simpler.

In fact, we usually do not want to know precisely how function T (n)
look (in general, it can be a very complicated function), and it would
be sufficient to know that values of the function T (n)
“approximately” correspond to values of a function S(n) = an + b,
where a and b are some constants.
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Time Complexity of an Algorithm

For a given function T (n) expressing the time or space complexity, it is
usually sufficient to express it approximately — to have an estimation

where

we ignore the less important parts

(e.g., in function T (n) = 15n
2
+ 40n − 5 we can ignore 40n and −5,

and to consider function T (n) = 15n
2
instead of the original

function),

we ignore multiplication constants

(e.g., instead of function T (n) = 15n
2
we will consider

function T (n) = n
2
)

we won’t ignore constants in exponents — for example there is a big
difference between functions T1(n) = n

2
and T2(n) = n

3
.

we will be interested how function T (n) behaves for “big” values
of n, we can ignore its behaviour on small values
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Growth of Functions

A program works on an input of size n.
Let us assume that for an input of size n, the program performs T (n)
operations and that an execution of one operation takes 1µs (10

−6
s).

n

T (n) 20 40 60 80 100 200 500 1000

n 20µs 40µs 60µs 80µs 0.1ms 0.2ms 0.5ms 1ms

n log n 86µs 0.213ms 0.354ms 0.506ms 0.664ms 1.528ms 4.48ms 9.96ms

n
2

0.4ms 1.6ms 3.6ms 6.4ms 10ms 40ms 0.25 s 1 s

n
3

8ms 64ms 0.216 s 0.512 s 1 s 8 s 125 s 16.7min.

n
4

0.16 s 2.56 s 12.96 s 42 s 100 s 26.6min. 17.36 hours 11.57 days

2
n

1.05 s 12.75 days 36560 years 38.3⋅10
9
years 40.1⋅10

15
years 50⋅10

45
years 10.4⋅10

136
years –

n! 77147 years 2.59⋅10
34
years 2.64⋅10

68
years 2.27⋅10

105
years 2.96⋅10

144
years – – –
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Growth of Functions

Let us consider 3 algorithms with complexities
T1(n) = n,T2(n) = n

3
,T3(n) = 2

n
. Our computer can do in a reasonable

time (the time we are willing to wait) 10
12

steps.

Complexity Input size

T1(n) = n 10
12

T2(n) = n
3

10
4

T3(n) = 2
n

40
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Growth of Functions

Let us consider 3 algorithms with complexities
T1(n) = n,T2(n) = n

3
,T3(n) = 2

n
. Our computer can do in a reasonable

time (the time we are willing to wait) 10
12

steps.

Complexity Input size

T1(n) = n 10
12

T2(n) = n
3

10
4

T3(n) = 2
n

40

Now we speed up our computer 1000 times, meaning it can do 10
15

steps.

Complexity Input size Growth

T1(n) = n 10
15

1000×

T2(n) = n
3

10
5

10×

T3(n) = 2
n

50 +10
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Asymptotic Notation

In the following, we will consider functions of the form f ∶ N → R, where:

The values of f (n) need not to be defined for all values of n ∈ N but
there must exist some constant n0 such that the value of f (n) is
defined for all n ∈ N such that n ≥ n0.

Example: Function f (n) = log2(n) is not defined for n = 0 but it is
defined for all n ≥ 1.

There must exist a constant n0 such that for all n ∈ N, where n ≥ n0,
is f (n) ≥ 0.

Example: It holds for function f (n) = n
2
− 25 that f (n) ≥ 0 for all

n ≥ 5.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 14, 2024 34 / 72



Asymptotic Notation

Let us take an arbitrary function g ∶ N → R. Expressions O(g), Ω(g),
Θ(g), o(g), and ω(g) denote sets of functions of the type N → R,
where:

O(g) – the set of all functions that grow at most as fast as g

Ω(g) – the set of all functions that grow at least as fast as g

Θ(g) – the set of all functions that grow as fast as g

o(g) – the set of all fuctions that grow slower than function g

ω(g) – the set of all functions that grow faster than function g

Remark: These are not definitions! The definitions will follow on the next
slides.

O – big “O”

Ω – uppercase Greek letter “omega”

Θ – uppercase Greek letter “theta”

o – small “o”

ω – small “omega”
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 14, 2024 35 / 72



Asymptotic Notation – Symbol O

Informally:

O(g) – the set of all functions that grow at most as fast as g

How to define formally when f ∈ O(g) holds?

The first try:

to compare the values of the functions

(∀n ∈ N)(f (n) ≤ g(n))
A problem: This does not allow to ignore the values of constants,
e.g., it is not true that (∀n ∈ N)(3n2 ≤ 2n

2).
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Asymptotic Notation – Symbol O

Informally:

O(g) – the set of all functions that grow at most as fast as g

How to define formally when f ∈ O(g) holds?

The second try:

to multiply function g with some big enough constant c

(∃c > 0)(∀n ∈ N)(f (n) ≤ c ⋅ g(n))
A problem: The inequality need not hold for some small values of n
even after multiplying g by some arbitralily big value.

For example, function g(n) = n
2
grows faster than function

f (n) = n + 5. However, not matter how big constant c is chosen, it
will never be true that n + 5 ≤ c ⋅ n

2
for n = 0.
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Asymptotic Notation – Symbol O

Informally:

O(g) – the set of all functions that grow at most as fast as g

How to define formally when f ∈ O(g) holds?

The third try:

it is not required that the inequality holds for each n, it is sufficient
when it holds for all values that are “big enough”

(∃c > 0)(∃n0 ≥ 0)(∀n ≥ n0)(f (n) ≤ c ⋅ g(n))
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Asymptotic Notation – Symbol O

nn0

c⋅g(n)
f (n)

Definition

Let us consider an arbitrary function g ∶ N → R. For a function f ∶ N → R

we have f ∈ O(g) iff

(∃c > 0)(∃n0 ≥ 0)(∀n ≥ n0)(f (n) ≤ c ⋅ g(n)).
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Asymptotic Notation – Symbol O

Remarks:

c is a posive real number (i.e., c ∈ R and c > 0)

n0 and n are natural numbers (i.e., n0 ∈ N and n ∈ N)
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Asymptotic Notation – Symbol O

Example: Let us consider functions f (n) = 2n
2
+ 3n + 7 and g(n) = n

2
.

We want to show that f ∈ O(g), i.e., f ∈ O(n2):
Approach 1:

Let us take for example c = 3.

c ⋅ g(n) = 3n
2
= 2n

2
+

1
2
n
2
+

1
2
n
2

We need to find some n0 such that for all n ≥ n0 it holds that

2n
2
≥ 2n

2 1
2
n
2
≥ 3n 1

2
n
2
≥ 7

We can easily check that for example n0 = 6 satisfies this.

For each n ≥ 6 we have c ⋅ g(n) ≥ f (n):
cg(n) = 3n

2
= 2n

2
+

1
2
n
2
+

1
2
n
2
≥ 2n

2
+ 3n + 7 = f (n)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 14, 2024 39 / 72



Asymptotic Notation – Symbol O

The example where f (n) = 2n
2
+ 3n + 7 and g(n) = n

2
:

Approach 2:

Let us take c = 12.

c ⋅ g(n) = 12n
2
= 2n

2
+ 3n

2
+ 7n

2

We need to find some n0 such that for all n ≥ n0 we have

2n
2
≥ 2n

2
3n

2
≥ 3n 7n

2
≥ 7

These inequalities obviously hold for n0 = 1, and so for each n ≥ 1 we
have f (n) ≤ c ⋅ g(n):
c ⋅ g(n) = 12n

2
= 2n

2
+ 3n

2
+ 7n

2
≥ 2n

2
+ 3n + 7 = f (n)
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Asymptotic Notation – Symbol Ω

nn0

c⋅g(n)

f (n)

Definition

Let us consider an arbitrary function g ∶ N → R. For a function f ∶ N → R

we have f ∈ Ω(g) iff

(∃c > 0)(∃n0 ≥ 0)(∀n ≥ n0)(c ⋅ g(n) ≤ f (n)).
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Asymptotic Notation – Symbol Ω

It is not difficult to prove the following proposition:

For arbitrary functions f and g we have:

f ∈ O(g) iff g ∈ Ω(f )
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Asymptotic Notation – Symbol Θ

nn0

c2⋅g(n)
f (n)
c1⋅g(n)

Definition

Let us consider an arbitrary function g ∶ N → R. For a function f ∶ N → R

we have f ∈ Θ(g) iff

(∃c1 > 0)(∃c2 > 0)(∃n0 ≥ 0)(∀n ≥ n0)(c1 ⋅ g(n) ≤ f (n) ≤ c2 ⋅ g(n)).
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 14, 2024 43 / 72



Asymptotic Notation – Symbol Θ

The following easily follows from the definition of Θ:

For arbitrary functions f and g we have:

f ∈ Θ(g) iff f ∈ O(g) and f ∈ Ω(g)
f ∈ Θ(g) iff f ∈ O(g) and g ∈ O(f )
f ∈ Θ(g) iff g ∈ Θ(f )
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Asymptotic Notation – Symbols o and ω

Definition

Let us consider an arbitrary function g ∶ N → R. For a function f ∶ N → R

we have f ∈ o(g) iff
lim

n→+∞

f (n)
g(n) = 0

Definition

Let us consider an arbitrary function g ∶ N → R. For a function f ∶ N → R

we have f ∈ ω(g) iff
lim

n→+∞

f (n)
g(n) = +∞
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Asymptotic Notation

For arbitrary functions f and g we have the following propositions:

If there exists a constant c ≥ 0 such that

lim
n→+∞

f (n)
g(n) = c

then f ∈ O(g).

If there exists a constant c ≥ 0 such that

lim
n→+∞

g(n)
f (n) = c

then f ∈ Ω(g).
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 14, 2024 46 / 72



Asymptotic Notation

It is obvious that:

If f ∈ o(g) then f ∈ O(g).
If f ∈ ω(g) then f ∈ Ω(g).
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Asymptotic Notation

The asymptotic notation can be viewed as a certain kind of comparison of
a rate of growth functions:

f ∈ O(g) — rate of growth of f “≤” rate of growth of g

f ∈ Ω(g) — rate of growth of f “≥” rate of growth of g

f ∈ Θ(g) — rate of growth of f “=” rate of growth of g

f ∈ o(g) — rate of growth of f “<” rate of growth of g

f ∈ ω(g) — rate of growth of f “>” rate of growth of g

Remark:

There are pairs of functions f and g such that

f /∈ O(g) and g /∈ O(f ),
for example

f (n) = n
2

g(n) = {n if n mod 2 = 1

n
3

otherwise
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Asymptotic Notation

A function f is called:

linear, if f (n) ∈ Θ(n)
quadratic, if f (n) ∈ Θ(n2)
cubic, if f (n) ∈ Θ(n3)
polynomial, if f (n) ∈ O(nk) for some k > 0

exponential, if f (n) ∈ O(cnk ) for some c > 1 and k > 0
logarithmic, if f (n) ∈ Θ(log n)
polylogarithmic, if f (n) ∈ Θ(logk n) for some k > 0

O(1) is the set of all bounded functions, i.e., functions whose
function values can be bounded from above by a constant.

Exponential functions are often written in the form 2
O(nk)

when the
asymptotic notation is used, since then we do not need to consider
different bases.
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Asymptotic Notation

In general, it holds that:

every polylogarithmic function grows slower than any polynomial
function

every polynomial function grows slower than any exponential function

to compare polynomial functions n
k
and n

ℓ
it is sufficient to compare

values k and ℓ

to compare polylogarithmic functions log
k
n and log

ℓ
n it is sufficient

to compare values k and ℓ

to compare exponential functions 2
p(n)

and 2
q(n)

it is sufficient to
compare polynomials p(n) and q(n).
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Asymptotic Notation

Proposition

Let us assume that a and b are constants such that a > 0 and b > 0,
and k and ℓ are some arbitrary constants where k ≥ 0, ℓ ≥ 0 and k ≤ ℓ.

Let us consider functions

f (n) = a ⋅ n
k

g(n) = b ⋅ n
ℓ

For each such functions f and g it holds that f ∈ O(g):
Proof: Let us take c =

a

b
.

Because for n ≥ 1 we obviously have n
k
≤ n

ℓ
(since k ≤ ℓ), for n ≥ 1 we

have

c ⋅ g(n) = a

b
⋅ g(n) = a

b
⋅ b ⋅ n

ℓ
= a ⋅ n

ℓ
≥ a ⋅ n

k
= f (n)
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Asymptotic Notation

Proposition

For any a, b > 1 and any n > 0 we have

loga n =
logb n

logb a

Proof: From n = a
loga n it follows that logb n = logb(aloga n).

Since logb(aloga n) = loga n ⋅ logb a, we obtain logb n = loga n ⋅ logb a, from
which the above mentioned conclusion follows directly.

Due to this observation, the base of a logarithm is often omited in the
asymptotic notation: for example, instead of Θ(n log2 n) we can write
Θ(n log n).
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Asymptotic Notation

Examples:

n ∈ O(n2) n
3
∈ O(n4)

1000n ∈ O(n) 0.00001n
2
− 10

10
n ∈ Θ(1010n2)

2
log2 n

∈ Θ(n) n
3
− n

2
log

3
2 n + 1000n − 10

100
∈ Θ(n3)

n
3 /∈ O(n2) n

3
+ 1000n − 10

100
∈ O(n3)

n
2 /∈ O(n) n

3
+ n

2 /∈ Θ(n2)
n
3
+ 2

n /∈ O(n2) n! /∈ O(2n)
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Asymptotic Notation

For arbitrary functions f , g , and h we have:

if f ∈ O(g) and g ∈ O(h) then f ∈ O(h)
if f ∈ Ω(g) and g ∈ Ω(h) then f ∈ Ω(h)
if f ∈ Θ(g) and g ∈ Θ(h) then f ∈ Θ(h)
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Asymptotic Notation

For any function f a libovolnou konstantu c > 0 we have:

c ⋅ f ∈ Θ(f )
For any pair of functions f , g we have:

max(f , g) ∈ Θ(f + g)
if f ∈ O(g) then f + g ∈ Θ(g)

For any functions f1, f2, g1, g2 we have:

if f1 ∈ O(f2) and g1 ∈ O(g2) then f1 + g1 ∈ O(f2 + g2) and
f1 ⋅ g1 ∈ O(f2 ⋅ g2)
if f1 ∈ Θ(f2) and g1 ∈ Θ(g2) then f1 + g1 ∈ Θ(f2 + g2) and
f1 ⋅ g1 ∈ Θ(f2 ⋅ g2)
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Asymptotic Notation

As mentioned before, expressions O(g), Ω(g), Θ(g), o(g), and ω(g)
denote certain sets of functions.

In some texts, these expressions are sometimes used with a slightly
different meaning:

an expression O(g), Ω(g), Θ(g), o(g) or ω(g) does not represent
the corresponding set of functions but some function from this set.

This convention is often used in equations and inequations.

Example: 3n
3
+ 5n

2
− 11n + 2 = 3n

3
+ O(n2)

When using this convention, we can for example write f = O(g) instead of
f ∈ O(g).
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Complexity of Algorithms

Let us say we would like to analyze the time complexity T (n) of some
algorithm consisting of instructions I1, I2, . . . , Ik :

Let us assume that how long it takes to execute each instruction is
given by constants c1, c2, . . . , ck , i.e., the time it takes to execute
instruction Ii once is specified by a constant ci .

Let us assume that In is the set of all possible inputes for the given
algorithm.

Let us define for each instruction Ii a corresponding function

mi ∶ In → N

specifying how many times instruction Ii will be executed during
a computation over a given input, i.e., the value mi(w) specifies how
many times instruction Ii will be executed during a computation over
an input w .
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Complexity of Algorithms

Total running time of a computation over an input w :

t(w) = c1 ⋅m1(w) + c2 ⋅m2(w) +⋯+ ck ⋅mk(w).
Let us racall that T (n) = max { t(w) ∣ size(w) = n }.
For each of the functions m1,m2, . . . ,mk we can define
a corresponding function fi ∶ N → R, where

fi(n) = max {mi(w) ∣ size(w) = n }
is the maximum of numbers of executions of instruction Ii for all
inputs of size n.

It is obvious that T ∈ O(f1 + f2 +⋯+ fk).
Let us recall that if fj ∈ O(fi) then ci ⋅ fi + cj ⋅ fj ∈ O(fi).
If there is a function fi such that for all fj , where j ≠ i , we have
fj ∈ O(fi), then

T ∈ O(fi).
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Complexity of Algorithms

Obviously, T ∈ Ω(fi) for any function fi .

So in an analysis of a total running time T (n), we can typically
restrict our attention only to an analysis of how many times the most
often executed instruction Ii is executed, i.e., on examination of a rate
of groth of function fi(n) because

T ∈ Θ(fi).
For other instructions Ij we just need to verify that

fj ∈ O(fi),
i.e., it is not necessary to determine precisely for them how fast they
grow but rather it is sufficcient to determine for them that their rate
of growth is not bigger than the rate of groth of fi .
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Complexity of Algorithms

Example:

Algorithm: Finding the maximal element in an array

Find-Max (A, n):
k ∶= 0
for i ∶= 1 to n − 1 do

if A[i] > A[k] then

k ∶= i

return A[k]
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Complexity of Algorithms

In the analysis of the complexity of the searching of a number in a
sequence we obtained

f (n) = an + b .

If we would not like to do such a detailed analysis, we could deduce that
the time complexity of the algorithm is Θ(n), because:

The algorithm contains only one cycle, which is performed(n − 1) times for an input of size n, the number of iterations of the
cycle is in Θ(n).
Several instructions are performed in one iteration of the cycle. The
number of these instructions is bounded from both above and below
by some constant independent on the size of the input. So the time
of execution of one iteration of the cycle is in Θ(1).
Other instructions are executed just once. The time spent by their
execution is in Θ(1).
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Complexity of Algorithms

Let us try to analyze the time complexity of the following algorithm:

Algorithm: Insertion sort

Insertion-Sort (A, n):
for j ∶= 1 to n − 1 do

x ∶= A[j]
i ∶= j − 1
while i ≥ 0 and A[i] > x do

A[i + 1] ∶= A[i]
i ∶= i − 1

A[i + 1] ∶= x

I.e., we want to find a function T (n) such that the time complexity of the
algorithm Insertion-Sort in the worst case is in Θ(T (n)).
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

3

0

8

1

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x =?
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

3

0

8

1

↑

j

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x =?
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

3

0
↓

i

8

1

↑

j

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 8
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

3

0

8

1

↑

j

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 8
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

3

0

8

1

1

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 8
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

3

0

8

1
↓

i

1

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 1
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

3

0
↓

i

8

1

8

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 1
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

3

0

3

1

8

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

i
↓

n

x = 1
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

1

0

3

1

8

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 1
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

1

0

3

1

8

2

5

3

↑

j

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 1
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

1

0

3

1

8

2
↓

i

5

3

↑

j

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 5
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

1

0

3

1
↓

i

8

2

8

3

↑

j

8

4
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n
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

1

0

3

1
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j
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

1

0

3

1

5

2

8

3

8

4

↑

j

6

5
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6

4

7
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5

9
↓

n

x = 5
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

1

0

3

1

5

2

8

3
↓

i

8

4

↑

j

6

5
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6
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8

5
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↓

n

x = 8
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

1

0

3

1

5

2

8

3

8

4

6

5

↑

j
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5
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

1

0

3

1

5

2

8

3

8

4
↓

i

6

5

↑

j
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6
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5
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n
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

1

0

3

1
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8

3
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i
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8

5

↑

j

11

6

4

7

10

8

5

9
↓

n

x = 6
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.

1

0

3

1
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2
↓

i

8
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4
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input
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Complexity of Algorithms
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Complexity of Algorithms
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Example: A computation of Insertion-Sort on input
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.
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Complexity of Algorithms

Example: A computation of Insertion-Sort on input

A = [ 3, 8, 1, 5, 8, 6, 11, 4, 10, 5 ], n = 10.
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Complexity of Algorithms

Algorithm: Insertion sort

Insertion-Sort (A, n):
for j ∶= 1 to n − 1 do

x ∶= A[j]
i ∶= j − 1
while i ≥ 0 and A[i] > x do

A[i + 1] ∶= A[i]
i ∶= i − 1

A[i + 1] ∶= x
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Complexity of Algorithms

Let us consider inputs of size n:

The outer cycle for is performed at most n − 1 times.
(Variable j takes values 1, 2, . . . , n − 1.)

The inner cycle while is performed at most j times for a given value j .
(Variable i takes values j − 1, j − 2, . . . , 1, 0.)

There are inputs such that the cycle while is performed exactly
j times for each value j from 1 to n − 1.

So in the worst case, the cycle while is performed exactly m times,
where

m = 1 + 2 +⋯+ (n − 1) = (1 + (n − 1)) ⋅ n−1
2

=
1
2
n
2
−

1
2
n

This means that the total running time of the algorithm
Insertion-Sort in the worst case is Θ(n2).
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Complexity of Algorithms

In the previous case, we have computed the total number of executions of
the cycle while accurately.

This is not always possible in general, or it can be quite complicated. It is
also not necessary, if we only want an asymptotic estimation.
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Complexity of Algorithms

For example, if we were not able to compute the sum of the arithmetic
progression, we could proceed as follows:

The outer cycle for is not performed more than n times and the inner
cycle while is performed at most n times in each iteration of the
outer cycle.

So we have T ∈ O(n2).
For some inputs, the cycle while is performed at least ⌈n/2⌉ times in
the last ⌊n/2⌋ iterations of the cycle for.

So the cycle while is performed at least ⌊n/2⌋ ⋅ ⌈n/2⌉ times for some
inputs.

⌊n/2⌋ ⋅ ⌈n/2⌉ ≥ (n/2 − 1) ⋅ (n/2) = 1
4
n
2
−

1
2
n

This implies T ∈ Ω(n2).
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Complexity of Algorithms

So far we considered that execution of a given instruction always
takes the same time without regard the values, with which it works.

So when asymptotic notation was used, the time how long it takes to
execute an individual instruction played no role and it was only
important how many times the given instruction is executed.

For example, when RAMs are used as a model of computation, this
corresponds to counting of instructions executed, i.e., an execution of
one instruction takes 1 time unit.

This is known as using the so called uniform-cost measurement.

Estimations of the time complexity using the uniform-cost
measurement correnspond to the running time on real computers
under the assumption that operations, performed by the RAM, can be
performed by a real computer in a constant time.

This assumption holds, if numbers, the algorithm works with, are
small (they can be stored, say, to 32 or 64 bits).
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Complexity of Algorithms

If the RAM works with “big” numbers (e.g., 1000 bit), the estimation
using the uniform-cost measurement will be unrealistic in the sense
that a computation on a real computer will take much more time.

To analyse the time complexity of algorithms working with big
numbers, we usually use so called logarithmic-cost measurement,
where a duration of one instruction is not 1 but is proportional to the
number of bit operations, which are necessary for an execution of
this instruction.

The duration of an exection of an instruction depends on the actual
values of its operands.

For example, a duration of an execution of instructions for addition
and subtraction is equal to the sum of the numbers of bits of their
operands.

The duration of an execution of instructions multiplication and
division is equal to the product of the numbers of bits of their
operands.
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Complexity of Algorithms

Remark: The notation blen(x) denotes the number of bits in a binary
representation of a natural number x .

It holds that
blen(x) = max (1, ⌈log2(x + 1)⌉)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 14, 2024 70 / 72



Space Complexity of Algorithms

So far we have considered only the time necessary for a computation

Sometimes the size of the memory necessary for the computation is
more critical.

For RAMs and their use of memory, we can again distinguish between the
use of uniform-cost and logarithmic-cost measurement:

Amount of memory of a RAM M used for an input w is the number of
memory cells that are used by M during its computation on w .

Definition

A space complexity of a RAM M (in the worst case) is the function
S ∶ N → N, where S(n) is the maximal amount of memory used by M for
inputs of size n.
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Space Complexity of Algorithms

There can be two algorithms for a particular problem such that one of
them has a smaller time complexity and the other a smaller space
complexity.

If the time-complexity of an algorithm is in O(f (n)) then also the
space complexity is in O(f (n)) (note that a RAM uses at most three
cells in each step — at most two for reading and at most one for
writing).
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