
Algorithms

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 1 / 61

Pseudocode

Usually, we will not represent algorithms as programs for a RAM but
rather as programs in some high-level programming language.

We will not use any particular programming language.

Rather, we will write programs in a form of pseudocode whose syntax
could be adjusted in arbitrary ways according to our needs (e.g., we will
use things like arbitrary mathematical notation, descriptions in a natural
language, and so on, freely).

Example:

Algorithm: An algorithm for finding the maximal element in an array

Find-Max (A, n):
k ∶= 0
for i ∶= 1 to n − 1 do

if A[i] > A[k] then

k ∶= i

return A[k]

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 2 / 61

Algorithms

Remark:

From the point of view of an analysis how a given algorithm works, it
usually makes only a little difference if the algorithm:

reads input data from some input device (e.g., from a file, from
a keyboard, etc.)

writes data to some output device (e.g., to a file, on a screen, etc.)

or

reads input data from a memory (e.g., they are given to it as
parameters)

writes data somewhere to memory (e.g., it returns them as a return
value)

So in a pseudocode, input data will be often given as arguments of
a function and an output will be represented as a return value of this
function.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 3 / 61

Control Flow

Instructions can be roughly devided into two groups:

instructions working directly with data:

assignment
evaluation of values of expressions in conditions
reading input, writing output
. . .

instructions affecting the control flow — they determine, which
instructions will be executed, in what order, etc.:

branching (if, switch, . . .)
cycles (while, do .. while, for, . . .)
organisation of instructions into blocks
returns from subprograms (return, . . .)
. . .

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 4 / 61

Control Flow Graph

k ∶= 0

i ∶= 1

[i < n]

[i ≥ n]

[A[i] > A[k]]

[A[i] ≤ A[k]]

k ∶= i

i ∶= i + 1
result ∶= A[k]

0

1

2

3

4

5

6

7

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 5 / 61

Some Basic Constructions of Structured Programming

S1

S2

[B] [¬B]

S1 S2

[B] [¬B]

S

S1; S2 if B then S1 else S2 if B then S

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 6 / 61

Some Basic Constructions of Structured Programming

[B][¬B]

S
[B]

[¬B]

S

while B do S do S while B

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 7 / 61

Some Basic Constructions of Structured Programming

[i ≤ b][i > b]

i ∶= a

i ∶= i + 1S

for i ∶= a to b do S

i ∶= a

while i ≤ b do

S

i ∶= i + 1

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 8 / 61

Some Basic Constructions of Structured Programming

Short-circuit evaluation of compound conditions, e.g.:

while i < n and A[i] > x do . . .

[B1]

[¬B1]

[B2]
[¬B2]

S1 S2

[B1]

[¬B1]

[B2]
[¬B2]

S1 S2

if B1 and B2 then S1 else S2 if B1 or B2 then S1 else S2

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 9 / 61

Control-flow Realized by GOTO

goto ℓ — unconditional jump

if B then goto ℓ — conditional jump

Example:

0: k ∶= 0
1: i ∶= 1
2: goto 6

3: if A[i] ≤ A[k] then goto 5

4: k ∶= i

5: i ∶= i + 1
6: if i < n then goto 3

7: return A[k]

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 10 / 61

Control-flow Realized by GOTO

goto ℓ — unconditional jump

if B then goto ℓ — conditional jump

Example:

start: k ∶= 0
i ∶= 1
goto L3

L1: if A[i] ≤ A[k] then goto L2

k ∶= i

L2: i ∶= i + 1
L3: if i < n then goto L1

return A[k]

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 10 / 61

Evaluation of Complicated Expressions

Evaluation of a complicated expression such as

A[i + s] ∶= (B[3 ∗ j + 1] + x) ∗ y + 8

can be replaced by a sequence of simpler instructions on the lower level,
such as

t1 ∶= i + s

t2 ∶= 3 ∗ j

t2 ∶= t2 + 1
t3 ∶= B[t2]
t3 ∶= t3 + x

t3 ∶= t3 ∗ y

t3 ∶= t3 + 8
A[t1] ∶= t3

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 11 / 61

Computation of an Algorithm

Configuration — the description of the global state of the machine in
some particular step during a computation

Example: A configuration of the form

(q,mem)

where

q — the current control state

mem — the current content of memory of the machine — the values
assigned currently to variables.

An example of a content of memory mem:

⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k : 0, result: ?⟩

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 12 / 61

Computation of an Algorithm

An example of a configuration:

(2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k : 0, result: ?⟩)

A computation of a machine M executing an algorithm Alg , where it
processes an input w , in a sequence of configurations.

It starts in an initial configuration.

In every step, the machine goes from one configuration to another.

The computation ends in a final configuration.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 13 / 61

Computation of an Algorithm

k ∶= 0

i ∶= 1

[i < n]

[i ≥ n]

[A[i] > A[k]]

[A[i] ≤ A[k]]

k ∶= i

i ∶= i + 1
result ∶= A[k]

0

1

2

3

4

5

6

7

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 14 / 61

Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 15 / 61

Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 15 / 61

Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 15 / 61

Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 15 / 61

Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 15 / 61

Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 15 / 61

Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 15 / 61

Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 15 / 61

Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 15 / 61

Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 15 / 61

Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 15 / 61

Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 15 / 61

Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 15 / 61

Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 15 / 61

Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α14: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 15 / 61

Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α14: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α15: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 15 / 61

Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α14: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α15: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)
α16: (6, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 15 / 61

Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α14: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α15: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)
α16: (6, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)
α17: (7, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: 8⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 15 / 61

Computation of an Algorithm

By executing an instruction I , the machine goes from configuration α to
configuration α

′
:

α
I

⟶ α
′

A computation can be:

Finite:

α0

I0
⟶ α1

I1
⟶ α2

I2
⟶ α3

I3
⟶ α4

I4
⟶ ⋯

It−2
⟶ αt−1

It−1
⟶ αt

where αt is either a final configuration or a configuration where an
error occurred and it is not possible to continue in the computation

Infinite:

α0

I0
⟶ α1

I1
⟶ α2

I2
⟶ α3

I3
⟶ α4

I4
⟶ ⋯

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 16 / 61

Computation of an Algorithm

A computation can be described in two different ways:

as a sequence of configurations α0, α1, α2, . . .

as a sequence of executed instructions I0, I1, I2, . . .

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 17 / 61

Church-Turing Thesis

It should be clear from the previous discussion that:

A program written in an arbitrary programming language could be
translated to a program for a RAM.

Behaviour of a RAM could be simulated by a Turing machine.

So the behaviour of a program written in an arbitrary programming
language could be simulated by a Turing machine.

Church-Turing thesis

Every algorithm can be implemented as a Turing machine.

It is not a theorem that can be proved in a mathematical sense – it is not
formally defined what an algorithm is.

The thesis was formulated in 1930s independently by Alan Turing and
Alonzo Church.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 18 / 61

Church-Turing Thesis

Examples of mathematical formalisms modelling the notion of an
algorithm:

Turing machines

Random Access Machines

Lambda calculus

Recursive functions

. . .

We can also mention:

An arbitrary (general purpose) programming language (for example C,
Java, Python, Lisp, Haskell, Prolog, etc.).

All these models are equivalent with respect to algorithms that can be
implemented by them.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 19 / 61

Proving Correctness of Algorithms

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 20 / 61

Correctness of Algorithms

Algorithms are used for solving problems.

Problem — a specification what should be computed by
an algorithm:

Description of inputs
Description of outputs
How outputs are related to inputs

Algorithm — a particular procedure that describes how to compute
an output for each possible input

Algorithm is a correct solution of a given problem if it halts for all inputs
and for all inputs it produces a correct output.

Example:

Problem: The problem of sorting
Algorithm: Quicksort
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 21 / 61

Correctness of Algorithms

Example:

The problem of finding a maximal element in an array:

Input: An array A indexed from zero and a number n representing
the number of elements in array A. It is assumed that n ≥ 1.

Output: A value result of a maximal element in the array A, i.e., the
value result such that:

A[j] ≤ result for all j ∈ N, where 0 ≤ j < n, and

there exists j ∈ N such that 0 ≤ j < n and A[j] = result.

An instance of a problem — concreate input data, e.g.,

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

The output for this instance is value 11.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 22 / 61

Correctness of Algorithms

Algorithm: An algorithm for finding the maximal element in an array

Find-Max (A, n):
k ∶= 0
for i ∶= 1 to n − 1 do

if A[i] > A[k] then

k ∶= i

return A[k]

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 23 / 61

Correctness of Algorithms

Definition

An algorithm Alg solves a given problem P , if for each instance w of
problem P , the following conditions are satisfied:

(a) The computation of algorithm Alg on input w halts after finite
number of steps.

(b) Algorithm Alg generates a correct output for input w according to
conditions in problem P .

An algorithm that solves problem P is a correct solution of this problem.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 24 / 61

Correctness of Algorithms

Algorithm Alg is not a correct solution of problem P if there exists an
input w such that in the computation on this input, one of the following
incorrect behaviours occurs:

some incorrect illegal operation is performed (an access to an element
of an array with index out of bounds, division by zero, . . .),

the generated output does not satisfy the conditions specified in
problem P ,

the computation never halts.

Testing — running the algorithm with different inputs and checking
whether the algorithm behaves correctly on these inputs.

Testing can be used to show the presence of bugs but not to show that
algorithm behaves correctly for all inputs.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 25 / 61

Correctness of Algorithms

Typically, the set of possible instances of a given problem is infinite (or at
least very big), so it is not possible to test the behaviour of the algorithm
for all instances.

As a justification and a verificatoin of the fact that an algorithm is
a correct solution of a given problem, we need to have a proof that takes
into account all possible computations on all possible inputs.

Generally, it is reasonable to divide a proof of correctness of an algorithm
into two parts:

Showing that the algorithm never does anything “wrong” for any
input:

no illegal operation is performed during a computation
if the program halts, the generated output will be “correct”

Showing that for every input the algorithm halts after a finite number
of steps.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 26 / 61

Invariants

Consider an arbitrary system consisting of:

a set of states (or configurations) — it can be infinite

transitions between these states

some states are specified as initial

A state is reachable if it is possible to reach it from some initial state
using a sequence of transitions.

An invariant is a condition determining a subset of states such that all
reachable states satisfy these condition:

it is satisfied in all initial states

if it is satisfied in a state and there is a transition from this state, by
which the system goes to another state in one step, then this
condition will be satisfied also in this other state

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 27 / 61

Invariants

reachable states

all states

states where

the invariant holds

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 28 / 61

Invariants

Example: We will move with a knight (a chess piece) on a chessboard
and at the same time we will count the number of the moves performed;
the knight starts on some white square in the leftmost column:

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 29 / 61

Invariants

States — pairs consisting of a current position of the knight on the
chessboard and a value of the counter giving the number of moves
performed so far

Transitions — making one move with the knight (according to the
rules of chess) and incrementing the counter by one

Initial states — the knight is on a white square in the leftmost
column and the value of the counter is 0

For example, the following invarint holds:

if the value of the counter is even, the knight is on a white square

if the value of the counter is odd, the knight is on a black square

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 30 / 61

Invariants

Example: Algorithm Find-Max represented as a control-flow graph

k ∶= 0

i ∶= 1

[i < n]

[i ≥ n]

[A[i] > A[k]]

[A[i] ≤ A[k]]

k ∶= i

i ∶= i + 1
result ∶= A[k]

0

1

2

3

4

5

6

7

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 31 / 61

Invariants

A computation for input A = [3, 8, 1, 3, 6] and n = 5 as a sequence of
configurations:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 32 / 61

Invariants

A computation for input A = [3, 8, 1, 3, 6] and n = 5 as a sequence of
configurations:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 32 / 61

Invariants

A computation for input A = [3, 8, 1, 3, 6] and n = 5 as a sequence of
configurations:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 32 / 61

Invariants

A computation for input A = [3, 8, 1, 3, 6] and n = 5 as a sequence of
configurations:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 32 / 61

Invariants

A computation for input A = [3, 8, 1, 3, 6] and n = 5 as a sequence of
configurations:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 32 / 61

Invariants

A computation for input A = [3, 8, 1, 3, 6] and n = 5 as a sequence of
configurations:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 32 / 61

Invariants

A computation for input A = [3, 8, 1, 3, 6] and n = 5 as a sequence of
configurations:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 32 / 61

Invariants

A computation for input A = [3, 8, 1, 3, 6] and n = 5 as a sequence of
configurations:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 32 / 61

Invariants

A computation for input A = [3, 8, 1, 3, 6] and n = 5 as a sequence of
configurations:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 32 / 61

Invariants

A computation for input A = [3, 8, 1, 3, 6] and n = 5 as a sequence of
configurations:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 32 / 61

Invariants

A computation for input A = [3, 8, 1, 3, 6] and n = 5 as a sequence of
configurations:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 32 / 61

Invariants

A computation for input A = [3, 8, 1, 3, 6] and n = 5 as a sequence of
configurations:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 32 / 61

Invariants

A computation for input A = [3, 8, 1, 3, 6] and n = 5 as a sequence of
configurations:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 32 / 61

Invariants

A computation for input A = [3, 8, 1, 3, 6] and n = 5 as a sequence of
configurations:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 32 / 61

Invariants

A computation for input A = [3, 8, 1, 3, 6] and n = 5 as a sequence of
configurations:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α14: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 32 / 61

Invariants

A computation for input A = [3, 8, 1, 3, 6] and n = 5 as a sequence of
configurations:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α14: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α15: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 32 / 61

Invariants

A computation for input A = [3, 8, 1, 3, 6] and n = 5 as a sequence of
configurations:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α14: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α15: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)
α16: (6, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 32 / 61

Invariants

A computation for input A = [3, 8, 1, 3, 6] and n = 5 as a sequence of
configurations:

α0: (0, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?⟩)
α1: (1, ⟨A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?⟩)
α2: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α3: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α4: (4, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?⟩)
α5: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?⟩)
α6: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α7: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α8: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?⟩)
α9: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α10: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α11: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?⟩)
α12: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α13: (3, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α14: (5, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?⟩)
α15: (2, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)
α16: (6, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?⟩)
α17: (7, ⟨A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: 8⟩)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 32 / 61

Invariants

States — configurations consisting of a state of the control unit and
a content of the memory represented by values of all variables.

Transitions — they are determined by instructions on the edges of
the control-flow graph, they change both the control state and the
content of the memory by assigning values to variables

Initial states — all possible initial configurations for all possible input
instances that are allowed according to a specification of the problem

Invariants will be propositions referring to configurations, i.e., they talk
about states of the control unit and values of the variables

If the control state is 2, then, in the given configuration, it holds that
1 ≤ i ≤ n, 0 ≤ k < i , and A[k] is the greatest of the elements
A[0],A[1], . . . ,A[i − 1].

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 33 / 61

Invariants

For those systems, where configurations contain a control state, it can be
convenient to state invariants in the form:

if the control state is 0, then ϕ0 holds

if the control state is 1, then ϕ1 holds
⋮

if the control state is r , then ϕr holds

where the propositions ϕ0, ϕ1, . . . , ϕr refer only to the content of the
memory, not to the control state.

Configurations can divided into (finitely many) groups according to the
states of the control unit.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 34 / 61

Invariants

control state 2

control state 6
control state 3

invariant ϕ2

invariant ϕ6

invariant ϕ3

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 35 / 61

Invariants

Invariant — a condition that must be always satisfied in a given position
in a code of the algorithm (i.e., in all possible computations for all allowed
inputs) whenever the algorithm goes through this position.

Invariants can be written as formulas of predicate logic:

free variables correspond to variables of the program

a valuation is determined by values of program variables in a given
configuration

Example: Formula

(1 ≤ i) ∧ (i ≤ n)

holds for example in a configuration where variable i has value 5 and
variable n has value 14.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 36 / 61

Invariants

Established invariants can be useful for many different purposes:

They can help in better understanding the behaviour of the algorithm.

They can be used to verify that ceirtain types of errors do not occur
— e.g., an out of bounds array access, division by zero, . . .

We can verify that in those places in the code where such errors could
potentially occur the invariants hold that ensure that the variables will
always have values, for which the given error can not occur.

Example: When element A[i] will be accessed, it will always hold
that 0 ≤ i < n, where n is the length of the array.

An invariant that will hold in the final configurations will ensure that
the output of the algorithm is correct with respect to the specification
of the problem.

In an analysis of the computational complexity, they could be useful
in the examination how many times some instructions will be
performed or how much memory is needed during the computation.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 37 / 61

Invariants

Determining invariants is not a completely mechanical process. It requires
a certain understanding of the behaviour of the algorithm.

Before formulating hypothesis what invariants hold in different control
states, it can be useful to look at the behaviour of the algorithm on some
particular concrete inputs.

Example: A computation of algorithm Find-Max for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0
↓

k

8

1

↑

i

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

A

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 38 / 61

Invariants

Determining invariants is not a completely mechanical process. It requires
a certain understanding of the behaviour of the algorithm.

Before formulating hypothesis what invariants hold in different control
states, it can be useful to look at the behaviour of the algorithm on some
particular concrete inputs.

Example: A computation of algorithm Find-Max for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1
↓

k

↑

i

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

A

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 38 / 61

Invariants

Determining invariants is not a completely mechanical process. It requires
a certain understanding of the behaviour of the algorithm.

Before formulating hypothesis what invariants hold in different control
states, it can be useful to look at the behaviour of the algorithm on some
particular concrete inputs.

Example: A computation of algorithm Find-Max for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1
↓

k

1

2

↑

i

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

A

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 38 / 61

Invariants

Determining invariants is not a completely mechanical process. It requires
a certain understanding of the behaviour of the algorithm.

Before formulating hypothesis what invariants hold in different control
states, it can be useful to look at the behaviour of the algorithm on some
particular concrete inputs.

Example: A computation of algorithm Find-Max for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1
↓

k

1

2

5

3

↑

i

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

A

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 38 / 61

Invariants

Determining invariants is not a completely mechanical process. It requires
a certain understanding of the behaviour of the algorithm.

Before formulating hypothesis what invariants hold in different control
states, it can be useful to look at the behaviour of the algorithm on some
particular concrete inputs.

Example: A computation of algorithm Find-Max for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1
↓

k

1

2

5

3

8

4

↑

i

6

5

11

6

4

7

10

8

5

9
↓

n

A

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 38 / 61

Invariants

Determining invariants is not a completely mechanical process. It requires
a certain understanding of the behaviour of the algorithm.

Before formulating hypothesis what invariants hold in different control
states, it can be useful to look at the behaviour of the algorithm on some
particular concrete inputs.

Example: A computation of algorithm Find-Max for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1
↓

k

1

2

5

3

8

4

6

5

↑

i

11

6

4

7

10

8

5

9
↓

n

A

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 38 / 61

Invariants

Determining invariants is not a completely mechanical process. It requires
a certain understanding of the behaviour of the algorithm.

Before formulating hypothesis what invariants hold in different control
states, it can be useful to look at the behaviour of the algorithm on some
particular concrete inputs.

Example: A computation of algorithm Find-Max for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1
↓

k

1

2

5

3

8

4

6

5

11

6

↑

i

4

7

10

8

5

9
↓

n

A

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 38 / 61

Invariants

Determining invariants is not a completely mechanical process. It requires
a certain understanding of the behaviour of the algorithm.

Before formulating hypothesis what invariants hold in different control
states, it can be useful to look at the behaviour of the algorithm on some
particular concrete inputs.

Example: A computation of algorithm Find-Max for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

1

2

5

3

8

4

6

5

11

6
↓

k

↑

i

4

7

10

8

5

9
↓

n

A

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 38 / 61

Invariants

Determining invariants is not a completely mechanical process. It requires
a certain understanding of the behaviour of the algorithm.

Before formulating hypothesis what invariants hold in different control
states, it can be useful to look at the behaviour of the algorithm on some
particular concrete inputs.

Example: A computation of algorithm Find-Max for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

1

2

5

3

8

4

6

5

11

6
↓

k

4

7

↑

i

10

8

5

9
↓

n

A

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 38 / 61

Invariants

Determining invariants is not a completely mechanical process. It requires
a certain understanding of the behaviour of the algorithm.

Before formulating hypothesis what invariants hold in different control
states, it can be useful to look at the behaviour of the algorithm on some
particular concrete inputs.

Example: A computation of algorithm Find-Max for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

1

2

5

3

8

4

6

5

11

6
↓

k

4

7

10

8

↑

i

5

9
↓

n

A

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 38 / 61

Invariants

Determining invariants is not a completely mechanical process. It requires
a certain understanding of the behaviour of the algorithm.

Before formulating hypothesis what invariants hold in different control
states, it can be useful to look at the behaviour of the algorithm on some
particular concrete inputs.

Example: A computation of algorithm Find-Max for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

1

2

5

3

8

4

6

5

11

6
↓

k

4

7

10

8

5

9

↑

i

↓

n

A

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 38 / 61

Invariants

Determining invariants is not a completely mechanical process. It requires
a certain understanding of the behaviour of the algorithm.

Before formulating hypothesis what invariants hold in different control
states, it can be useful to look at the behaviour of the algorithm on some
particular concrete inputs.

Example: A computation of algorithm Find-Max for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

1

2

5

3

8

4

6

5

11

6
↓

k

4

7

10

8

5

9
↓

n

↑

i

A

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 38 / 61

Invariants

Examples of invariants:

an invariant in a control state q is represented by a formula ϕq

Invariants for individual control states (so far only hypotheses):

ϕ0: (n ≥ 1)

ϕ1: (n ≥ 1) ∧ (k = 0)

ϕ2: (n ≥ 1) ∧ (1 ≤ i ≤ n) ∧ (0 ≤ k < i)

ϕ3: (n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k < i)

ϕ4: (n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k < i)

ϕ5: (n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k ≤ i)

ϕ6: (n ≥ 1) ∧ (i = n) ∧ (0 ≤ k < n)

ϕ7: (n ≥ 1) ∧ (i = n) ∧ (0 ≤ k < n)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 39 / 61

Invariants

Checking that the given invariants really hold:

We must check that the given invariants hold in the initial
configurations — this is usually simple.

It is necessary to check for each instruction of the algorithm that
under the assumption that a specified invariant holds before an
execution of the instruction, the other specified invariant holds after
the execution of the instruction.

Let us assume the algorithm is represented as a control-flow graph:

edges correspond to instructions

consider an edge from state q to state q
′
labelled with instruction I

let us say that (so far non-verified) invariants for states q and q
′
are

expressed by formulas ϕ and ψ

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 40 / 61

Invariants

PSfrag
q

q
′

I

ϕ

ψ

for this edge we must check that for every configurations

α = (q,mem) and α
′
= (q

′
,mem

′
) such that α

I
⟶ α

′
, it holds that if

ϕ holds is configuration α,

then

ψ holds in configuration α
′

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 41 / 61

Invariants

Checking instructions, which are conditional tests:

an edge labelled with a conditional test [B]

q

q
′

[B]

ϕ

ψ

A content of memory is not modified, so it is sufficient to check that the
following implication holds

(ϕ ∧ B) ⇒ ψ

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 42 / 61

Invariants

Example:

2

3

[i < n]

(n ≥ 1) ∧ (1 ≤ i ≤ n) ∧ (0 ≤ k < i)

(n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k < i)

It is sufficient to check that the followng implication holds:

If (n ≥ 1) ∧ (1 ≤ i ≤ n) ∧ (0 ≤ k < i) ∧ (i < n),

then (n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k < i).

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 43 / 61

Invariants

Example:

2

6

[i ≥ n]

(n ≥ 1) ∧ (1 ≤ i ≤ n) ∧ (0 ≤ k < i)

(n ≥ 1) ∧ (i = n) ∧ (0 ≤ k < n)

It is sufficient to check that the followng implication holds:

If (n ≥ 1) ∧ (1 ≤ i ≤ n) ∧ (0 ≤ k < i) ∧ (i ≥ n),

then (n ≥ 1) ∧ (i = n) ∧ (0 ≤ k < n).

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 43 / 61

Invariants

Checking those instructions that assign values to variables (they modify
a content of memory):

an edge labelled with assignment x ∶= E

q

q
′

x ∶= E

ϕ

ψ

We must distinguish between the values of variable x before this
assignment and after this assignment.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 44 / 61

Invariants

We will need the following operation of substitution on formulas:

ϕ[E/x]

denotes a formula obtained from variable ϕ when we substitute an
expressiion E for all free occurrences of variable x in formula ϕ.

Example: Let us say that ϕ is formula (1 ≤ i) ∧ (i ≤ n).

Notation ϕ[i
′
/i] then denotes formula

(1 ≤ i
′
) ∧ (i

′
≤ n)

and notation ϕ[(i + 1)/i] denotes formula

(1 ≤ i + 1) ∧ (i + 1 ≤ n)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 45 / 61

Invariants

PSfrag
q

q
′

x ∶= E

ϕ

ψ

We will introduce a new variable x
′
representing the value of variable x

after executing this assignment.

We need to check that the following implication holds:

(ϕ ∧ (x
′
= E)) ⇒ ψ[x

′
/x]

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 46 / 61

Invariants

Example:

4

5

k ∶= i

(n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k < i)

(n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k ≤ i)

It is sufficient to check that the following implication holds:

If (n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k < i) ∧ (k
′
= i),

then (n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k
′
≤ i).

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 47 / 61

Invariants

Example:

5

2

i ∶= i + 1

(n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k ≤ i)

(n ≥ 1) ∧ (1 ≤ i ≤ n) ∧ (0 ≤ k < i)

It is sufficient to check that the following implication holds:

If (n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k ≤ i) ∧ (i
′
= i + 1),

then (n ≥ 1) ∧ (1 ≤ i
′
≤ n) ∧ (0 ≤ k < i

′
).

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 47 / 61

Invariants

Finishing the checking that the algorithm Find-Max returns a correct
result (under assumption that it halts):

ψ0: ϕ0

ψ1: ϕ1 ∧ (∀j ∈ N)(0 ≤ j < 1 → A[j] ≤ A[k])

ψ2: ϕ2 ∧ (∀j ∈ N)(0 ≤ j < i → A[j] ≤ A[k])

ψ3: ϕ3 ∧ (∀j ∈ N)(0 ≤ j < i → A[j] ≤ A[k])

ψ4: ϕ4 ∧ (∀j ∈ N)(0 ≤ j < i → A[j] ≤ A[k]) ∧ (A[i] > A[k])

ψ5: ϕ5 ∧ (∀j ∈ N)(0 ≤ j ≤ i → A[j] ≤ A[k])

ψ6: ϕ6 ∧ (∀j ∈ N)(0 ≤ j < n → A[j] ≤ A[k])

ψ7: ϕ7 ∧ (result = A[k]) ∧ (∀j ∈ N)(0 ≤ j < n → A[j] ≤
result) ∧ (∃j ∈ N)(0 ≤ j < n ∧ A[j] = result)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 48 / 61

Invariants

Usually it is not necessary to specify invariants in all control states but
only in some “important” states — in particular, in states where the
algorithm enters or leaves loops:

It is necessary to verify:

That the invariant holds before entering the loop.

That if the invariant holds before an iteration of the loop then it
holds also after the iteration.

That the invariant holds when the loop is left.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 49 / 61

Invariants

Example: In algorithm Find-Max, state 2 is such “important” state.

In state 2, the following holds:

n ≥ 1

1 ≤ i ≤ n

0 ≤ k < i

For each j such that 0 ≤ j < i it holds that A[j] ≤ A[k].

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 50 / 61

Invariants

Examples that show how invariants for some other states could be
determined, if we already have determinants for some states:

q

q
′

x ∶= E

ϕ

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 51 / 61

Invariants

Examples that show how invariants for some other states could be
determined, if we already have determinants for some states:

q

q
′

x ∶= E

ϕ

∃x
′
(ϕ[x

′
/x] ∧ x = E[x

′
/x])

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 51 / 61

Invariants

Examples that show how invariants for some other states could be
determined, if we already have determinants for some states:

q

q
′

x ∶= E

ψ

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 51 / 61

Invariants

Examples that show how invariants for some other states could be
determined, if we already have determinants for some states:

q

q
′

x ∶= E

ψ[E/x]

ψ

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 51 / 61

Invariants

Examples that show how invariants for some other states could be
determined, if we already have determinants for some states:

q

q
′

q
′′

[B] [¬B]

ϕ

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 51 / 61

Invariants

Examples that show how invariants for some other states could be
determined, if we already have determinants for some states:

q

q
′

q
′′

[B] [¬B]

ϕ

ϕ ∧ B ϕ ∧ ¬B

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 51 / 61

Invariants

Examples that show how invariants for some other states could be
determined, if we already have determinants for some states:

q

q
′

q
′′

[B] [¬B]

ψ1 ψ2

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 51 / 61

Invariants

Examples that show how invariants for some other states could be
determined, if we already have determinants for some states:

q

q
′

q
′′

[B] [¬B]

(B ⇒ ψ1) ∧ (¬B ⇒ ψ2)

ψ1 ψ2

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 51 / 61

Invariants

Example:

Algorithm: Insertion sort

Insertion-Sort (A, n):
for j ∶= 1 to n − 1 do

x ∶= A[j]
i ∶= j − 1
while i ≥ 0 and A[i] > x do

A[i + 1] ∶= A[i]
i ∶= i − 1

A[i + 1] ∶= x

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 52 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x =?

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

↑

j

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x =?

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0
↓

i

8

1

↑

j

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 8

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

↑

j

1

2

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 8

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1

1

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 8

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

8

1
↓

i

1

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 1

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0
↓

i

8

1

8

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 1

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

3

0

3

1

8

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

i
↓

n

x = 1

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

8

2

↑

j

5

3

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 1

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

8

2

5

3

↑

j

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 1

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

8

2
↓

i

5

3

↑

j

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 5

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1
↓

i

8

2

8

3

↑

j

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 5

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3

↑

j

8

4

6

5

11

6

4

7

10

8

5

9
↓

n

x = 5

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3

8

4

↑

j

6

5

11

6

4

7

10

8

5

9
↓

n

x = 5

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3
↓

i

8

4

↑

j

6

5

11

6

4

7

10

8

5

9
↓

n

x = 8

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3

8

4

↑

j

6

5

11

6

4

7

10

8

5

9
↓

n

x = 8

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3

8

4

6

5

↑

j

11

6

4

7

10

8

5

9
↓

n

x = 8

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3

8

4
↓

i

6

5

↑

j

11

6

4

7

10

8

5

9
↓

n

x = 6

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

8

3
↓

i

8

4

8

5

↑

j

11

6

4

7

10

8

5

9
↓

n

x = 6

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2
↓

i

8

3

8

4

8

5

↑

j

11

6

4

7

10

8

5

9
↓

n

x = 6

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5

↑

j

11

6

4

7

10

8

5

9
↓

n

x = 6

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5

11

6

↑

j

4

7

10

8

5

9
↓

n

x = 6

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5
↓

i

11

6

↑

j

4

7

10

8

5

9
↓

n

x = 11

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5

11

6

↑

j

4

7

10

8

5

9
↓

n

x = 11

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5

11

6

4

7

↑

j

10

8

5

9
↓

n

x = 11

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5

11

6
↓

i

4

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4

8

5
↓

i

11

6

11

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3

8

4
↓

i

8

5

8

6

11

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2

6

3
↓

i

8

4

8

5

8

6

11

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

5

2
↓

i

6

3

6

4

8

5

8

6

11

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1
↓

i

5

2

5

3

6

4

8

5

8

6

11

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

11

7

↑

j

10

8

5

9
↓

n

x = 4

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

11

7

10

8

↑

j

5

9
↓

n

x = 4

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

11

7
↓

i

10

8

↑

j

5

9
↓

n

x = 10

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6
↓

i

11

7

11

8

↑

j

5

9
↓

n

x = 10

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

10

7

11

8

↑

j

5

9
↓

n

x = 10

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

10

7

11

8

5

9

↑

j

↓

n

x = 10

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

10

7

11

8
↓

i

5

9

↑

j

↓

n

x = 5

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6

10

7
↓

i

11

8

11

9

↑

j

↓

n

x = 5

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5

8

6
↓

i

10

7

10

8

11

9

↑

j

↓

n

x = 5

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4

8

5
↓

i

8

6

8

7

10

8

11

9

↑

j

↓

n

x = 5

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

6

4
↓

i

8

5

8

6

8

7

10

8

11

9

↑

j

↓

n

x = 5

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3
↓

i

6

4

6

5

8

6

8

7

10

8

11

9

↑

j

↓

n

x = 5

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

5

4

6

5

8

6

8

7

10

8

11

9

↑

j

↓

n

x = 5

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Example: A computation of algorithm Insertion-Sort for input

A = [3, 8, 1, 5, 8, 6, 11, 4, 10, 5], n = 10.

1

0

3

1

4

2

5

3

5

4

6

5

8

6

8

7

10

8

11

9
↓

n

↑

j

x = 5

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 53 / 61

Invariants

Let us assume that the input is an array A = [a0, a1, . . . , an−1] and
number n (where n ≥ 1) specifying the length of this array, i.e., at the
beginning, it holds for each i , where 0 ≤ i < n, that A[i] = ai .

At the beginning of the for cykle (i.e., always before executing test
j < n, resp. j ≤ n − 1), the following invariants hold:

1 ≤ j ≤ n

Elements of the array A[0],A[1], . . . ,A[j − 1] contain values
a0, a1, . . . , aj−1 sorted from the smallest to the biggest, i.e.,

A[0] ≤ A[1] ≤⋯ ≤ A[j − 1]

Elements of the array A[j],A[j + 1], . . . ,A[n − 1] contain values
aj , aj+1, . . . , an−1, i.e.,

A[j] = aj , A[j + 1] = aj+1, . . . , A[n − 1] = an−1

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 54 / 61

Invariants

At the beginning while cycle (i.e., always before executing test i ≥ 0),
the following invariants hold:

1 ≤ j < n

−1 ≤ i < j

Variable x contains value aj , i.e., x = aj .

Elements of the array A[0],A[1], . . . ,A[i]
and A[i + 2],A[i + 3], . . . ,A[j] contain values a0, a1, . . . , aj−1 ordered
from the smallest to the biggest, i.e.,

A[0] ≤ A[1] ≤⋯ ≤ A[i] ≤ A[i + 2] ≤ A[i + 3] ≤⋯ ≤ A[j]

All elements A[i + 2],A[i + 3], . . . ,A[j] are strictly greater than x .

Elements of the array A[j + 1],A[j + 2], . . . ,A[n − 1] contain values
aj+1, aj+2, . . . , an−1, i.e.,

A[j + 1] = aj+1, A[j + 2] = aj+2, . . . , A[n − 1] = an−1

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 55 / 61

Finiteness of a Computation

Two possibilities how an infinite computation can look:

some configuration is repeated — then all following configurations are
also repeated

all configurations in a computation are different but a final
configuration is never reached

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 56 / 61

Finiteness of a Computation

One of standard ways of proving that an algorithm halts for every input
after a finite number of steps:

to assign a value from a set W to every (reachable) configuration

to define an order ≤ on set W such that there are no infinite (strictly)
decreasing sequences of elements of W

to show that the values assigned to configuration decrease with every

execution of each instruction, i.e., if α
I

⟶ α
′
then

f (α) > f (α
′
)

(f (α), f (α
′
) are values from set W assigned to configurations α

and α
′
)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 57 / 61

Finiteness of a Computation

As a set W , we can use for example:

The set of natural numbers N = {0, 1, 2, 3, . . . } with ordering ≤.

The set of vectors of natural numbers with lexicographic ordering,
i.e., the ordering where vector (a1, a2, . . . , am) is smaller than
(b1, b2, . . . , bn), if

there exists i such that 1 ≤ i ≤ m and i ≤ n, where ai < bi and for all j
such that 1 ≤ j < i it holds that aj = bj , or

m < n and for all j such that 1 ≤ j ≤ m is aj = bj .

For example, (5, 1, 3, 6, 4) < (5, 1, 4, 1) and (4, 1, 1) < (4, 1, 1, 3).

Remark: The number of elemets in vectors must be bounded by
some constant.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 58 / 61

Finiteness of a Computation

k ∶= 0

i ∶= 1

[i < n]

[i ≥ n]

[A[i] > A[k]]

[A[i] ≤ A[k]]

k ∶= i

i ∶= i + 1
result ∶= A[k]

0

1

2

3

4

5

6

7

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 59 / 61

Finiteness of a Computation

Example: Vectors assigned to individual configurations:

State 0: f (α) = (4)

State 1: f (α) = (3)

State 2: f (α) = (2, n − i , 3)

State 3: f (α) = (2, n − i , 2)

State 4: f (α) = (2, n − i , 1)

State 5: f (α) = (2, n − i , 0)

State 6: f (α) = (1)

State 7: f (α) = (0)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 60 / 61

Finiteness of a Computation

PSfrag
5

2

i ∶= i + 1

(2, n − i , 0)

(2, n − i , 3)

We must take into account that the value of variable i is modified by this
instruction.

A transition from a configuration with assigned vector (2, n − i , 0) to
a configuration with assigned vector (2, n − i

′
, 3), where i

′
= i + 1.

It is obvious that n − i
′
< n − i , since n − (i + 1) < n − i .

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 6, 2024 61 / 61

	Algorithms
	Proving correctnes of algorithms

