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Computation of an Algorithm

Algorithms are execuded on machines — it can be for example:

real computer — executes instructions of a machine code

virtual machine — executes instructions of a bytecode

some idealized mathematical model of a computer

. . .

The machine can be:

specialized — executes only one algorithm

universal — can execute arbitrary algorithm, given in a form of
program

The machine performs steps.

The algorithm processes a particular input and produces the corresponding
output during its computation.
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Models of Computation

Model of Computation — an idealized mathematical model of
a computer

abstracts from some unimportant implementation details

we want to analyze those propeties of algorithms that are as much as
possible independent of details of a machine that will execute the
given algorithm

Examples of some models of computation:

finite automata

pushdown automata

Turing machines

random-access machines

. . .
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Models of Computation

During a computation, the machine must remember:

the current instruction

the content of its working memory

It depends on the type of the machine:

what is the type of data, with which the machine works

how this data are organized in its memory

what kind of operations the machine can do with this data

Depending on the type of the algorithm and the type of analysis, which we
want to do, we can decide if it makes sense to include in memory also the
places

from which the input data are read

where the output data are written
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Models of Computation

One role, for which models of computations are used for, is to define
precisely some notions that are important for specifying computational

complexity of a given algorithm:

running time of a given algorithm A for a given input w
(remark: typically, it is a number of steps performed during the
computation by the machine)

amount of memory used by the machine during this computation

In general, it is also important for different models of computation

whether a given type of machine is able to simulate computations of
some other type of machine

how the running time or the amount of used memory differs compared
to the original machine
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Simulation of a Computation

Explanation what it means that a machine M is simulated by
a machine M

′
:

A computation of machine M for input w is a (finite or infinite)
sequence of configurations of machine M

α0 ⟶ α1 ⟶ α2 ⟶ ⋯

For this computation, there is a corresponding computation of
machine M

′
consisting of configurations

β0 ⟶ β1 ⟶ β2 ⟶ ⋯

where for every configuration αi there is some corresponding
configuration βf (i) where f ∶ N → N is a function, for which
f (i) ≤ f (j) for every i and j where i < j .

There is a relation between configurations of machine M to
configurations of machine M

′
that correspond to them.

There are functions mapping an input w to corresponding initial
configurations α0 and β0 and analogously functions mapping final
configurations to a result of computation.
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Simulation of a Computation
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Models of Computation

Some models of computation are weaker (finite automata, pushdown
automata, . . . ) and they can not be used to implement an arbitrary
algorithm.

We will concentrate now on models of computation that are powerful
enough to be able to execute arbitrary algorithm (for example such that
can be represented as a program in some programming language).

Such models of computation are called Turing-complete:

they are able to simulate a behaviour of arbitrary Turing machine

their bahaviour can be simulated by a Turing machine
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Two-Sided Infinite Tape by One-Sided Infinite Tape

A tape infinite on both sides:

q5

⋯⋯ □ □ □ a d b b a b c a b □

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

A tape infinite only on one side:

q5 ↑

⋯

b a b c a b □

$ b d a □ □ □

0 1 2 3 4 5 6

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 1, 2024 9 / 53



Two-Sided Infinite Tape by One-Sided Infinite Tape

A tape infinite on both sides:

q8

⋯⋯ □ □ □ a d b b a b d a b □

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

A tape infinite only on one side:

q8 ↑

⋯

b a b d a b □

$ b d a □ □ □

0 1 2 3 4 5 6
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Two-Sided Infinite Tape by One-Sided Infinite Tape

A tape infinite on both sides:

q14

⋯⋯ □ □ □ a d b b a c d a b □

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

A tape infinite only on one side:

q14 ↑

⋯

b a c d a b □

$ b d a □ □ □

0 1 2 3 4 5 6
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q14

⋯⋯ □ □ □ a d b b a c d a b □

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

A tape infinite only on one side:

q14 ↑

⋯

b a c d a b □

$ b d a □ □ □

0 1 2 3 4 5 6
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Two-Sided Infinite Tape by One-Sided Infinite Tape

A tape infinite on both sides:

q7

⋯⋯ □ □ □ a d b c a c d a b □

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

A tape infinite only on one side:

q7 ↓

⋯

c a c d a b □

$ b d a □ □ □

0 1 2 3 4 5 6
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Two-Sided Infinite Tape by One-Sided Infinite Tape

A tape infinite on both sides:

q7

⋯⋯ □ □ □ a d b c a c d a b □

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

A tape infinite only on one side:

q7 ↓

⋯

c a c d a b □
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0 1 2 3 4 5 6
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Two-Sided Infinite Tape by One-Sided Infinite Tape

A tape infinite on both sides:

q19

⋯⋯ □ □ □ a a b c a c d a b □

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

A tape infinite only on one side:

q19 ↓

⋯

c a c d a b □

$ b a a □ □ □

0 1 2 3 4 5 6
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Alphabet {0, 1}

A Turing machine with an arbitrary tape alphabet Γ can be simulated by
a Turing machine with tape alphabet {0, 1}.

We can choose some appropriate encoding of symbols of alphabet Γ by
k-bit sequences.

Example: Tape alphabet Γ = {□, a, b, c, d, e, f, g}

□ ↔ 000
a ↔ 001
b ↔ 010
c ↔ 011
d ↔ 100
e ↔ 101
f ↔ 110
g ↔ 111

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 1, 2024 10 / 53



Alphabet {0, 1}

A machine with tape alphabet Γ:

q7

⋯⋯ f c a e d b c f d e b f □

3 4 5 6 7 8 9 10 11 12 13 14 15

δ(q7, c) = (q12, a,+1)

δ(q12, f) = (q5, b,−1)

The corresponding machine with alphabet {0, 1}:

q7 011

⋯⋯ 1 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0

7 8 10 11 12
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Alphabet {0, 1}

A machine with tape alphabet Γ:

q12

⋯⋯ f c a e d b a f d e b f □

3 4 5 6 7 8 9 10 11 12 13 14 15

δ(q7, c) = (q12, a,+1)

δ(q12, f) = (q5, b,−1)

The corresponding machine with alphabet {0, 1}:

q12
001; ε
right

⋯⋯ 1 1 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0

7 8 10 11 12
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Alphabet {0, 1}

A machine with tape alphabet Γ:

q12

⋯⋯ f c a e d b a f d e b f □

3 4 5 6 7 8 9 10 11 12 13 14 15

δ(q7, c) = (q12, a,+1)

δ(q12, f) = (q5, b,−1)

The corresponding machine with alphabet {0, 1}:

q12
01; 1
right

⋯⋯ 1 1 0 0 0 1 0 0 1 0 1 0 0 1 0 1 0

7 8 9-10 11 12
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Alphabet {0, 1}

A machine with tape alphabet Γ:
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Alphabet {0, 1}

A machine with tape alphabet Γ:

q5

⋯⋯ f c a e d b a b d e b f □

3 4 5 6 7 8 9 10 11 12 13 14 15

δ(q7, c) = (q12, a,+1)

δ(q12, f) = (q5, b,−1)
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Alphabet {0, 1}

In this simulation, each step of the original machine is simulated by
k + 1 steps where k is the number of bits used for encoding of one symbol
of alphabet Γ.

So if the original machine performs t steps in a computation,
the simulating machine performs O(t) steps.
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Decreasing the number of states of the control unit

Remark: Similarly, as is possible to decrease the tape alphabet to only
two symbols by increasing the number of states of the control unit, it is
also possible to decrease the number of states of the control unit:

An arbitrary Turing machine can be simulated by a Turing machine
with only two non-final states of its control unit (and possibly with
some final states). However, this simulation requires increase in the
size of the tape alphabet.

Similarly as in the previous case, one step of the original machine is
simulated by s steps where s is a constant depending only on the number
of the states of the control unit of the original machines (i.e., the size of
set Q).

So as before, if the original machine performs t steps, the simulating
machine performs O(t) steps.
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Simulation of several heads on a tape with one head

Several heads on a tape:

431 2

⋯⋯ □ □ □ a b a b b a a b □ □ □ □

A tape with one head:

⋯⋯ $ □ □ a b a b b a a b □ $ □ □

4
▼

3
▼

2
▼

1
▼
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Simulation of several tapes with one tape

Several tapes:

□ □ a a b a b b □

1 1 1 0 1 1 0 0 1

0 # 0 1 0 # □ □ □

One tape with several heads:

12 3

□ □ a a b a b b □

1 1 1 0 1 1 0 0 1
0 # 0 1 0 # □ □ □
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Simulation of several tapes with one tape

Several tapes:

□ □ a a b a b b □

1 1 1 0 1 1 0 0 1

0 # 0 1 0 # □ □ □

One tape with one head: the variant where where marks on the tape are
moved

□ □ a a b a b b □

1 1 1 0 1 1 0 0 1

0 # 0 1 0 # □ □ □

▼

▼

▼
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Simulation of several tapes with one tape

Several tapes:

□ □ a a b a b b □

1 1 1 0 1 1 0 0 1

0 # 0 1 0 # □ □ □

One tape with one head: the variant where the content of tapes is moved

□ □ □ $ a a b a b b $

□ $ 0 0 1 1 1 0 1 1 0
# 0 1 0 # □ $ □ □ □ □

▼
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Tapes, stacks, and counters

We consider different types of machines that have a finite control unit
equipped with some sort of memory of unbounded size.

Such memory can constist of one of more structures such as:

Tape — reading and writing a symbol on a current position,
movement of the head to the left and to the right

Remark: The tape can be infinite of one side or on both sides.

Stack — push, pop, a test of emptiness of the stack

Counter — a value is a natural number, operations of incrementing
and decrementing by one, a test whether the value is equal to zero
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Stack

A stack can be viewed as a special case of a tape, which is infinite on one
side.

Stack:

⊢ c b a c a a b

Tape:

⋯⊢ c b a c a a b □ □ □ □ □
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Stack

A stack can be viewed as a special case of a tape, which is infinite on one
side.

Stack:

⊢ c b a c a a

Tape:

⋯⊢ c b a c a a □ □ □ □ □ □
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Stack

A stack can be viewed as a special case of a tape, which is infinite on one
side.

Stack:

⊢ c b a c a

Tape:

⋯⊢ c b a c a □ □ □ □ □ □ □
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Stack

A tape, infinite on both sides, can be simulated by two stacks:

q5

⋯⋯ □ c b a d a b a b c a □ □

A machine with two stacks:

q5 d

⊢ c b a a b a b c a ⊣
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Stack

A tape, infinite on both sides, can be simulated by two stacks:

q7

⋯⋯ □ c b a c a b a b c a □ □

A machine with two stacks:

q7 a

⊢ c b a c b a b c a ⊣
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Counter

Counter — a value of a counter can be an arbitrarily big natural number,
i.e., an element of the set N = {0, 1, 2, 3, . . .}.

Basic operations:

incrementing the value by one:

x ∶= x + 1

decrementing the value by one:

x ∶= x − 1

test whether the value of the counter is zero:

if (x = 0) goto ℓ
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Counter

A counter can be viewed as a special case of a stack or of a tape.

Stack:

⊢ I I I I I I I

Tape:

⋯⊢

Counter:

7
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Counter

A counter can be viewed as a special case of a stack or of a tape.

Stack:

⊢ I I I I I I I I

Tape:

⋯⊢

Counter:

8
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Counter
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Stack:
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Counter

A counter can be viewed as a special case of a stack or of a tape.

Stack:

⊢ I I I I I

Tape:

⋯⊢

Counter:

5
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Minsky machine

Minsky machine — a machine with a finite control unit and a finite set
of counters x1, x2, . . . , xk :

q5

70

x1

928

x2

14

x3

0

x4

1024

x5

0

x6

Remark: In addition to symbols x1, x2, . . ., we can also use symbols such
as x , y , z , . . . to denote counters.
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Minsky machine

A Minsky machine can be viewed as a program consisting of a sequence of
instructions, with the following five types of instructions:

incrementing the value of a given counter by one:

xi ∶= xi + 1

decrementing the value of a given counter by one:

xi ∶= xi − 1

test whether the value of a given counter is zero:

if (xi = 0) goto ℓ

unconditional jump:

goto ℓ

halting of the computation of the program:

halt
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Minsky machine

Setting the counter x to zero:

� L1 ∶ if (x = 0) goto L2

x ∶= x − 1

goto L1

L2 ∶ . . .

3

x

14

y

2

z
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Minsky machine

Setting the counter x to zero:

L1 ∶ if (x = 0) goto L2

x ∶= x − 1

goto L1
� L2 ∶ . . .

0

x

14

y

2

z
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Minsky machine

Adding the value of the counter z to the counter y (together with setting
the counter z to zero):

� L2 ∶ if (z = 0) goto L3

z ∶= z − 1

y ∶= y + 1

goto L1

L3 ∶ . . .

0

x

14

y

2

z

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 1, 2024 23 / 53



Minsky machine
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Minsky machine
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Minsky machine
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Minsky machine

Adding the value of the counter z to the counter y (together with setting
the counter z to zero):

L2 ∶ if (z = 0) goto L3

z ∶= z − 1

y ∶= y + 1

goto L1
� L3 ∶ . . .
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Minsky machine

Multiplying the value of counter x with constant 5:

L1 ∶ if (x = 0) goto L2

x ∶= x − 1

y ∶= y + 1

y ∶= y + 1

y ∶= y + 1

y ∶= y + 1

y ∶= y + 1

goto L1

L2 ∶ if (y = 0) goto L3

y ∶= y − 1

x ∶= x + 1

goto L2

L3 ∶ . . .
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Minsky machine

Division of the value of the counter x with constant 5 and finding out the
remainder after this division:

L1 ∶ if (x = 0) goto M0

x ∶= x − 1

if (x = 0) goto M1

x ∶= x − 1

if (x = 0) goto M2

x ∶= x − 1

if (x = 0) goto M3

x ∶= x − 1

if (x = 0) goto M4

x ∶= x − 1

y ∶= y + 1

goto L1
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Minsky machine

A stack can be simulated using a pair of counters — a value of the first
counter represents the content of the stack as a number of
base k = ∣Γ∣ + 1 (where Γ is a stack alphabet).

A stack on the top of the stack — the remainder of division by k

Pop — to divide by k

Push — to multiply by k and to add the code of the given symbol

The second counter is used as an auxiliary counter for performing the
above given operations.
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Minsky machine

Example:

a ↔ 1
b ↔ 2
c ↔ 3
d ↔ 4
e ↔ 5
f ↔ 6
g ↔ 7
h ↔ 8
i ↔ 9

f c e a c a h b

63513182
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Minsky machine

Example:
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Minsky machine

Example:

a ↔ 1
b ↔ 2
c ↔ 3
d ↔ 4
e ↔ 5
f ↔ 6
g ↔ 7
h ↔ 8
i ↔ 9
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Minsky machine

Example:

a ↔ 1
b ↔ 2
c ↔ 3
d ↔ 4
e ↔ 5
f ↔ 6
g ↔ 7
h ↔ 8
i ↔ 9

f c e a c a

635131
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Minsky machine

Recall that a tape infinite of both sides can be simulated by a pair of
stacks.

In a Minsky machine, the content of each of these stacks can be
represented by a corresponding counter.

We also need one additional counter for the implementation of
multiplication and division by a constant on these counters representing
contents of the stacks.

We can see that a Turing machine with k tapes can be simulated by
a Minsky machine with 2k + 1 counters.
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Minsky machine

Any finite number of counters can be simulated by two counters.

One counter (let it be denoted as C ) represents values of all counters
— e.g., values of three counters x , y , z can be represented in the
counter C by the number 2

x
3
y
5
z
.

The second counter is used as an auxiliary counter to perform
operations of multiplication and division on counter C .

Incrementing counter x by one is simulated as multiplying by 2,
incrementing counter y by one is simulated as multiplying by 3, etc.

In a similar way, decrementing counter x by one is simulated by
division of counter C by number 2, decrementing counter y by one by
division by number 3, etc.

The test if x = 0 corrensponds to test if the value of counter C is
divisible by 2, etc.
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Minsky machine

We can see that computation of an arbitrary Turing machine can be
simulated by a Minsky machine with two counters.

This simulation is extremely inefficient:

Already simulation of a tape of a Turing machine by three counters
requires number of steps that is exponentially bigger than the number
of steps performed by this Turing machine.

Simulation of these three counters using only two counters farther
exponentially increases the performed number of steps.
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Random Access Machines
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Random Access Machine

A Random Access Machine (RAM) is an idealized model of a computer.

It consists of the following parts:

Program unit – contains a program for the RAM and a pointer to
the currently executed instruction

Working memory consists of cells numbered 0, 1, 2, . . .

These cells will be denoted R0,R1,R2, . . .

The content of the cells can be read and written to.

Input tape – read-only

Output tape – write-only

The cells of memory, as well as the cells of input and output tapes contain
integers (i.e., elements of set Z) as their values.
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Random Access Machine

3

2

1

4

5

6

8

0

7

0

0

0

0

0

0

0

0

0

7 5 2 0

IP

ALU

11

10

0

2

5

9

8

7

6

4

3

1

input

output

working
memory

program
unit

R0 ∶= 3

R1 ∶= R0

R2 ∶= read ()

if (R2 = 0) goto 10

[R1] ∶= R2

R1 ∶= R1 + 1

goto 2

R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

if (R1 > R0) goto 7

halt
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Random Access Machine

Overview of instructions:

Ri ∶= c – assignment of a constant

Ri ∶= Rj – assignment

Ri ∶= [Rj] – load (reading from memory)

[Ri] ∶= Rj – store (writing to memory)

Ri ∶= Rj op Rk – arithmetic instructions, op ∈ {+,−,∗, /}

or Ri ∶= Rj op c

if (Ri rel Rj) goto ℓ – conditional jump, rel ∈ {=,≠,≤,≥,<,>}

or if (Ri rel c) goto ℓ

goto ℓ – unconditional jump

Ri ∶= read () – reading from input

write (Ri) – writing to output

halt – program termination
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Random Access Machine

Examples of instructions:

R5 ∶= 42 – assignment of a constant

R12 ∶= R3 – assignment

R8 ∶= [R2] – load (reading from memory)

[R15] ∶= R9 – store (writing to memory)

R7 ∶= R3 + R6 – arithmetic instruction

R18 ∶= R18 − 1 – arithmetic instruction

if (R4 ≥ R1) goto 2801 – conditional jump

if (R2 ≠ 0) goto 3581 – conditional jump

goto 537 – unconditional jump

R23 ∶= read () – reading from input

write (R17) – writing to output

halt – program termination
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Random Access Machine

� R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

?0

?1

?2

?3

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output
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Random Access Machine

R0 ∶= 3
� R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

� L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

� if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3
� [R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

� R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1
� goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

� L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

� if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]
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L3 ∶ if (R1 > R0) goto L2
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3
� [R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

� R1 ∶= R1 + 1

goto L1
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1
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Random Access Machine
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� L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1
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Random Access Machine

R0 ∶= 3

R1 ∶= R0
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� if (R2 = 0) goto L3
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R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)
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Random Access Machine
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goto L1
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Random Access Machine
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R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

� R1 ∶= R1 + 1

goto L1
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Random Access Machine
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Random Access Machine
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� L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

� if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3
� [R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

� R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1
� goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

71
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?7

?8

?9
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?11

Input
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Output
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

� L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30
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52
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?8

?9
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Input

13 -2 42 5 17 0

Output
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

� if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3
� [R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

� R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

71

172

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 1, 2024 35 / 53



Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1
� goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

� L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30

81

172
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Input
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

� if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

� L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1
� L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1
� R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

� write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

� L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1
� L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1
� R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

� write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

� L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1
� L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt

30
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13 -2 42 5 17 0

Output
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1
� R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

� write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

� L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1
� L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1
� R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

� write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

� L3 ∶ if (R1 > R0) goto L2

halt
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Input
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1
� L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1
� R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

� write (R2)

L3 ∶ if (R1 > R0) goto L2

halt
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Input
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

� L3 ∶ if (R1 > R0) goto L2

halt
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Input
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Random Access Machine

R0 ∶= 3

R1 ∶= R0

L1 ∶ R2 ∶= read ()

if (R2 = 0) goto L3

[R1] ∶= R2

R1 ∶= R1 + 1

goto L1

L2 ∶ R1 ∶= R1 − 1

R2 ∶= [R1]

write (R2)

L3 ∶ if (R1 > R0) goto L2
� halt
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Random Access Machine

Main differences with respect to real computers:

The size of memory is not limited (an address can be an arbitrary
natural number).

The size of a content of individual memory cells is not limited (a cell
can contain an arbitrary integer).

It reads data sequantially from an input that consists of a sequence of
integers. The input is read-only.

It writes data sequantially on the output that consists of a sequence
of integers. The output is write-only.
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Random Access Machine

Operations like an access to a memory cell with an address less than
zero or division by zero result in an error — the computation is stuck.

For an initial content of memory there are basically two possibilities
how to define it:

All cells are initialized with value 0.

Reading a cell, to which nothing has been written, results in an error.

Cells at the beginning contain a special value (denoted here by
symbol ‘?’) that represents that the given cell has not been initialized
yet.

We could consider also variants of RAMs where memory cells (and
cells of input and output) do not contain integers (i.e., the elements
of set Z) but they can contain only natural numbers (i.e., elements of
set N).

For example, operation of subtraction (Ri ∶= Rj − Rk) then behaves
in such a way that whenever the result should be a negative number,
then value 0 is assigned as the result.
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Random Access Machine

Different variants of RAMs can differ in what particular operations
can be used in arithmetic instructions.

For example:

a support of bitwise operations (and, or, not, xor, . . . ), bit shifts, . . .

a variant of RAM that does not have operations for multiplication and
division

We could also consider a variant of RAM where instead of
instructions of the form

if (Ri rel Rj) goto ℓ nebo if (Ri rel c) goto ℓ

all conditional jumps are of the form

if (Ri rel 0) goto ℓ

Instead of all relations {=,≠,≤,≥,<,>}, only a subset of them can
be supported, e.g., {=,>}.
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Random Access Machine

In some variants of RAM, the input and output are not in a form of
sequence of numbers.

Instead, such machine could work with input and output tapes
containg sequences of symbols from some alphabet, e.g., {0, 1}.

This machine then could have for example some instructions that
allow the branch the computation according to a symbol read from
the input.

However, the internal memory even in this variant works with
numbers.

When a machine should produce an answer of the form Yes/No
(i.e., to accept or reject the given input), it does not need to have an
output tape.

Instruction halt is then replaced with instructions accept and reject.
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Random Access Machine

In the standard definition of RAM, jump instructions jumping to an
adress stored in some memory cell are usualy not considered:

goto Ri

RAM could be extended with these instructions.

For RAMs, a code of a program is usually stored in a separate
read-only memory, not in a working memory.

So the code can not be modified during a computation.
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Random Access Machine

A type of a machine, similar to RAM, but where its program is stored
in its working memory (instructions are encoded by numbers) and so
it can be modified during a computations, is called RASP

(random-access stored program).

RASP can simulate behaviour of self-modifying programs.
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Turing Machine Simulating RAM

It is not difficult to come with a general way how a computation of an
arbitrary Turing machine can be simulated by RAM.

To simulate behaviour of an arbitrary RAM by a Turing machine is more
complicated.

In the description of how a Turing machine can simulate a RAM, it is
simpler to proceed by smaller steps:

We will show how to simulate a varint of RAM described before by
a variant of RAM with somewhat simpler instructions.

We will show how to simulate the behaviour of this simpler variant of
RAM by a multitape Turing machine.

We have already seen before how a multitape Turing machine can be
simulated by one-tape Turing machine.
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A simpler variant of RAM

This simpler variant of RAM has, in addition to its working memory, also
three registers:

register A — almost all instructions work with this register, results of
all operations are stored into this register

Remark: This kind of register is often called an accumulator.

register B — this register is used to store the second operand of
arithmetic instructions (the first operand is always in the accumulator)

register C — this register is used to store an address of a memory
cell, to which a value is written by a store operation
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A simpler variant of RAM

Overview of instructions:

A ∶= c – assinment of a constant

B ∶= A – assinment to register B

C ∶= A – assinment to register C

A ∶= [A] – load (reading from memory)

[C] ∶= A – store (writing to memory)

A ∶= A op B – arithmetic instructions, op ∈ {+,−,∗, /}

if (A rel 0) goto ℓ – conditional jump, rel ∈ {=,≠,≤,≥,<,>}

goto ℓ – unconditional jump

A ∶= read () – reading from input

write (A) – writing to output

halt – program termination
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A simpler variant of RAM

For example, instruction

R7 ∶= R3 + R6

can be replaced with a sequence of instructions:

A ∶= 7

C ∶= A

A ∶= 6

A ∶= [A]

B ∶= A

A ∶= 3

A ∶= [A]

A ∶= A + B

[C] ∶= A
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A simpler variant of RAM

For example, instruction

[R15] ∶= R9

can be replaced with a sequence of instructions:

A ∶= 15

A ∶= [A]

C ∶= A

A ∶= 9

A ∶= [A]

[C] ∶= A
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A simpler variant of RAM

For example, instruction

if (R4 ≥ R11) goto ℓ

can be replaced with a sequence of instructions:

A ∶= 11

A ∶= [A]

B ∶= A

A ∶= 4

A ∶= [A]

A ∶= A − B

if (A ≥ 0) goto ℓ
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Turing Machine Simulating RAM

A Turing machine works with words over some alphabet, while a RAM
works with numbers. But numbers can be written as sequences of symbols
and conversely symbols of an alphabet can be written as numbers.

For example the following input of a RAM

5 13 -3 0 6

can be represented for a Turing machine as

# 1 0 1 # 1 1 0 1 # - 1 1 # 0 # 1 1 0 #

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science April 1, 2024 46 / 53



Turing Machine Simulating RAM

A Turing machine simulating a computation of a RAM has several tapes:

A tape containing a content of the working memory of the RAM.

Three tapes containing values of registers A, B , and C .

(Values of registers A, B , and C will be written on these tapes in
binary and delimited from the left and from the right by symbols #.)

A tape representing the input tape of the RAM.

A tape representing the output tape of the RAM.

One auxiliary tape used for an implementation of the simulation of
some instructions.
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Turing Machine Simulating RAM

The Turing machine stores the information about the instruction of the
RAM that is currently executed in its control unit.

Execution of most of instructions is not difficult:

A ∶= c

it writes bits of the constant c to the tape of register A

B ∶= A or C ∶= A

it will copy a content of the tape of register A to the tape of
register B or C

goto ℓ

just changes the state of the control unit of the Turing machine

if (A rel 0) goto ℓ, kde rel ∈ {=,≠,≤,≥,<,>}

the content of the working register is tested and the state of the
control unit is changed accordingly
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Turing Machine Simulating RAM

A ∶= read ()

copy the value (marked at the ends by symbols “#”) from the input
tape to the tape of register A

write (A)

copy the value of register A to the output tape.

halt

the computation halts
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Turing Machine Simulating RAM

Also arithmetic instructions are rather easy to implement, although the
a little bit more complicated than the previous instructions:

A ∶= A op B , where op ∈ {+,−,∗, /}

The Turing machine performs the given operation (such as addition
or subtraction) bit by bit, the result is stored to register A.

Remark: Multiplication and division can be done as a sequence of
additions and bit shifts.

In the implementation of addition and division, it may be necessary to use
an auxiliary tape to store intermediate results.
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Turing Machine Simulating RAM

Probably the most complex is the implementation of the RAM memory.

One possibility is to store only values of those cells that were actually used
so far in the computation of the RAM (we know that all other cells
contain value 0).

Example: The RAM worked so far only with cells 2, 3 and 6:

Cell 2 contains value 11.

Cell 3 contains value −1.

Cell 6 contains value 2.

The content of the tape of the Turing machine representing the content of
the memory of the RAM will be as follows:

$ # 1 0 : 1 0 1 1 # 1 1 : - 1 # 1 1 0 : 1 0 # $
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Turing Machine Simulating RAM

Load instruction, i.e., A ∶= [A]:

The Turing machine will search the given address, stored in register A,
on the tape containg the content of the memory of the RAM.
(If it does not find it, it will appened it at the end with value 0.)

The given value in the cell is copied to the tape of register A.
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Turing Machine Simulating RAM

Store instruction, i.e., [C] ∶= A:

Similarly as before, the Turing machine will find the position of the
tape representing a content of the memory, where the value in the
given address, stored in register C , occurs.

The rest of the memory tape is copied to an auxiliary tape.

The content of the tape of register A is copied to the corresponding
place.

The rest of the tape, copied on the auxiliary tape, is copied back to
the memory tape (after the newly written value).
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