Example: We would like to describe a language of arithmetic expressions, containing expressions such as:

175 (9+15) (((10-4)*((1+34)+2))/(3+(-37)))

For simplicity we assume that:

- Expressions are fully parenthesized.
- The only arithmetic operations are "+", "-", "*", "/" and unary "-".
- Values of operands are natural numbers written in decimal a number is represented as a non-empty sequence of digits.

Alphabet: $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, *, /, (,)\}$

Example (cont.): A description by an inductive definition:

- Digit is any of characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
- Number is a non-empty sequence of digits, i.e.:
 - If α is a digit then α is a number.
 - If α is a digit and β is a number then also $\alpha\beta$ is a number.
- **Expression** is a sequence of symbols constructed according to the following rules:
 - If α is a number then α is an expression.
 - If α is an expression then also (- α) is an expression.
 - If α and β are expressions then also $(\alpha + \beta)$ is an expression.
 - If α and β are expressions then also $(\alpha \beta)$ is an expression.
 - If α and β are expressions then also ($\alpha * \beta$) is an expression.
 - If α and β are expressions then also (α/β) is an expression.

Example (cont.): The same information that was described by the previous inductive definition can be represented by a **context-free** grammar:

New auxiliary symbols, called **nonterminals**, are introduced:

- D stands for an arbitrary digit
- C stands for an arbitrary number
- *E* stands for an arbitrary expression

$D \rightarrow 0$ $D \rightarrow 1$ $D \rightarrow 2$ $D \rightarrow 3$ $D \rightarrow 4$	$D \rightarrow 5$ $D \rightarrow 6$ $D \rightarrow 7$ $D \rightarrow 8$ $D \rightarrow 9$	$\begin{array}{l} C \rightarrow D \\ C \rightarrow DC \end{array}$	$E \rightarrow C$ $E \rightarrow (-E)$ $E \rightarrow (E+E)$ $E \rightarrow (E-E)$ $E \rightarrow (E*E)$
$D \rightarrow 4$	$D \rightarrow 9$		$F \rightarrow (F/F)$

Example (cont.): Written in a more succinct way:

$$D \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

$$C \to D \mid DC$$

$$E \to C \mid (-E) \mid (E+E) \mid (E-E) \mid (E*E) \mid (E/E)$$

Example: A language where words are (possibly empty) sequences of expressions described in the previous example, where individual expressions are separated by commas (the alphabet must be extended with symbol ","):

$$S \to T | \varepsilon$$

$$T \to E | E, T$$

$$D \to 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$$

$$C \to D | DC$$

$$E \to C | (-E) | (E+E) | (E-E) | (E*E) | (E/E)$$

Example: Statements of some programming language (a fragment of a grammar):

$$\begin{split} S &\rightarrow E; \mid T \mid \text{if } (E) \ S \mid \text{if } (E) \ S \text{ else } S \\ \mid \text{ while } (E) \ S \mid \text{do } S \text{ while } (E); \mid \text{for } (F; F; F) \ S \\ \mid \text{ return } F; \\ T &\rightarrow \{ \ U \ \} \\ U &\rightarrow \varepsilon \mid SU \\ F &\rightarrow \varepsilon \mid E \\ E &\rightarrow \qquad \dots \end{split}$$

Remark:

- *S* statement
- T block of statements
- U sequence of statements
- E expression
- F optional expression that can be omitted

Formally, a context-free grammar is a tuple

 $\mathcal{G} = (\Pi, \Sigma, S, P)$

where:

- Π is a finite set of **nonterminal symbols** (nonterminals)
- Σ is a finite set of **terminal symbols** (terminals), where $\Pi \cap \Sigma = \emptyset$
- $S \in \Pi$ is an **initial nonterminal**
- $P \subseteq \Pi \times (\Pi \cup \Sigma)^*$ is a finite set of **rewrite rules**

Remarks:

- We will use uppercase letters *A*, *B*, *C*, ... to denote nonterminal symbols.
- We will use lowercase letters *a*, *b*, *c*, ... or digits 0, 1, 2, ... to denote terminal symbols.
- We will use lowercase Greek letters α, β, γ, ... do denote strings from (Π ∪ Σ)^{*}.
- We will use the following notation for rules instead of (A, α)

$A \to \alpha$

- A left-hand side of the rule
- lpha~ right-hand side of the rule

Example: Grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ where

- $\Pi = \{A, B, C\}$
- $\Sigma = \{a, b\}$
- S = A
- P contains rules

 $\begin{array}{l} A \rightarrow aBBb \\ A \rightarrow AaA \\ B \rightarrow \varepsilon \\ B \rightarrow bCA \\ C \rightarrow AB \\ C \rightarrow a \\ C \rightarrow b \end{array}$

Remark: If we have more rules with the same left-hand side, as for example

 $A \rightarrow \alpha_1 \qquad A \rightarrow \alpha_2 \qquad A \rightarrow \alpha_3$

we can write them in a more succinct way as

 $A \to \alpha_1 \mid \alpha_2 \mid \alpha_3$

For example, the rules of the grammar from the previous slide can be written as

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows:

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: A

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}, \text{ and } P$ contains rules

 $\frac{A}{B} \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: *A*

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $\frac{\underline{A}}{\underline{B}} \rightarrow \frac{\underline{a}\underline{B}\underline{B}\underline{b}}{\underline{c}} \mid \underline{A}\underline{a}\underline{A}$ $\underline{B} \rightarrow \varepsilon \mid \underline{b}\underline{C}\underline{A}$ $\underline{C} \rightarrow \underline{A}\underline{B} \mid \underline{a} \mid \underline{b}$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: <u>A</u> \Rightarrow <u>aBBb</u>

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}, \text{ and } P$ contains rules

 $\begin{array}{l} A \rightarrow aBBb \mid AaA \\ \underline{B} \rightarrow \varepsilon \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow a\underline{B}Bb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $\begin{array}{l} A \rightarrow aBBb \mid AaA \\ \underline{B} \rightarrow \varepsilon \mid \underline{bCA} \\ C \rightarrow AB \mid a \mid b \end{array}$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow a\underline{B}Bb \Rightarrow a\underline{b}CABb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}, \text{ and } P$ contains rules

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar G generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $\frac{A}{B} \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abC\underline{A}Bb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules

 $\frac{\underline{A}}{\underline{B}} \rightarrow \frac{\underline{a}\underline{B}\underline{B}\underline{b}}{\varepsilon} \mid \underline{A}\underline{a}\underline{A}$ $\underline{B} \rightarrow \varepsilon \mid \underline{b}\underline{C}\underline{A}$ $\underline{C} \rightarrow \underline{A}\underline{B} \mid \underline{a} \mid \underline{b}$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abC\underline{A}Bb \Rightarrow abC\underline{aBBb}Bb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}, \text{ and } P$ contains rules

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $\begin{array}{l} A \rightarrow aBBb \mid AaA \\ \underline{B} \rightarrow \varepsilon \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaB\underline{B}bBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $\begin{array}{l} A \rightarrow aBBb \mid AaA \\ \underline{B} \rightarrow \underline{\varepsilon} \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaB\underline{B}bBb \Rightarrow abCaBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}, \text{ and } P$ contains rules

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb \Rightarrow abCaBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $\underline{C} \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow ab\underline{C}aBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $\underline{C} \rightarrow AB \mid a \mid \underline{b}$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow ab\underline{C}aBbBb \Rightarrow ab\underline{b}aBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}, \text{ and } P$ contains rules

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $\begin{array}{l} A \rightarrow aBBb \mid AaA \\ \underline{B} \rightarrow \varepsilon \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb \Rightarrow abCaBbBb \Rightarrow abbaBb\underline{B}b$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $A \rightarrow aBBb \mid AaA$ $\underline{B} \rightarrow \underline{\varepsilon} \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb \Rightarrow abCaBbBb \Rightarrow abbaBb\underline{B}b \Rightarrow abbaBbb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}, \text{ and } P$ contains rules

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $A \rightarrow aBBb \mid AaA$ $\underline{B} \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $A \rightarrow aBBb \mid AaA$ $\underline{B} \rightarrow \underline{\varepsilon} \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbb \Rightarrow abbabb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbb \Rightarrow abbaBbb \Rightarrow abbabb$

On strings from $(\Pi \cup \Sigma)^*$ we define relation $\Rightarrow \subseteq (\Pi \cup \Sigma)^* \times (\Pi \cup \Sigma)^*$ such that

 $\alpha \Rightarrow \alpha'$

iff $\alpha = \beta_1 A \beta_2$ and $\alpha' = \beta_1 \gamma \beta_2$ for some $\beta_1, \beta_2, \gamma \in (\Pi \cup \Sigma)^*$ and $A \in \Pi$ where $(A \rightarrow \gamma) \in P$.

Example: If $(B \rightarrow bCA) \in P$ then

$aCBbA \Rightarrow aCbCAbA$

Remark: Informally, $\alpha \Rightarrow \alpha'$ means that it is possible to derive α' from α by one step where an occurrence of some nonterminal A in α is replaced with the right-hand side of some rule $A \rightarrow \gamma$ with A on the left-hand side.

On strings from $(\Pi \cup \Sigma)^*$ we define relation $\Rightarrow \subseteq (\Pi \cup \Sigma)^* \times (\Pi \cup \Sigma)^*$ such that

 $\alpha \Rightarrow \alpha'$

iff $\alpha = \beta_1 A \beta_2$ and $\alpha' = \beta_1 \gamma \beta_2$ for some $\beta_1, \beta_2, \gamma \in (\Pi \cup \Sigma)^*$ and $A \in \Pi$ where $(A \rightarrow \gamma) \in P$.

Example: If $(B \rightarrow bCA) \in P$ then

 $aC\underline{B}bA \Rightarrow aC\underline{bCA}bA$

Remark: Informally, $\alpha \Rightarrow \alpha'$ means that it is possible to derive α' from α by one step where an occurrence of some nonterminal A in α is replaced with the right-hand side of some rule $A \rightarrow \gamma$ with A on the left-hand side.
Context-Free Grammars

A derivation of length *n* is a sequence $\beta_0, \beta_1, \beta_2, \dots, \beta_n$, where $\beta_i \in (\Pi \cup \Sigma)^*$, and where $\beta_{i-1} \Rightarrow \beta_i$ for all $1 \le i \le n$, which can be written more succinctly as

$$\beta_0 \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-1} \Rightarrow \beta_n$$

The fact that for given $\alpha, \alpha' \in (\Pi \cup \Sigma)^*$ and $n \in \mathbb{N}$ there exists some derivation $\beta_0 \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-1} \Rightarrow \beta_n$, where $\alpha = \beta_0$ and $\alpha' = \beta_n$, is denoted $\alpha \Rightarrow^n \alpha'$

The fact that $\alpha \Rightarrow^{n} \alpha'$ for some $n \ge 0$, is denoted

$$\alpha \Rightarrow^* \alpha'$$

Remark: Relation \Rightarrow^* is the reflexive and transitive closure of relation \Rightarrow (i.e., the smallest reflexive and transitive relation containing relation \Rightarrow).

Sentential forms are those $\alpha \in (\Pi \cup \Sigma)^*$, for which

 $S \Rightarrow^* \alpha$

where S is the initial nonterminal.

A language $\mathcal{L}(\mathcal{G})$ generated by a grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ is the set of all words over alphabet Σ that can be derived by some derivation from the initial nonterminal S using rules from P, i.e.,

$$\mathcal{L}(\mathcal{G}) = \{ w \in \Sigma^* \mid S \Longrightarrow^* w \}$$

Definition

A language *L* is **context-free** if there exists some context-free grammar \mathcal{G} such that $L = \mathcal{L}(\mathcal{G})$.

```
\begin{array}{l} A \rightarrow aBBb \mid AaA \\ B \rightarrow \varepsilon \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}
```

Α

```
\begin{array}{l} A \rightarrow aBBb \mid AaA \\ B \rightarrow \varepsilon \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}
```

Α

<u>A</u>

 $\begin{array}{l} \underline{A} \rightarrow aBBb \mid AaA \\ B \rightarrow \varepsilon \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}$

A

$\frac{\underline{A}}{B} \rightarrow \frac{\underline{aBBb}}{\varepsilon} \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

$\underline{A} \Rightarrow \underline{aBBb}$

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

 $A \Rightarrow aBBb$

 $\begin{array}{l} A \rightarrow aBBb \mid AaA \\ \underline{B} \rightarrow \varepsilon \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}$

 $A \Rightarrow a\underline{B}Bb$

 $\begin{array}{l} A \rightarrow aBBb \mid AaA \\ \underline{B} \rightarrow \varepsilon \mid \underline{bCA} \\ C \rightarrow AB \mid a \mid b \end{array}$

$A \Rightarrow a\underline{B}Bb \Rightarrow a\underline{bCA}Bb$

 $\begin{array}{l} A \rightarrow aBBb \mid AaA \\ B \rightarrow \varepsilon \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}$

$A \Rightarrow aBBb \Rightarrow abCABb$

 $\frac{\underline{A}}{B} \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

$A \Rightarrow aBBb \Rightarrow abC\underline{A}Bb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaB BbBb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBb \Rightarrow abCaBbBb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb \Rightarrow abCaBbBb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb$

 $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb \Rightarrow abCaBbBb \Rightarrow abbaBb\underline{B}b \Rightarrow abbaBbb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbbb$

17/34

 $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbBb \Rightarrow abbabb$

 $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbb \Rightarrow abbaBbb \Rightarrow abbabb$

For each derivation there is some derivation tree:

- Nodes of the tree are labelled with terminals and nonterminals.
- The root of the tree is labelled with the initial nonterminal.
- The leafs of the tree are labelled with terminals or with symbols ε .
- The remaining nodes of the tree are labelled with nonterminals.
- If a node is labelled with some nonterminal A then its children are labelled with the symbols from the right-hand side of some rewriting rule A → α.

Example: A grammar generating the language

 $L = \{a^n b^n \mid n \ge 0\}$

Example: A grammar generating the language

 $L = \{a^n b^n \mid n \ge 0\}$

Grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ where $\Pi = \{S\}, \Sigma = \{a, b\}$, and P contains

 $S \rightarrow \varepsilon \mid aSb$

Example: A grammar generating the language

 $L = \{a^n b^n \mid n \ge 0\}$

Grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ where $\Pi = \{S\}$, $\Sigma = \{a, b\}$, and P contains

 $S \rightarrow \varepsilon \mid aSb$

$$S \Rightarrow \varepsilon$$

$$S \Rightarrow aSb \Rightarrow ab$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaaaSbbbb \Rightarrow aaaabbbb$$

Example: A grammar generating the language L consisting of all palindroms over the alphabet $\{a, b\}$, i.e.,

$$L = \{w \in \{a, b\}^* \mid w = w^R\}$$

Remark: w^R denotes the **reverse** of a word w, i.e., the word w written backwards.

Example: A grammar generating the language L consisting of all palindroms over the alphabet $\{a, b\}$, i.e.,

$$L = \{w \in \{a, b\}^* \mid w = w^R\}$$

Remark: w^R denotes the **reverse** of a word w, i.e., the word w written backwards.

Solution:

 $S \rightarrow \varepsilon \mid a \mid b \mid aSa \mid bSb$

Example: A grammar generating the language L consisting of all palindroms over the alphabet $\{a, b\}$, i.e.,

$$L = \{w \in \{a, b\}^* \mid w = w^R\}$$

Remark: w^R denotes the **reverse** of a word w, i.e., the word w written backwards.

Solution:

 $S \rightarrow \varepsilon \mid a \mid b \mid aSa \mid bSb$

 $S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaSaba \Rightarrow abaaaba$

Example: A grammar generating the language L consisting of all correctly parenthesised sequences of symbols '(' and ')'.

For example $(()())(()) \in L$ but $)()) \notin L$.

Example: A grammar generating the language L consisting of all correctly parenthesised sequences of symbols '(' and ')'.

For example $(()())(()) \in L$ but $)()) \notin L$.

Solution:

 $A \rightarrow \varepsilon \mid (A) \mid AA$

Example: A grammar generating the language L consisting of all correctly parenthesised sequences of symbols '(' and ')'.

For example $(()())(()) \in L$ but $)()) \notin L$.

Solution:

 $A \to \varepsilon \mid (A) \mid AA$
Example: A grammar generating the language L consisting of all correctly constructed arithmetic experessions where operands are always of the form 'a' and where symbols + and * can be used as operators.

For example $(a + a) * a + (a * a) \in L$.

Example: A grammar generating the language L consisting of all correctly constructed arithmetic experessions where operands are always of the form 'a' and where symbols + and * can be used as operators.

For example $(a + a) * a + (a * a) \in L$.

Solution:

$$E \rightarrow a \mid E + E \mid E * E \mid (E)$$

Example: A grammar generating the language L consisting of all correctly constructed arithmetic experessions where operands are always of the form 'a' and where symbols + and * can be used as operators.

For example $(a + a) * a + (a * a) \in L$.

Solution:

$$E \rightarrow a \mid E + E \mid E * E \mid (E)$$

 $E \Rightarrow E + E \Rightarrow E * E + E \Rightarrow (E) * E + E \Rightarrow (E + E) * E + E \Rightarrow$ $(a+E) * E + E \Rightarrow (a+a) * E + E \Rightarrow (a+a) * a + E \Rightarrow (a+a) * a + (E) \Rightarrow$ $(a+a) * a + (E * E) \Rightarrow (a+a) * a + (a * E) \Rightarrow (a+a) * a + (a * a)$

$E \rightarrow a \mid E + E \mid E * E \mid (E)$

A **left derivation** is a derivation where in every step we always replace the leftmost nonterminal.

 $\underline{E} \Rightarrow \underline{E} + E \Rightarrow \underline{E} * E + E \Rightarrow a * \underline{E} + E \Rightarrow a * a + \underline{E} \Rightarrow a * a + a$

A **right derivation** is a derivation where in every step we always replace the rightmost nonterminal.

 $\underline{E} \Rightarrow \underline{E} + \underline{E} \Rightarrow \underline{E} + a \Rightarrow \underline{E} * \underline{E} + a \Rightarrow \underline{E} * a + a \Rightarrow a * a + a$

A derivation need not be left or right:

 $\underline{E} \Rightarrow \underline{E} + E \Rightarrow E * \underline{E} + E \Rightarrow E * a + \underline{E} \Rightarrow \underline{E} * a + a \Rightarrow a * a + a$

- There can be several different derivations corresponding to one derivation tree.
- For every derivation tree, there is exactly one left and exactly one right derivation corresponding to the tree.

Grammars \mathcal{G}_1 and \mathcal{G}_2 are **equivalent** if they generate the same language, i.e., if $\mathcal{L}(\mathcal{G}_1) = \mathcal{L}(\mathcal{G}_2)$.

Remark: The problem of equivalence of context-free grammars is algorithmically undecidable. It can be shown that it is not possible to construct an algorithm that would decide for any pair of context-free grammars if they are equivalent or not.

Even the problem to decide if a grammar generates the language Σ^* is algorithmically undecidable.

Ambiguous Grammars

A grammar \mathcal{G} is **ambiguous** if there is a word $w \in \mathcal{L}(\mathcal{G})$ that has two different derivation trees, resp. two different left or two different right derivations.

Example: $E \Rightarrow E + E \Rightarrow E * E + E \Rightarrow a * E + E \Rightarrow a * a + E \Rightarrow a * a + a$ $E \Rightarrow E * E \Rightarrow E * E + E \Rightarrow a * E + E \Rightarrow a * a + E \Rightarrow a * a + a$

Sometimes it is possible to replace an ambiguous grammar with a grammar generating the same language but which is not ambiguous.

Example: A grammar

 $E \rightarrow a \mid E + E \mid E * E \mid (E)$

can be replaced with the equivalent grammar

 $E \to T \mid T + E$ $T \to F \mid F * T$ $F \to a \mid (E)$

Remark: If there is no unambiguous grammar equivalent to a given ambiguous grammar, we say it is **inherently ambiguous**.

The class of context-free languages is closed with respect to:

- concatenation
- union
- iteration

The class of context-free languages is not closed with respect to:

- complement
- intersection

Context-Free Languages

We have two grammars $\mathcal{G}_1 = (\Pi_1, \Sigma, S_1, P_1)$ and $\mathcal{G}_2 = (\Pi_2, \Sigma, S_2, P_2)$, and can assume that $\Pi_1 \cap \Pi_2 = \emptyset$ and $S \notin \Pi_1 \cup \Pi_2$.

• Grammar \mathcal{G} such that $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}_1) \cdot \mathcal{L}(\mathcal{G}_2)$:

 $\mathcal{G} = (\Pi_1 \cup \Pi_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1S_2\})$

• Grammar \mathcal{G} such that $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}_1) \cup \mathcal{L}(\mathcal{G}_2)$:

 $\mathcal{G} = (\Pi_1 \cup \Pi_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\})$

• Grammar \mathcal{G} such that $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}_1)^*$:

 $\mathcal{G} = (\Pi_1 \cup \{S\}, \Sigma, S, P_1 \cup \{S \rightarrow \varepsilon, S \rightarrow S_1S\})$

$$S \rightarrow A \mid C$$

$$A \rightarrow aB \mid aC \mid bA$$

$$B \rightarrow aD \mid bE$$

$$C \rightarrow bD$$

$$D \rightarrow bC \mid bE \mid A$$

$$E \rightarrow bE$$

$$S \rightarrow A \mid C$$

$$A \rightarrow aB \mid aC \mid bA$$

$$B \rightarrow aD \mid bE$$

$$C \rightarrow bD$$

$$D \rightarrow bC \mid bE \mid A$$

$$E \rightarrow bE$$

$$A \rightarrow \varepsilon$$

$$E \rightarrow \varepsilon$$

Example:

Alternative construction:

Example:

Alternative construction:

$$S \rightarrow A \mid E$$

Example:

Alternative construction:

 $S \rightarrow A \mid E$ $A \rightarrow Ab \mid D$ $B \rightarrow Aa$ $C \rightarrow Aa \mid Db$ $D \rightarrow Ba \mid Cb$ $E \rightarrow Bb \mid Db \mid Eb$

Example:

Alternative construction:

 $S \rightarrow A \mid E$ $A \rightarrow Ab \mid D$ $B \rightarrow Aa$ $C \rightarrow Aa \mid Db$ $D \rightarrow Ba \mid Cb$ $E \rightarrow Bb \mid Db \mid Eb$ $A \rightarrow \varepsilon$ $C \rightarrow \varepsilon$

Regular grammars

Definition

A grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ is **right regular** if all rules in P are of the following forms (where $A, B \in \Pi, a \in \Sigma$):

- $A \rightarrow B$
- $A \rightarrow aB$
- $A \rightarrow \varepsilon$

Definition

A grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ is **left regular** if all rules in P are of the following forms (kde $A, B \in \Pi, a \in \Sigma$):

- $A \rightarrow B$
- $A \rightarrow Ba$
- $A \rightarrow \varepsilon$

Definition

A grammar \mathcal{G} is **regular** if it right regular or left regular.

Remark: Sometimes a slightly more general definition of right (resp. left) regular grammars is given, allowing all rules of the following forms:

•
$$A \rightarrow wB$$
 (resp. $A \rightarrow Bw$)

•
$$A \rightarrow w$$

where $A, B \in \Pi$, $w \in \Sigma^*$.

Such rules can be easily "decomposed" into rules of the form in the previous definition.

Example: Rule $A \rightarrow abbB$ can be replaced with rules

$$A \to aX_1 \qquad X_1 \to bX_2 \qquad X_2 \to bB$$

where X_1 , X_2 are new nonterminals, not used anywhere else in the grammar.

Proposition

For every regular language L there is a left regular grammar \mathcal{G} such that $\mathcal{L}(\mathcal{G}) = L$ and a right regular grammar \mathcal{G}' such that $\mathcal{L}(\mathcal{G}') = L$.

Proposition

For every regular grammar \mathcal{G} there is a finite automaton \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{G})$.