
Nondeterministic Finite Automaton
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The number of transitions going from one state and labelled with the
same symbol can be arbitrary (including zero).

There can be more than one initial state in the automaton.
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Nondeterministic Finite Automaton

A nondeterministic finite automaton accepts a given word if there exists

at least one computation of the automaton that accepts the word.

YESYESYES
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NO NONONONONO
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Nondeterministic Finite Automaton

a b

↔ 1 2, 3, 4 1
2 5 −

→ 3 − 4
4 5 2, 3

← 5 − 5
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Example: A forest representing all possible computations over the
word bba.
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Nondeterministic Finite Automaton

Formally, a nondeterministic finite automaton (NFA) is defined as
a tuple

(Q,Σ, δ, I ,F )

where:

Q is a finite set of states

Σ is a finite alphabet

δ ∶ Q × Σ → P(Q) is a transition fuction

I ⊆ Q is a set of initial states

F ⊆ Q is a set of accepting states
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Examples of Nondeterministic Finite Automata

Example: An automaton recognizing the language over alphabet {a, b}
consisting of those words where every occurrence of symbol b is
immediately preceded with two symbols a.

a a

a

b
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Examples of Nondeterministic Finite Automata

Example: An automaton recognizing the language over alphabet {a, b}:

words starting with prefix ababb:

a b a b b

a, b

words ending with suffix ababb:

a b a b b

a, b

words containing subword ababb:

a b a b b

a, b a, b
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Examples of Nondeterministic Finite Automata

Example: An automaton recognizing the language over alphabet {a, b}
consisting of those words where the fifth symbol from the end is a.

a a, b a, b a, b a, b

a, b
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Transformation of NFA to DFA
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Transformation of NFA to DFA

a b

↔ 1 − 2, 3
→ 2 2, 3 3

3 1 −
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Transformation of NFA to DFA

Remark: When a nondeterministic automaton with n states is transformed
into a deterministic one, the resulting automaton can have 2

n
states.

For example when we transform an automaton with 20 states, the
resulting automaton can have 2

20
= 1048576 states.

It is often the case that the resulting automaton has far less than 2
n

states. However, the worst cases are possible.
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Generalized Nondeterministic Finite Automaton

Compared to a nondeterministic finite automaton, a generalized

nondeterministic finite automaton has the so called ε-transitions, i.e.,
transitions labelled with symbol ε.

When ε-transition is performed, only the state of the control unit is
changed but the head on the tape is not moved.

Remark: The computations of a generalized nondeterministic automaton
can be of an arbitrary length, even infinite (if the graph of the automaton
contains a cycle consisting only of ε-transitions) regardless of the length of
the word on the tape.
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Generalized Nondeterministic Finite Automaton

Formally, a generalized nondeterministic finite automaton (GNFA) is
defined as a tuple

(Q,Σ, δ, I ,F )

where:

Q is a finite set of states

Σ is a finite alphabet

δ ∶ Q × (Σ ∪ {ε}) → P(Q) is a transition function

I ⊆ Q is a set of initial states

F ⊆ Q is a set of accepting states

Remark: NFA can be viewed as a special case of GNFA, where
δ(q, ε) = ∅ for all q ∈ Q.
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Transformation to a Deterministic Finite Automaton

A generalized nondeterministic finite automaton can be transformed into
a deterministic one using a similar construction as a nondeterministic finite
automaton with the difference that we add to sets of states also all states
that are reachable from already added states by some sequence of
ε-transitions.
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Transformation of GNFA to DFA

Before formally describing the transition of GNFA to DFA, let us introduce
some auxiliary definitions.

Let us assume some given GNFA A = (Q,Σ, δ, I ,F ).

Let us define the function δ̂ ∶ P(Q) × (Σ ∪ {ε}) → P(Q) so that for
K ⊆ Q and a ∈ Σ ∪ {ε} there is

δ̂(K , a) = ⋃
q∈K

δ(q, a)
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Transformation of GNFA to DFA

For K ⊆ Q, let Cl
ε
(K) be all the states reachable from the states from the

set K by some arbitrary sequence of ε-transitions.

This means that the function Cl
ε
∶ P(Q) → P(Q) is defined so that for

K ⊆ Q is Cl
ε
(K) the smallest (with respect to inclusion) set satisfying the

following two conditions:

K ⊆ Cl
ε
(K)

For each q ∈ Cl
ε
(K) it holds that δ(q, ε) ⊆ Cl

ε
(K).

Remark: Let us note that Cl
ε
(Cl

ε
(K)) = Cl

ε
(K) for arbitrary K .

Let us also note that in the case of NFA (where δ(q, ε) = ∅ for each
q ∈ Q) is Cl

ε
(K) = K .
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Transformation of GNFA to DFA

For a given GNFA A = (Q,Σ, δ, I ,F ) we can now construct DFA
A

′
= (Q

′
,Σ, δ

′
, q

′

0,F
′
), where:

Q
′
= P(Q) (so K ∈ Q

′
means that K ⊆ Q)

δ
′
∶ Q

′
× Σ → Q

′
is defined so that for K ∈ Q

′
and a ∈ Σ:

δ
′
(K , a) = Cl

ε
(δ̂(Cl

ε
(K), a))

q
′

0 = Cl
ε
(I )

F
′
= {K ∈ Q

′
∣ Cl

ε
(K) ∩ F ≠ ∅}

It is not difficult to verify that L(A) = L(A
′
).
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Concatenation of Languages

Σ = {a, b, c, d}

a

b

A1:

c

d

A2:
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Concatenation of Languages

Σ = {a, b, c, d}

a

b

A1:

c

d

A2:

a

b

c

dε

A:

L(A) = L(A1) ⋅ L(A2)
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Concatenation of Languages

Σ = {a, b, c, d}

a

b

A1:

c

d

A2:

An incorrect construction:

a

b

c

d

A:

acdbac ∈ L(A) but acdbac /∈ L(A1) ⋅ L(A2)
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Concatenation of Languages

A1 A2
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Concatenation of Languages

A1 A2

A

A1 A2

ε
ε
ε
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Iteration of a Language

A1
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Iteration of a Language

A1

A

A1

ε
ε

ε
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Union of Languages

An alternative construction for the union of languages:

A1

A2
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Union of Languages

An alternative construction for the union of languages:

A1

A2

A

A1

A2

ε

ε
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Closure Properties of the Class of Regular Languages

The set of (all) regular languages is closed with respect to:

union

intersection

complement

concatenation

iteration

. . .
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Transformation of a Regular Expression to a Finite

Automaton

Proposition

Every language that can be represented by a regular expression is regular
(i.e., it is accepted by some finite automaton).

Proof: It is sufficient to show how to construct for a given regular
expression α a finite automaton accepting the language L(α).

The construction is recursive and proceeds by the structure of the
expression α:

If α is a elementary expression (i.e., ∅, ε or a):
We construct the corresponding automaton directly.

If α is of the form (β + γ), (β ⋅ γ) or (β
∗
):

We construct automata accepting languages L(β) and L(γ)
recursively.
Using these two automata, we construct the automaton accepting the
language L(α).
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Transformation of a Regular Expression to a Finite

Automaton

The automata for the elementary expressions:

∅

ε

ε

a

a
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Transformation of a Regular Expression to a Finite

Automaton

The automata for the elementary expressions:

∅

ε

ε

a

a

The construction for the union:
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Transformation of a Regular Expression to a Finite

Automaton

The construction for the concatenation:
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ε
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Transformation of a Regular Expression to a Finite

Automaton

Example: The construction of an automaton for expression ((a+ b) ⋅ b)
∗
:
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Transformation of a Regular Expression to a Finite

Automaton

Example: The construction of an automaton for expression ((a+ b) ⋅ b)
∗
:

a

b

ε

ε

ε

ε

bεε ε

ε

ε
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Transformation of a Regular Expression to a Finite

Automaton

If an expression α consists of n symbols (not counting parenthesis) then
the resulting automaton has:

at most 2n states,

at most 4n transitions.

Remark: By transforming the generalized nondeterministic automaton
into a deterministic one, the number of states can grow exponentially,
i.e., the resulting automaton can have up to 2

2n
= 4

n
states.
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Transformation of an Automaton to a Regular Expression

Proposition

Every regular language can be represented by some regular expression.

Proof: It is sufficient to show how to construct for a given finite
automaton A a regular expression α such that L(α) = L(A).

We modify A in such a way that ensures it has exactly one initial and
exactly one accepting state.

Its states will be removed one by one.

Its transitions will be labelled with regular expressions.

The resulting automaton will have only two states – the initial and
the accepting, and only one transition labelled with the resulting
regular expression.
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Transformation of an Automaton to a Regular Expression

The main idea: If a state q is removed, for every pair of remaining states
qj , qk we extend the label on a transition from qj to qk by a regular
expression representing paths from qj to qk going through q.

qj qk

q

α

β

γ

δ

After removing of the state q:

qj qk
α + βγ

∗
δ
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Transformation of an Automaton to a Regular Expression

Example:

1 2

3

a

b

a

b

b

a
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Transformation of an Automaton to a Regular Expression

Example:

1 2

3

s f

a

b

a

b

b

a

ε ε

ε
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Transformation of an Automaton to a Regular Expression

Example:

2

3

s f

b + aa

a + ba

ε

ε

a

b

ab

bb
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Transformation of an Automaton to a Regular Expression

Example:

3

s f

ε + (a + ba)(b + aa)
∗

b + a(b + aa)
∗
ab

bb + (a + ba)(b + aa)
∗
ab

a(b + aa)
∗
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Transformation of an Automaton to a Regular Expression

Example:

s f

a(b + aa)
∗
+

(b + a(b + aa)
∗
ab)

(bb + (a + ba)(b + aa)
∗
ab)

∗

(ε + (a + ba)(b + aa)
∗
)
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Equivalence of Finite Automata and Regular Expressions

Theorem

A language is regular iff it can be represented by a regular expression.
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Nonregular Languages

Not all languages are regular.

There are languages for which there exist no finite automata accepting
them.

Examples of nonregular languages:

L1 = {a
n
b
n
∣ n ≥ 0}

L2 = {ww ∣ w ∈ {a, b}
∗
}

L3 = {ww
R
∣ w ∈ {a, b}

∗
}

Remark: The existence of nonregular languages is already apparent from
the fact that there are only countably many (nonisomorphic) automata
working over some alphabet Σ but there are uncountably many languages
over the alphabet Σ.
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Nonregular Languages

How to prove that some language L is not regular?

A language is not regular if there is no automaton (i.e., it is not possible
to construct an automaton) accepting the language.

But how to prove that something does not exist?
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Nonregular Languages

How to prove that some language L is not regular?

A language is not regular if there is no automaton (i.e., it is not possible
to construct an automaton) accepting the language.

But how to prove that something does not exist?

The answer: By contradiction.

E.g., we can assume there is some automaton A accepting the language L,
and show that this assumption leads to a contradiction.
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Nonregular Languages

We show that language L = {a
n
b
n
∣ n ≥ 0} is not regular.

The proof by contradiction.

Let us assume there exists a DFA A = (Q,Σ, δ, q0,F ) such that L(A) = L.
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The proof by contradiction.

Let us assume there exists a DFA A = (Q,Σ, δ, q0,F ) such that L(A) = L.

Let ∣Q∣ = n.

Consider word z = a
n
b
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Nonregular Languages

We show that language L = {a
n
b
n
∣ n ≥ 0} is not regular.

The proof by contradiction.

Let us assume there exists a DFA A = (Q,Σ, δ, q0,F ) such that L(A) = L.

Let ∣Q∣ = n.

Consider word z = a
n
b
n
.

Since z ∈ L, there must be an accepting computation of the automaton A

q0

a
⟶ q1

a
⟶ q2

a
⟶ ⋯

a
⟶ qn−1

a
⟶ qn

b
⟶ qn+1

b
⟶ ⋯

b
⟶ q2n−1

b
⟶ q2n

where q0 is an initial state, and q2n ∈ F .
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Nonregular Languages

Consider now the first n + 1 states of the computation

q0

a
⟶ q1

a
⟶ q2

a
⟶ ⋯

a
⟶ qn−1

a
⟶ qn

b
⟶ qn+1

b
⟶ ⋯

b
⟶ q2n−1

b
⟶ q2n

i.e., the sequence of states q0, q1, . . . , qn.

It is obvious that all states in this sequence can not be pairwise different,
since ∣Q∣ = n and the sequence has n + 1 elements.

This means that there exists a state q ∈ Q which occurs (at least) twice in
the sequence.
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Nonregular Languages

Consider now the first n + 1 states of the computation

q0

a
⟶ q1

a
⟶ q2

a
⟶ ⋯

a
⟶ qn−1

a
⟶ qn

b
⟶ qn+1

b
⟶ ⋯

b
⟶ q2n−1

b
⟶ q2n

i.e., the sequence of states q0, q1, . . . , qn.

It is obvious that all states in this sequence can not be pairwise different,
since ∣Q∣ = n and the sequence has n + 1 elements.

This means that there exists a state q ∈ Q which occurs (at least) twice in
the sequence.

It is an application of so called pigeonhole principle.

Pigeonhole principle

If we have n + 1 pigeons in n holes then there is at least one hole
containing at least two pigeons.
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Nonregular Languages

Consider now the first n + 1 states of the computation

q0

a
⟶ q1

a
⟶ q2

a
⟶ ⋯

a
⟶ qn−1

a
⟶ qn

b
⟶ qn+1

b
⟶ ⋯

b
⟶ q2n−1

b
⟶ q2n

i.e., the sequence of states q0, q1, . . . , qn.

It is obvious that all states in this sequence can not be pairwise different,
since ∣Q∣ = n and the sequence has n + 1 elements.

This means that there exists a state q ∈ Q which occurs (at least) twice in
the sequence.

I.e., there are indexes i , j such that 0 ≤ i < j ≤ n and

qi = qj

which means that the automaton A must go through a cycle when reading
the symbols a in the word z = a

n
b
n
.
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Nonregular Languages

a a a a a a

a

a

a

a

a b b bba
q0 q1 q2 qi−1 qi = qj

qi+1

qi+2

qi+3

qj−1

qj+1 qj+2 qn−1 qn qn+1 qn+2 q2n−1 q2n

u

v

w

The word z = a
n
b
n
can be divided into three parts u, v ,w such that

z = uvw :
u = a

i
v = a

j−i
w = a

n−j
b
n
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Nonregular Languages

For the words u = a
i
, v = a

j−i
, and w = a

n−j
b
n
we have

q0
u

⟶ qi qi
v

⟶ qj qj
w

⟶ q2n

Let r be the length of the word v , i.e., r = j − i (obviously r > 0, due to
i < j).

Since qi = qj , the automaton accepts word uw = a
n−r

b
n
that does not

belong to L:

q0
u

⟶ qi
w

⟶ q2n

The word uvvw = a
n+r

b
n
, that also does not belong to L, is accepted too:

q0
u

⟶ qi
v

⟶ qi
v

⟶ qi
w

⟶ q2n
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Nonregular Languages

Similarly we can show that every word of the form uvvvv⋯vvw , i.e., of
the form uv

k
w for some k ≥ 0, is accepted by the automaton A:

q0
u

⟶ qi
v

⟶ qi
v

⟶ qi
v

⟶ ⋯
v

⟶ qi
v

⟶ qi
w

⟶ q2n

A word of the form uv
k
w looks as follows: a

n−r+rk
b
n
.

Since r > 0, the following equivalence holds only for k = 1:

n − r + rk = n

This means that if k ≠ 1 then uv
k
w does not belong to the language L.

However, the automaton A accepts each such word, which is a
contradiction with the assumption that L(A) = {a

n
b
n
∣ n ≥ 0}.
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