
Introduction to Theoretical Computer Science

Zdeněk Sawa

Department of Computer Science, FEI,
Technical University of Ostrava

17. listopadu 2172/15, Ostrava-Poruba 708 00
Czech republic

February 19, 2024

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 1 / 63

Lecturer

Name: doc. Ing. Zdeněk Sawa, Ph.D.

E-mail: zdenek.sawa@vsb.cz

Room: EA413

Web: https://www.cs.vsb.cz/sawa/uti/index-en.html

On these pages you will find:

Information about the course

Study texts

Slides from lectures

Exercises for tutorials

Recent news for the course

A link to a page with animations

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 2 / 63

https://www.cs.vsb.cz/sawa/uti/index-en.html

Requirements

Credit (30 points):

Written test (24 points) — it will be written on a tutorial
The minimal requirement for obtaining the credit is 12 points.

A correcting test for 20 points.

Activity on tutorials (6 points)
The minimal requirement for obtaining the credit is 3 points.

Exam (70 points)

A written exam consisting of two parts (35 points for each part);
it is necessary to obtain at least 12 points for each part.

It is necessary to obtain at least 30 points.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 3 / 63

Theoretical Computer Science

Theoretical computer science — a scientific field on the border between
computer science and mathematics

investigation of general questions concerning algorithms and
computations

study of different kinds of formalisms for description of algorithms

study of different approaches for description of syntax and semantics
of formal languages (mainly programming languages)

a mathematical approach to analysis and solution of problems (proofs
of general mathematical propositions concerning algorithms)

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 4 / 63

Theoretical Computer Science

Examples of some typical questions studied in theoretical computer science:

Is it possible to solve the given problem using some algorithm?

If the given problem can be solved by an algorithm, what is the
computational complexity of this algorithm?

Is there an efficient algorithm solving the given problem?

How to check that a given algorithm is really a correct solution of the
given problem?

What kinds instructions are sufficient for a given machine to perform
a given algorithm?

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 5 / 63

Algorithms and Problems

Algorithm — mechanical procedure that computes something (it can be
executed by a computer)

Algorithms are used for solving problems.

An example of an algorithmic problem:

Input: Natural numbers x and y .

Output: Natural number z such that z = x + y .

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 6 / 63

Algorithms and Problems

Algorithm — mechanical procedure that computes something (it can be
executed by a computer)

Algorithms are used for solving problems.

An example of an algorithmic problem:

Input: Natural numbers x and y .

Output: Natural number z such that z = x + y .

A particular input of a problem is called an instance of the problem.

Example: An example of an instance of the problem given above is a pair
of numbers 728 and 34.

The corresponding output for this instance is number 762.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 6 / 63

Problems

Problem

When specifying a problem we must determine:

what is the set of possible inputs

what is the set of possible outputs

what is the relationship between inputs and outputs

inputs outputs

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 7 / 63

Examples of Problems

Problem “Sorting”

Input: A sequence of elements a1, a2, . . . , an.

Output: Elements of the sequence a1, a2, . . . , an ordered from the
least to the greatest.

Example:

Input: 8, 13, 3, 10, 1, 4

Output: 1, 3, 4, 8, 10, 13

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 8 / 63

An example of an algorithmic problem

Problem “Finding the shortest path in an (undirected) graph”

Input: An undirected graph G = (V ,E) with edges labelled with
numbers, and a pair of nodes u, v ∈ V .

Output: The shortest path from node u to node v .
(Or information that there is no such path.)

Example:

u v

10

12
9

14

11
6

9

13 10

7

12

11

8
10

17

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 9 / 63

Algorithms and Problems

An algorithm solves a given problem if:

For each input, the computation of the algorithm halts after a finite
number of steps.

For each input, the algorithm produces a correct output.

Correctness of an algorithm — verifying that the algorithm really solves
the given problem

Computational complexity of an algorithm:

time complexity — how the running time of the algorithm depends
on the size of input data

space complexity — how the amount of memory used by the
algorithm depends on the size of input data

Remark: For one problem there can be many diffent algorithms that
correctly solve the problem.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 10 / 63

Other Examples of Problems

Problem “Primality”

Input: A natural number n.

Output: Yes if n is a prime, No otherwise.

Remark: A natural number n is a prime if it is greater than 1 and is
divisible only by numbers 1 and n.

Few of the first primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 11 / 63

Decision Problems

The problems, where the set of outputs is {Yes,No} are called decision
problems.

Decision problems are usually specified in such a way that instead of
describing what the output is, a question is formulated.

Example:

Problem “Primality”

Input: A natural number n.

Question: Is n a prime?

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 12 / 63

Optimization Problems

Those problems where for each input instance there is a corresponding set
of feasible solutions and where the aim is to select between these feasible
solutions that is some respect minimal or maximal (or possibly to find out
that there are no feasible solutions), are called optimization problems.

Example:

Problem “Finding the shortest path in an (undirected) graph”

Input: An undirected graph G = (V ,E) with edges labelled with
numbers, and a pair of nodes u, v ∈ V .

Output: The shortest path from node u to node v .

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 13 / 63

Optimization Problems

Problem “Coloring of a graph”

Input: An undirected graph G .

Output: The minimal number of colors to color the nodes of the
graph G in such a way that no two nodes connected with an
edge are colored with the same color, and a concrete example
of such coloring using this minimal number of colors.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 14 / 63

Optimization Problems

Problem “Coloring of a graph”

Input: An undirected graph G .

Output: The minimal number of colors to color the nodes of the
graph G in such a way that no two nodes connected with an
edge are colored with the same color, and a concrete example
of such coloring using this minimal number of colors.

Colors: 3

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 14 / 63

Optimization Problems

Problem “Coloring of a graph with k colors”

Input: An undirected graph G and a natural number k .

Question: Is it possible to color the nodes of the graph G with k colors
in such a way that no two nodes connected with an edge are
colored with the same color?

k = 3

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 15 / 63

Optimization Problems

Problem “Coloring of a graph with k colors”

Input: An undirected graph G and a natural number k .

Question: Is it possible to color the nodes of the graph G with k colors
in such a way that no two nodes connected with an edge are
colored with the same color?

k = 3

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 15 / 63

Algorithmically Solvable Problems

Let us assume we have a problem P .

If there is an algorithm solving the problem P then we say that the
problem P is algorithmically solvable.

If P is a decision problem and there is an algorithm solving the problem P

then we say that the problem P is decidable (by an algorithm).

If we want to show that a problem P is algorithmically solvable, it is
sufficient to show some algorithm solving it (and possibly show that the
algorithm really solves the problem P).

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 16 / 63

Algorithmically Unsolvable Problems

A problem that is not algorithmically solvable is algorithmically
unsolvable.

A decision problem that is not decidable is undecidable.

Surprisingly, there are many (exactly defined) problems, for which it was
proved that they are not algorithmically solvable.

Computability theory — area of theoretical computer science studying,
which problems can be solved algorithmically and which cannot.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 17 / 63

Complexity Theory

Many problems are algorithmically solvable but there do not exist (or are
not known) efficient algorithms solving them:

TSP - traveling salesman problem

Input: An undirected graph G with edges labelled with natural
numbers.

Output: A shortest closed path that goes through all vertices of the
graph.

8

18 16

20

1

5 1

2

10
3

4

5

13

614

4

12

11

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 18 / 63

Theoretical Computer Science

Some other areas of theoretical computer science:

complexity theory

theory of formal languages

models of computation

parallel and distributed algorithms

. . .

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 19 / 63

Theory of Formal Languages

An area of theoretical computer science dealing with questions concerning
syntax.

Language — a set of words

Word — a sequences of symbols from some alphabet

Alphabet — a set of symbols (or letters)

Words and languages appear in computer science on many levels:

Representation of input and output data

Representation of programs

Manipulation with character strings or files

. . .

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 20 / 63

Theory of Formal Languages – Motivation

Examples of problem types, where theory of formal languages is useful:

Construction of compilers:

Lexical analysis
Syntactic analysis

Searching in text:

Searching for a given text pattern
Seaching for a part of text specified by a regular expression

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 21 / 63

Alphabet, Word

Alphabet — a nonempty finite set of symbols

Example: Σ = {a, b, c, d}

Word — a finite sequence of symbols from the given alphabet

Example: cabcbba

The set of all words of alphabet Σ is denoted with Σ
∗
.

For variables, whose values are words, we will use names such as
w , u, v , x , y , z , etc., possibly with indexes (e.g., w1, w2)

So when we write w = cabcbba, it means that the value of
variable w is word cabcbba.

Similarly, the notation w ∈ Σ
∗
means that the value of a variable w

is some word consisting of symbols belonging to alphabet Σ.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 22 / 63

Formal Languages

Definition

A (formal) language L over an alphabet Σ is a subset of Σ
∗
, i.e., L ⊆ Σ

∗
.

Example: Let us assume that Σ = {a, b, c}:

Language L1 = { aab, bcca, aaaaa }

Language
L2 = {w ∈ Σ

∗
∣ the number of occurrences of b in w is even }

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 23 / 63

Formal Languages

Example:

Alphabet Σ is the set of all ASCII characters.

Example of a word:

#include <stdio.h>

int main()

{

printf("Hello, world!\n");

return 0;

}

#include <stdio.h> ↩↩ int main() ↩ { ↩ printf("He⋯

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 24 / 63

Formal Languages

Formalisms used for description of formal languages:

automata

grammars

regular expressions

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 25 / 63

Encoding of Input and Output

Inputs and outputs of an algorithm could be encoded as words over some
alphabet Σ.

Example: For example, for problem “Sorting” we can take alphabet
Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ,}.

An example of input data (as a word over alphabet Σ):

826,13,3901,128,562

and the corresponding output data (as a word over alphabet Σ)

13,128,562,826,3901

Remark: It is often the case that only some words over the given alphabet
represent valid input or output.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 26 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 ,

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 ,

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2 ,

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2 , 8

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2 , 8 2

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2 , 8 2 6

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2 , 8 2 6 ,

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2 , 8 2 6 , 3

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2 , 8 2 6 , 3 9

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2 , 8 2 6 , 3 9 0

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Input/Output Behaviour of an Algorithm

We can assume that the algorithm is executed on a certain type of
machine.

8 2 6 , 1 3 , 3 9 0 1 , 1 2 8 , 5 6 2

Input

1 3 , 1 2 8 , 5 6 2 , 8 2 6 , 3 9 0 1

Output
Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 27 / 63

Encoding of Input and Output

Example: If an input for a given problem is graph, it could be represented
as a pair of two lists — a list of nodes and a list of edges:

For example, the following graph

1 2

3 4

5

could be represented as a word

(1,2,3,4,5),((1,2),(2,4),(4,3),(3,1),(1,1),(2,5),(4,5),(4,1))

over alphabet Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ,, (,)}.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 28 / 63

Algorithms for Decision Problems

In the case of an algorithm that solves some decision problem it is
sufficient that the algorithm just provides an answer Yes or No.

Problem

Input: A word w over alphabet {a, b}.

Question: Does the word w contain an even number of occurrences of
symbol b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 29 / 63

Algorithms for Decision Problems

In the case of an algorithm that solves some decision problem it is
sufficient that the algorithm just provides an answer Yes or No.

Problem

Input: A word w over alphabet {a, b}.

Question: Does the word w contain an even number of occurrences of
symbol b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 29 / 63

Algorithms for Decision Problems

In the case of an algorithm that solves some decision problem it is
sufficient that the algorithm just provides an answer Yes or No.

Problem

Input: A word w over alphabet {a, b}.

Question: Does the word w contain an even number of occurrences of
symbol b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 29 / 63

Algorithms for Decision Problems

In the case of an algorithm that solves some decision problem it is
sufficient that the algorithm just provides an answer Yes or No.

Problem

Input: A word w over alphabet {a, b}.

Question: Does the word w contain an even number of occurrences of
symbol b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 29 / 63

Algorithms for Decision Problems

In the case of an algorithm that solves some decision problem it is
sufficient that the algorithm just provides an answer Yes or No.

Problem

Input: A word w over alphabet {a, b}.

Question: Does the word w contain an even number of occurrences of
symbol b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 29 / 63

Algorithms for Decision Problems

In the case of an algorithm that solves some decision problem it is
sufficient that the algorithm just provides an answer Yes or No.

Problem

Input: A word w over alphabet {a, b}.

Question: Does the word w contain an even number of occurrences of
symbol b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 29 / 63

Algorithms for Decision Problems

In the case of an algorithm that solves some decision problem it is
sufficient that the algorithm just provides an answer Yes or No.

Problem

Input: A word w over alphabet {a, b}.

Question: Does the word w contain an even number of occurrences of
symbol b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 29 / 63

Algorithms for Decision Problems

In the case of an algorithm that solves some decision problem it is
sufficient that the algorithm just provides an answer Yes or No.

Problem

Input: A word w over alphabet {a, b}.

Question: Does the word w contain an even number of occurrences of
symbol b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 29 / 63

Algorithms for Decision Problems

In the case of an algorithm that solves some decision problem it is
sufficient that the algorithm just provides an answer Yes or No.

Problem

Input: A word w over alphabet {a, b}.

Question: Does the word w contain an even number of occurrences of
symbol b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 29 / 63

Algorithms for Decision Problems

In the case of an algorithm that solves some decision problem it is
sufficient that the algorithm just provides an answer Yes or No.

Problem

Input: A word w over alphabet {a, b}.

Question: Does the word w contain an even number of occurrences of
symbol b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 29 / 63

Algorithms for Decision Problems

In the case of an algorithm that solves some decision problem it is
sufficient that the algorithm just provides an answer Yes or No.

Problem

Input: A word w over alphabet {a, b}.

Question: Does the word w contain an even number of occurrences of
symbol b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 29 / 63

Algorithms for Decision Problems

In the case of an algorithm that solves some decision problem it is
sufficient that the algorithm just provides an answer Yes or No.

Problem

Input: A word w over alphabet {a, b}.

Question: Does the word w contain an even number of occurrences of
symbol b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 29 / 63

Algorithms for Decision Problems

In the case of an algorithm that solves some decision problem it is
sufficient that the algorithm just provides an answer Yes or No.

Problem

Input: A word w over alphabet {a, b}.

Question: Does the word w contain an even number of occurrences of
symbol b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 29 / 63

Algorithms for Decision Problems

In the case of an algorithm that solves some decision problem it is
sufficient that the algorithm just provides an answer Yes or No.

Problem

Input: A word w over alphabet {a, b}.

Question: Does the word w contain an even number of occurrences of
symbol b ?

a b a a b b a a a a b a b a

Input

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 29 / 63

Algorithms for Decision Problems

In the case of an algorithm that solves some decision problem it is
sufficient that the algorithm just provides an answer Yes or No.

Problem

Input: A word w over alphabet {a, b}.

Question: Does the word w contain an even number of occurrences of
symbol b ?

a b a a b b a a a a b a b a

Input

No

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 29 / 63

Correspondence between Recognizing Formal Languages
and Decision Problems

There is a close correspondence between recognizning words from a given
language and decision problems:

For each language L over some alphabet Σ there is a corresponding
decision problem:

Input: A word w over alphabet Σ.

Question: Does w belong to L?

For each decision problem P where inputs are encoded as words over
alphabet Σ there is a corresponding language:

The language L containing of exactly those words w over alphabet Σ, for
which the answer to the question stated in problem P is “Yes”.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 30 / 63

Correspondence between Recognizing Formal Languages
and Decision Problems

Example: The following decision problem can be viewed as the
language L given below and vice versa.

Problem

Input: A word w over alphabet {a, b}.

Question: Does the word w contain an even number of occurrences of
symbol b ?

Language
L = {w ∈ {a, b}

∗
∣ w contains an even number of occurrences of symbol b }

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 31 / 63

Models of Computation

We can consider different types of machines that are able to perform
an algorithm.

There can be many different kinds of differences between these types of
machines:

what types of instructions they can execute

what types of dates they can store in their memory and this memory
is organised

. . .

Different kinds of such machines are called models of computation.

In the case of very simple kinds of such machines they are usually called
automata in the formal language theory.

In this course we will see several types of such automata.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 32 / 63

Models of Computation

For different types of models of computation analyse for example:

what algorithmic problems can be solved by such machines and what
languages they can recognise.

how efficiently they can execute different algorithms

how machines of a certain type can simulate the computations of
some other type of machines

how the number of instructions that are executed by the machine in
such simulaton grows compared to the original machine

. . .

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 33 / 63

Formal Languages

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 34 / 63

Alphabet and Word

Definition

Alphabet is a nonempty finite set of symbols.

Remark: An alphabet is often denoted by the symbol Σ (upper case
sigma) of the Greek alphabet.

Definition

A word over a given alphabet is a finite sequence of symbols from this
alphabet.

Example 1:

Σ = {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z}

Words over alphabet Σ: HELLO XYZZY COMPUTER

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 35 / 63

Alphabet and Word

Example 2:

Σ2 = {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z, }

A word over alphabet Σ2: HELLO WORLD

Example 3:

Σ3 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Words over alphabet Σ3: 0, 31415926536, 65536

Example 4:

Words over alphabet Σ4 = {0, 1}: 011010001, 111, 1010101010101010

Example 5:

Words over alphabet Σ5 = {a, b}: aababb, abbabbba, aaab

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 36 / 63

Language

The set of all words over alphabet Σ is denoted Σ
∗
.

Definition

A (formal) language L over an alphabet Σ is a subset of Σ
∗
, i.e., L ⊆ Σ

∗
.

Example 1: The set {00, 01001, 1101} is a language over alphabet {0, 1}.

Example 2: The set of all syntactically correct programs in the C
programming language is a language over the alphabet consisting of all
ASCII characters.

Example 3: The set of all texts containing the sequence hello is a
language over alphabet consisting of all ASCII characters.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 37 / 63

Some Basic Concepts

The length of a word is the number of symbols of the word.

For example, the length of word abaab is 5.

The length of a word w is denoted ∣w∣.

For example, if w = abaab then ∣w∣ = 5.

We denote the number of occurrences of a symbol a in a word w by ∣w∣a.

Example: If w = cabcbba then ∣w∣ = 7, ∣w∣a = 2, ∣w∣b = 3, ∣w∣c = 2,
∣w∣d = 0.

An empty word is a word of length 0, i.e., the word containing no
symbols.

The empty word is denoted by the letter ε (epsilon) of the Greek alphabet.

∣ε∣ = 0

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 38 / 63

Concatenation of Words

One of operations we can do on words is the operation of concatenation:

For example, the concatenation of words cabc and bba is the word
cabcbba.

The operation of concatenation is denoted by symbol ⋅ (it is similar to
multiplication). This symbol can be omitted.

So, for u, v ∈ Σ
∗
, the concatenation of words u and v is written as u ⋅ v or

just uv .

Example: If u = cabc and v = bba, then

u ⋅ v = cabcbba

Remark: Formally, the concatenation of words over alphabet Σ is
a fuction of type

Σ
∗
× Σ

∗
→ Σ

∗

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 39 / 63

Concatenation of Words

Concatenation is associative, i.e., for every three words u, v , and w we
have

(u ⋅ v) ⋅ w = u ⋅ (v ⋅ w)

which means that we can omit parenthesis when we write multiple
concatenations. For example, we can write w1 ⋅ w2 ⋅ w3 ⋅ w4 ⋅ w5 instead of
(w1 ⋅ (w2 ⋅ w3)) ⋅ (w4 ⋅ w5).

Word ε is a neutral element for the operation of concatenation, so for
every word w we also have:

ε ⋅ w = w ⋅ ε = w

Remark: It is obvious that if the given alphabet contains at least two
different symbols, the operation of concatenation is not commutative, e.g.,

a ⋅ b ≠ b ⋅ a

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 40 / 63

Power of a Word

For arbitrary word w ∈ Σ
∗
and arbitrary k ∈ N we can define word w

k
as

the word obtained by concatenating k copies of the word w .

Example: For w = abb it is w
4
= abbabbabbabb.

Example: Notation a
5
b
3
a
4
denotes word aaaaabbbaaaa.

A little bit more formal definition looks as follows:

w
0
= ε, w

k+1
= w

k
⋅ w for k ∈ N

This means
w

0
= ε

w
1

= w

w
2

= w ⋅ w

w
3

= w ⋅ w ⋅ w

w
4

= w ⋅ w ⋅ w ⋅ w

w
5

= w ⋅ w ⋅ w ⋅ w ⋅ w

. . .

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 41 / 63

Reverse of a Word

The reverse of a word w is the word w written from backwards (in the
opposite order).

The reverse of a word w is denoted w
R
.

Example: w = abbab w
R
= babba

So if w = a1a2⋯an (where ai ∈ Σ) then w
R
= anan−1⋯a1.

We can define w
R
using the following inductively defined function

rev ∶ Σ
∗
→ Σ

∗
as the value rev(w).

The function rev is defined as follows:

rev(ε) = ε

for a ∈ Σ and w ∈ Σ
∗
it holds that rev(a ⋅ w) = rev(w) ⋅ a

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 42 / 63

Prefix of a Word

Definition

A word x is a prefix of a word y if there exists a word v such that y = xv .

x

y

v

Example: Prefixes of the word abaab are ε, a, ab, aba, abaa, abaab.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 43 / 63

Suffix of a Word

Definition

A word x is a suffix of a word y if there exists a word u such that y = ux .

x

y

u

Example: Suffixes of the word abaab are ε, b, ab, aab, baab, abaab.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 44 / 63

Subword

Definition

A word x is a subword of a word y if there exist words u and v such that
y = uxv .

x

y

u v

Example: Subwords of the word abaab are ε, a, b, ab, ba, aa, aba, baa,
aab, abaa, baab, abaab.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 45 / 63

Subsequence

Definition

A word x is a subsequence of a word y if there is a number n and
words u1, u2, . . . , un and v0, v1, . . . , vn such that x = u1u2⋯un and
y = v0u1v1u2v2⋯unvn.

y

u1 u2 u3 u4v0 v1 v2 v3 v4

Example: Word cbab is a subsequence of word acabccabbaa.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 46 / 63

Order on Words

Let us assume some (linear) order < on the symbols of alphabet Σ, i.e., if
Σ = {a1, a2, . . . , an} then

a1 < a2 < . . . < an .

Example: Σ = {a, b, c} with a < b < c.

The following (linear) order <L can be defined on Σ
∗
:

x <L y iff:

∣x∣ < ∣y∣, or

∣x∣ = ∣y∣ there exist words u, v ,w ∈ Σ
∗
and symbols a, b ∈ Σ such

that
x = uav y = ubw a < b

Informally, we can say that in order <L we order words according to their
length, and in case of the same length we order them lexicographically.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 47 / 63

Order on Words

All words over alphabet Σ can be ordered by <L into a sequence

w0,w1,w2, . . .

where every word w ∈ Σ
∗
occurs exactly once, and where for each i , j ∈ N

it holds that wi <L wj iff i < j .

Example: For alphabet Σ = {a, b, c} (where a < b < c) , the initial part
of the sequence looks as follows:

ε, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, aac, aba, abb, abc, . . .

For example, when we talk about the first ten words of a language L ⊆ Σ
∗
,

we mean ten words that belong to language L and that are smallest of all
words of L according to order <L.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 48 / 63

Order on Words

ε

a

b

c

aa

ab

ac

ba

bb

bc

ca

cb

cc

aaa

aab

aac

aba

abb

abc

⋮

Example:

Language
L = {w ∈ {a, b, c}

∗
∣ ∣w∣b mod 2 = 0 }

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 49 / 63

Order on Words

ε 1

a 2

b

c 3

aa 4

ab

ac 5

ba

bb 6

bc

ca 7

cb

cc 8

aaa 9

aab

aac 10

aba

abb 11

abc

⋮

Example:

Language
L = {w ∈ {a, b, c}

∗
∣ ∣w∣b mod 2 = 0 }

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 49 / 63

Operations on Languages

Let us say we have already described some languages. We can create new
languages from these languages using different operations on languages.

So a description of a complicated language can be decomposed in such
a way that it is described a result of an application of some operations on
some simpler languages.

Examples of important operations on languages:

union

intersection

complement

concatenation

iteration

. . .

Remark: It is assumed the languages involved in these operations use the
same alphabet Σ.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 50 / 63

Set Operations on Languages

Since languages are sets, we can apply any set operations to them:

Union – L1 ∪ L2 is the language consisting of the words belonging to
language L1 or to language L2 (or to both of them).

Intersection – L1 ∩ L2 is the language consisting of the words belonging
to language L1 and also to language L2.

Complement – L1 is the language containing those words from Σ
∗
that

do not belong to L1.

Difference – L1 − L2 is the language containing those words of L1 that do
not belong to L2.

Remark: We assume that L1, L2 ⊆ Σ
∗
for some given alphabet Σ.

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 51 / 63

Set Operations on Languages

Formally:

Union: L1 ∪ L2 = {w ∈ Σ
∗
∣ w ∈ L1 ∨ w ∈ L2}

Intersection: L1 ∩ L2 = {w ∈ Σ
∗
∣ w ∈ L1 ∧ w ∈ L2}

Complement: L1 = {w ∈ Σ
∗
∣ w /∈ L1}

Difference: L1 − L2 = {w ∈ Σ
∗
∣ w ∈ L1 ∧ w /∈ L2}

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 52 / 63

Set Operations on Languages

Example:

Consider languages over alphabet {a, b}.

L1 — the set of all words containing subword baa

L2 — the set of all words with an even number of occurrences of
symbol b

Then

L1 ∪ L2 — the set of all words containing subword baa or an even
number of occurrences of b

L1 ∩ L2 — the set of all words containing subword baa and an even
number of occurrences of b

L1 — the set of all words that do not contain subword baa

L1 − L2 — the set of all words that contain subword baa but do not
contain an even number of occurrences of b

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 53 / 63

Concatenation of Languages

Definition

Concatenation of languages L1 and L2, where L1, L2 ⊆ Σ
∗
, is the

language L ⊆ Σ
∗
such that for each w ∈ Σ

∗
it holds that

w ∈ L ⟺ (∃u ∈ L1)(∃v ∈ L2)(w = u ⋅ v)

The concatenation of languages L1 and L2 is denoted L1 ⋅ L2.

w

u v

∈ L1 ∈ L2

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 54 / 63

Concatenation of Languages

Example:
L1 = {abb, ba}

L2 = {a, ab, bbb}

The language L1 ⋅ L2 contains the following words:

abba abbab abbbbb baa baab babbb

Remark: Note that the concatenation of languages is associative, i.e., for
arbitrary languages L1, L2, L3 it holds that:

L1 ⋅ (L2 ⋅ L3) = (L1 ⋅ L2) ⋅ L3

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 55 / 63

Power of a Language

Notation L
k
, where L ⊆ Σ

∗
and k ∈ N, denotes the concatenation of the

form

L ⋅ L ⋅ ⋯ ⋅ L

where the language L occurs k times, i.e.,

L
0

= {ε}

L
1

= L

L
2

= L ⋅ L

L
3

= L ⋅ L ⋅ L

L
4

= L ⋅ L ⋅ L ⋅ L

L
5

= L ⋅ L ⋅ L ⋅ L ⋅ L

. . .

Example: For L = {aa, b}, the language L
3
contains the following words:

aaaaaa aaaab aabaa aabb baaaa baab bbaa bbb

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 56 / 63

Power of a Language

Example: A word in language L
5
is created by concatenating five words

from language L:

w

w1 w2 w3 w4 w5

∈ L∈ L∈ L∈ L∈ L

Formally, the k-th power of a language L, denoted L
k
can be defined using

the following inductive definition:

L
0
= {ε}, L

k+1
= L

k
⋅ L for k ∈ N

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 57 / 63

Iteration of a Language

The iteration of a language L, denoted L
∗
, is the language consisting of

words created by concatenation of some arbitrary number of words from
language L.

I.e., a word w belongs to L
∗
iff there exists a sequence w1,w2, . . . ,wn of

words from language L such that

w = w1w2⋯wn .

Example: L = {aa, b}

L
∗
= {ε, aa, b, aaaa, aab, baa, bb, aaaaaa, aaaab, aabaa, aabb, . . .}

Remark: The number of concatenated words can be 0, which means that
ε ∈ L

∗
always holds (it does not matter if ε ∈ L or not).

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 58 / 63

Iteration of a Language

Formally, the language L
∗
can be defined as the union of all powers of

language L. I.e., a word w belongs to the language L
∗
iff if there exists

k ∈ N such that w ∈ L
k
:

Definition

The iteration of a language L is the language

L
∗
= ⋃

k≥0

L
k

Remark:
⋃
k≥0

L
k
= L

0
∪ L

1
∪ L

2
∪ L

3
∪⋯

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 59 / 63

Iteration of a Language

Notation L
+
denotes the language consinsting of those words that can be

created as a concatenation of a non-zero number of words from
language L.

So it holds that
L
+
= ⋃

k≥1

L
k

i.e.
L
+
= L

1
∪ L

2
∪ L

3
∪⋯

Formally, the language L
+
can be defined also as follows:

L
+
= L ⋅ L

∗

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 60 / 63

Reverse

The reverse of a language L is the language consisting of reverses of all
words of L.

Reverse of a language L is denoted L
R
.

L
R
= {w

R
∣ w ∈ L}

Example: L = {ab, baaba, aaab}

L
R
= {ba, abaab, baaa}

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 61 / 63

Some Properties of Operations on Languages

L1 ∪ (L2 ∪ L3) = (L1 ∪ L2) ∪ L3
L1 ∪ L2 = L2 ∪ L1
L1 ∪ L1 = L1
L1 ∪∅ = L1

L1 ∩ (L2 ∩ L3) = (L1 ∩ L2) ∩ L3
L1 ∩ L2 = L2 ∩ L1
L1 ∩ L1 = L1
L1 ∩∅ = ∅

L1 ⋅ (L2 ⋅ L3) = (L1 ⋅ L2) ⋅ L3
L1 ⋅ {ε} = L1
{ε} ⋅ L1 = L1
L1 ⋅ ∅ = ∅

∅ ⋅ L1 = ∅

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 62 / 63

Some Properties of Operations on Languages

L1 ⋅ (L2 ∪ L3) = (L1 ⋅ L2) ∪ (L1 ⋅ L3)

(L1 ∪ L2) ⋅ L3 = (L1 ⋅ L3) ∪ (L2 ⋅ L3)

(L
∗
1)

∗
= L

∗
1

∅
∗

= {ε}

L
∗
1 = {ε} ∪ (L1 ⋅ L

∗
1)

L
∗
1 = {ε} ∪ (L

∗
1 ⋅ L1)

(L1 ∪ L2)
∗

= L
∗
1 ⋅ (L2 ⋅ L

∗
1)

∗

(L1 ⋅ L2)
R

= L
R
2 ⋅ L

R
1

Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science February 19, 2024 63 / 63

	Formal languages

