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Tutorial 4

Exercise 1: Consider the following context-free grammar:

S −→ aBb | AB

A −→ bAb | a

B −→ ε | aABb

a) Give (some) derivation of word babaab in this grammar.

b) Draw the corrensponding derivation tree.

c) Write the left and right derivations corresponding to the derivation tree drawn in the
previous point.

Solution:

Left derivation: S ⇒ AB ⇒ bAbB ⇒ babB ⇒ babaABb ⇒ babaaBb ⇒ babaab

Right derivation: S ⇒ AB ⇒ AaABb ⇒ AaAb ⇒ Aaab ⇒ bAbaab ⇒ babaab

Exercise 2: Construct context-free grammars for all following languages:

• L1 = {w ∈ {a, b, c}∗ | w contains subword babb}

Solution:

S −→ AbabbA

A −→ ε | aA | bA | cA

• L2 = {0n1m | 1 ≤ n < m}

Solution:

S −→ AB

A −→ 0A1 | 01

B −→ 1B | 1

• L3 = {anbman+2 | m,n ∈ N}

Solution:

S −→ Aaa

A −→ aAa | B

B −→ bB | ε

• L4 = {w ∈ {0, 1}∗ | w = wR}

Solution:

S −→ 0S0 | 1S1 | 0 | 1 | ε
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• L5 = {w ∈ {0, 1}∗ | |w|0 > 1, |w|1 ≤ 2}

Solution:

S −→ 00ABABA | 0AB0ABA | 0ABAB0A | AB00ABA | AB0AB0A | ABAB00A

A −→ ε | 0A

B −→ ε | 1

• L6 = {0nwwR1n | w ∈ {0, 1}∗, n ∈ N}

Solution:

S −→ 0S1 | A

A −→ 0A0 | 1A1 | ε

• L7 = {w ∈ {a, b}∗ | in w, every a is directly followed by b, or w = bnam,

where 0 ≤ m ≤ n}

Solution:

S −→ A | BC

A −→ ε | abA | bA

B −→ ε | bB

C −→ bCa | ε

• L8 = {uvRv | u, v ∈ {0, 1}∗, |u|0 mod 4 = 2, u ends with suffix 101 and v contains subword 10}

Solution:

S −→ A101C

A −→ B0B0B0B0BA | B0B

B −→ ε | B1

C −→ 0C0 | 1C1 | 01D10

D −→ 0D0 | 1D1 | ε

• L9 = {w ∈ {a, b}∗ | w = wR, |w| mod 4 = 0}

Solution:

S −→ aaSaa | abSba | baSab | bbSbb | ε

• L10 = {w ∈ {a, b}∗ | w = wR, |w| mod 3 = 0}

Solution:

S −→ aTa|bTb|ε

T −→ aUa|bUb|a|b

U −→ aSa|bSb

• L11 = {w ∈ {a, b, c}∗ | every sequence of a’s is directly followed by a sequence of b’s,

which is twice as long}

Solution:

S −→ bS | cS | AB | ε

A −→ aAbb | abb

B −→ cS | AB | ε
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• L12 = {w ∈ {0, 1}∗ | |w|0 = |w|1}

Solution:

S −→ ε | 0S1 | 1S0 | SS

Exercise 3: Decide for the following pairs of grammars if both grammars generate the same
language. Justify your answers.

a) S −→ aaSbb | ab | aabb S −→ aSb | ab

Solution: Yes

The second grammar obviously generates language {aibi : i ≥ 1}. We must verify that
the first grammar generates the same language. This grammar also generates a language
constisting of words where a sequence of as is followed with a sequence of bs. The rule
S −→ aaSbb allows to generate all sentential forms of the form ajSbj, where j ≥ 0 is even.
So if i in a word generated by the second grammar is odd, we finish the corresponding
derivation by using rule S −→ ab. When we want to generate a word aibi for even i ≥ 2,
we apply the rule S −→ aabb in the end, by which we obtain the word aj+2bj+2 with
i = j+2. So we have shown that both grammar generate the same set of words over {a, b}.

b) S −→ aaSbb | ab | ε S −→ aSb | ab

Solution: No, since the second one does not generate ε.

c) S −→ aaSb | ab | ε S −→ aSb | aab | ε

Solution: No, since the first one does not generate aaaabb.

Exercise 4: Construct a context-free grammar for the language L over the alphabet Σ =

{(, ), [, ]} consisting of all “correctly parenthesized” expressions. As correctly parenthesized
expressions we consider those sequences of symbols where each left parenthesis has a corre-
sponding right parenthesis of the same type, and where parenthesis do not “cross” (i.e., co-
responding pairs of parenthesis are composed correctly).

Solution:

S −→ ε | SS | (S) | [S]

Exercise 5: Is the following grammar unambiguous?

E −→ E+ E | F

F −→ (E) | F× F | a
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Exercise 6: Propose a syntax for writing simple arithmetic expressions as words over the
alphabet

Σ = {A, B, . . . , Z, a, b, . . . , z, 0, 1, . . . , 9, ., +, -, *, /, (, )} .

and describe the proposed syntax by a context-free grammar.

Exercise 7: Construct a context-free grammar generating the set of all well-formed for-
mulas of the propositional logic. Consider the set At = {x0, x1, x2, . . .} as the set of atomic
propositions, where individual variables can be written as x0, x1, x2, . . .

a) Find out if the grammar you have constructed is unambiguous.

b) If the grammar is ambiguous then modify it to be unambiguous.

c) Modify your grammar in such a way, which ensures that a structure of a derivation tree for
an arbitrary derivation in the grammar reflects the “real” priority of logical connectives,
i.e.. ¬, ∧, ∨, →, ↔ (from the highest to the lowest).

Solution:

S −→ A | A ↔ S

A −→ B | B → A

B −→ C | C∨ B

C −→ D | D∧ C

D −→ ¬D | (S) | xE | ⊥ | ⊤

E −→ F | EF

F −→ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

This grammar in unambiguous and a structure of a derivation tree corresponds to the priority
of logical connectives.


