
Introduction to Theoretical Computer Science (2024/2025) – tutorial 2 1

Tutorial 2

Exercise 1: Write regular expressions for the following languages:

a) The language {ab, ba, abb, bab, abbb, babb}

Solution: ab+ ba+ abb+ bab+ abbb+ babb or (ab+ ba)(ε + b+ bb)

b) The language over alphabet {a, b, c} containing exactly those words that contain subword abb.

Solution: (a + b+ c)∗abb(a+ b+ c)∗

c) The language over alphabet {a, b, c} containing exactly those words that start with pre-
fix bca or end with suffix ccab.

Solution: bca(a + b+ c)∗ + (a + b+ c)∗ccab

d) The language {w ∈ {0, 1}∗ | |w|0 mod 2 = 0}.

Solution: 1∗(01∗01∗)∗

e) The language {w ∈ {0, 1}∗ | |w|0 mod 3 = 1}.

Solution: 1∗01∗(01∗01∗01∗)∗

f) The language {w ∈ {0, 1}∗ | w contains subwords 010 and 111}

Solution: (0+ 1)∗010(0 + 1)∗111(0 + 1)∗ + (0+ 1)∗111(0 + 1)∗010(0 + 1)∗

g) The language {w ∈ {a, b}∗ | w contains subword bab or |w|b ≤ 3}

Solution: (a + b)∗bab(a + b)∗ + a∗(ba∗ + ε)(ba∗ + ε)(ba∗ + ε)

h) The language {w ∈ {a, b}∗ | w contains subword bab and |w|b ≤ 3}

Solution: a∗ba∗baba∗ + a∗baba∗ba∗ + a∗baba∗ or (ε + a∗b)a∗baba∗ + a∗baba∗ba∗

i) The language of all words over {a, b, c} that contain no two consecutive a’s.

Solution:
(

(b+ c+ a(b + c)
)

∗

(ε + a)

Exercise 2: Let us have two languages L1 and L2 described by the regular expressions

L1 = L(0∗1∗0∗1∗0∗), L2 = L((01 + 10)∗).

a) What are the shortest and the longest words in the intersection L1 ∩ L2?

Solution: The shortest words is ε and the longest 01100110, since the language L2 does
not contain any word where the same symbol would be repeated more than twice.

b) Why none of the languages L1 and L2 is a subset of the other?

Solution: Because 1 ∈ L1 − L2 and 010101 ∈ L2 − L1.

c) What is the shortest word that does not belong to the union L1 ∪ L2? Is it unambiguous?

Solution: 10101, it is unambiguous.

2 Introduction to Theoretical Computer Science (2024/2025) – tutorial 2

Exercise 3: Let us say that we would like to devise a syntax for representation of simple
arithmetic expressions by words over alphabet

Σ = {A, B, . . . , Z, a, b, . . . , z, 0, 1, . . . , 9, ., +, -, *, /, (,)} .

a) Propose how identifiers will look like, and deribe them using a regular expression.

b) Propose how number constants will look like, and describe them using a regular expres-
sion.

Remark: Allow the number constants that would represent integers, e.g., 129 or 0, and
also floating-point number constants, e.g., 3.14, -1e10, or 4.2E-23. Consider also the
possibility of representing number constants in other number systems except the decimal
number system (e.g., hexadecimal, octal, binary).

Exercise 4: For each of the following languages, construct a DFA accepting the given
language. Represent the constructed automata by graphs and tables.

a) L1 = {w ∈ {a, b}∗ | w = a}

Solution:

1 2

3

a

a, bb

a, b

a b

→ 1 2 3
← 2 3 3

3 3 3

b) L2 = {b, ab}

Solution:

1

2

3

4

a

b

b
a, b

a

a, b

a b

→ 1 2 3
2 4 3

← 3 4 4
4 4 4

c) L3 = {w ∈ {a, b}∗ | ∃n ∈ N : w = an}

Solution:

1 2
b

a a, b a b

↔ 1 1 2
2 2 2

Introduction to Theoretical Computer Science (2024/2025) – tutorial 2 3

d) L4 = {w ∈ {a, b, c}∗ | |w|a ≥ 1}

Solution:

1 2
a

b, c a, b, c a b c

→ 1 2 1 1
← 2 2 2 2

e) L5 = {w ∈ {0, 1}∗ | w contains subword 011}

Solution:

1 2 3 4
0 1

1 0 0, 1

1

0

0 1

→ 1 2 1
2 2 3
3 2 4

← 4 4 4

f) L6 = {w ∈ {a, b, c}∗ | |w| > 0 ∧ |w|a = 0}

Solution:

1 2

3

b, c

aa

b, c

a, b, c

a b c

→ 1 3 2 2
← 2 3 2 2

3 3 3 3

g) L7 = {w ∈ {a, b}∗ | |w| ≥ 2 and the last two symbols of w are not the same}

Solution:

1

2

3

4

5

6

7

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a b

→ 1 2 3
2 4 5
3 6 7
4 4 5

← 5 6 7
← 6 4 5

7 6 7

Alternative solution:

4 Introduction to Theoretical Computer Science (2024/2025) – tutorial 2

1

2

3

4 5

a

b

b

a

a

b

a

b

a

b

a b

→ 1 2 3
2 2 4
3 5 3

← 4 5 3
← 5 2 4

h) L8 = {w ∈ {a, b}∗ | |w|a mod 3 = 1}

Solution:

0

12

b

bb

a

a

a

a b

→ 0 1 0
← 1 2 1

2 0 2

Exercise 5: Construct DFA accepting words beginning with abaab, ending with abaab,
and containing abaab, i.e., construct deterministic finite automata accepting the following
three languages:

a) L1 = {abaabw | w ∈ {a, b}∗}

Solution:

1 2 3 4 5 6

7

a b a a b

a, b

b
a b b

a

a, b
b) L2 = {wabaab | w ∈ {a, b}∗}

Solution:

1 2 3 4 5 6
a b a a b

b a

b b

a
a

b

Introduction to Theoretical Computer Science (2024/2025) – tutorial 2 5

c) L3 = {w1abaabw2 | w1,w2 ∈ {a, b}∗}

Solution:

1 2 3 4 5 6
a b a a b

b a

b b

a a, b

Exercise 6: Describe how to find out for a given DFA A = (Q,Σ, δ, q0, F) if:

a) L(A) = ∅

b) L(A) = Σ∗

Solution: It is sufficient to compute the set of states that are reachable from q0. We can use
for example breadth-first search for this.

It holds that L(A) = ∅ iff none of reachable states is accepting, and L(A) = Σ∗ holds iff
every reachable state is accepting.

Exercise 7: Construct DFA A1,A2 such that:

L(A1) = {w ∈ {a, b}∗ | |w|a mod 2 = 0}

L(A2) = {w ∈ {a, b}∗ | every occurence of symbol b in w is followed with symbol a}

Solution: A1:

1 2
a

a

b b

A2:

1 2 3

a

b

a

b

a, b

Using automata A1,A2, construct DFA accepting the following languages:

a) L1 = {w ∈ {a, b}∗ | |w|a mod 2 = 0 and every occurence of symbol b in w is followed with
symbol a}

Solution:

1, 1 1, 2 1, 3

2, 1 2, 2 2, 3

aa

b

b

a

a

b

b

aa

b

b

6 Introduction to Theoretical Computer Science (2024/2025) – tutorial 2

b) L2 = {w ∈ {a, b}∗ | |w|a mod 2 = 0 or every occurrence of symbol b in w is followed with
symbol a}

Solution: The same automaton as in (a) but with the set of accepting states

F = {(1, 1), (1, 2), (1, 3), (2, 1)}

c) L3 = {w ∈ {a, b}∗ | some occurrence of symbol b in w is not followed with symbol a}

Solution:

1 2 3

a

b

a

b

a, b

d) L4 = {w ∈ {a, b}∗ | |w|a mod 2 = 0 and some occurrence of symbol b in w is not followed
with symbol a}

Solution: The same automaton as in (a) but with the set of accepting states

F = {(1, 2), (1, 3)}

e) L5 = {w ∈ {a, b}∗ | if |w|a mod 2 = 0 then every occurrence of symbol b in w is followed
with symbol a}

Solution: The same automaton as in (a) but with the set of accepting states

F = {(1, 1), (2, 1), (2, 2), (2, 3)}

f) L6 = {w ∈ {a, b}∗ | |w|a mod 2 = 0 iff every occurrence of symbol b in w is followed with
symbol a}

Solution: The same automaton as in (a) but with the set of accepting states

F = {(1, 1), (2, 2), (2, 3)}

Exercise 8: For each of the following languages, construct a DFA accepting the given
language. Represent the constructed automata by graphs and tables.

a) L1 = {w ∈ {a, b}∗ | |w| ≥ 4 and the second, third, and fourth symbol of w are the same}

Solution:

1 2

3

4

5

6

7

8
a, b

a

b

a

b

b

a

b

a

a, b

a

b

a, b

Introduction to Theoretical Computer Science (2024/2025) – tutorial 2 7

a b

→ 1 2 2
2 3 4
3 5 6
4 6 7
5 8 6
6 6 6
7 6 8☛

✡
✟
✠8 8 8

b) L2 = {w ∈ {a, b}∗ | |w| ≥ 4 and the third symbol and the last symbol of w are the same}

Solution:

1 2 3

4

5

6

7

a, b a, b

a

b

a

b

b a

b

a

a b

a b

→ 1 2 2
2 3 3
3 4 5
4 6 4
5 5 7☛

✡
✟
✠6 6 4☛

✡
✟
✠7 5 7

c) L3 = {w ∈ {a, b, c, d}∗ | w does not start with a, the second symbol is not b,
the third symbol is not c, and the fourth symbol is not d }

Remark: This language includes also those words w where |w| < 4.

Solution:

1 2 3 4 5

6

b, c, d a, c, d a, b, d a, b, c

a b c d

a, b, c, d

a, b, c, d

d) L4 = {w ∈ {a, b, c, d}∗ | w does not start with a or the second symbol is not b
or the third symbol is not c or the fourth symbol is not d }

Solution:

8 Introduction to Theoretical Computer Science (2024/2025) – tutorial 2

1 2 3 4 5

6

a b c d

b, c, d a, c, d a, b, d a, b, c

a, b, c, d

a, b, c, d

Exercise 9: Desribe how to find out for given DFA A1 = (Q1, Σ, δ1, q1, F1) and A2 =

(Q2, Σ, δ2, q2, F2) if L(A1) = L(A2).

Solution: One of the possibilities is to use the fact that for arbitrary languages L1, L2 we
have L1 = L2 iff

(L1 ∩ L2) ∪ (L1 ∩ L2) = ∅ .

So it is sufficient to construct a DFA A such that L(A) = (L1∩L2)∪(L1∩L2), where L1 = L(A1)

and L2 = L(A2), and then to determine whether L(A) = ∅, for which we can use the approach
from Exercise 6.

Another possible approach (which is basically a variant of the previous one) can be based
on a construction similar as in the case of constructions for the intersection of the union
(i.e., to construct an automaton with set of states Q1 × Q2that simulates computations of
automata A1 and A2 in parallel). For this automaton, it is sufficient to find out wheher there
is some reachable state from the set

(F1 × (Q2 − F2)) ∪ ((Q1 − F1)× F2),

i.e., a state corresponding to a situation where one of automata A1,A2 accepts the given
word, and the other does not. If there is such reachable state, then L(A1) 6= L(A2), otherwise
L(A1) = L(A2).

Remark: There are other possible approaches how this problem can be solved. The most
efficient algorithms are based on a construction of a decomposition of the set of states into
classes of equivalent states. We will not discuss these approaches in this introductory course.

