
Other Complexity Classes

Z. Sawa (TU Ostrava) Theoretical Computer Science January 17, 2022 1 / 18



Other Complexity Classes

For an arbitrary function f : N → R+ we can define the following classes:

DTIME(f (n)) — the class of all decision problems that can be
solved by a deterministic algorithm with time complexity in O(f (n))

NTIME(f (n)) — the class of all decision problems that can be
solved by a nondeterministic algorithm with time complexity
in O(f (n))

DSPACE(f (n)) — the class of all decision problems that can be
solved by a deterministic algorithm with space complexity
in O(f (n))

NSPACE(f (n)) — the class of all decision problems that can be
solved by a nondeterministic algorithm with space complexity
in O(f (n))

Remark: These classes depend on a used particular model of computation
(one-tape Turing machine, multitape Turing machine, RAM, . . . )

Z. Sawa (TU Ostrava) Theoretical Computer Science January 17, 2022 2 / 18



Classes PTIME and NPTIME

Classes PTIME and NPTIME, introduced before, can be defined as follows:

PTIME =
⋃

k∈N

DTIME(nk)

NPTIME =
⋃

k∈N

NTIME(nk)

PTIME — the class of all decision problems that can be solved by
a deterministic algorithm with a polynomial time complexity

NPTIME — the class of all decision problems that can solved by
a nondeterministic algorithm with a polynomial time complexity

Remark: Classes PTIME and NPTIME are (more or less) independent of
a particular model of computation — different models are able to simulate
each other with at most polynomial increase in a running time.

Z. Sawa (TU Ostrava) Theoretical Computer Science January 17, 2022 3 / 18



Classes PSPACE and NPSPACE

Similarly, classes PSPACE and NPSPACE can be defined for a space
complexity:

PSPACE =
⋃

k∈N

DSPACE(nk)

NPSPACE =
⋃

k∈N

NSPACE(nk)

PSPACE — the class of all decision problems that can be solved by
a deterministic algorithm with a polynomial space complexity

NPSPACE — the class of all decision problems that can be solved by
a nondeterministic algorithm with a polynomial space complexity

Z. Sawa (TU Ostrava) Theoretical Computer Science January 17, 2022 4 / 18



Classes PSPACE and NPSPACE

Simple observation:

An arbitrary nondeterministic algorithm with a time complexity
in O(f (n)) can be simulated by a deterministic algorithm with space
complexity O(f (n)) — it can systematically try all possible
computations of the given nondeterministic algorithm.

It follows from this observation that NPTIME ⊆ PSPACE.

Z. Sawa (TU Ostrava) Theoretical Computer Science January 17, 2022 5 / 18



Classes PSPACE and NPSPACE

Theorem (Savitch, 1970)

It holds for each function f ∈ Ω(log(n)) that

NSPACE(f (n)) ⊆ DSPACE((f (n))2).

Corollary: PSPACE = NPSPACE

Z. Sawa (TU Ostrava) Theoretical Computer Science January 17, 2022 6 / 18



Classes EXPTIME and NEXPTIME

Similarly as the classes PTIME and NPTIME, the classes EXPTIME
and NEXPTIME can be introduced:

EXPTIME =
⋃

k∈N

DTIME(2n
k

)

NEXPTIME =
⋃

k∈N

NTIME(2n
k

)

EXPTIME — the class of all decision problems that can be solved by
a deterministic algorithm with an exponential time complexity

NEXPTIME — the class of all decision problems that can be solved
by a nondeterministic algorithm with an exponential time complexity

Z. Sawa (TU Ostrava) Theoretical Computer Science January 17, 2022 7 / 18



Relations between Classes

Simple observation:

An arbitrary deterministic algorithm with a space complexity
in O(f (n)) has a time complexity at most O(c f (n)) where c is
a constant — no configuration can repeat during a computation and
the number of possible configurations is at most O(ck).

It follows from this observation that PSPACE ⊆ EXPTIME.

Z. Sawa (TU Ostrava) Theoretical Computer Science January 17, 2022 8 / 18



PSPACE-Complete Problems

A problem P is PSPACE-hard if for every problem P ′ in PSPACE
thare exists a polynomial time reduction from P ′ to P .

A problem P is PSPACE-complete if it is PSPACE-hard and also
belongs to PSPACE.

Z. Sawa (TU Ostrava) Theoretical Computer Science January 17, 2022 9 / 18



PSPACE-Complete Problems

A typical example of a PSPACE-complete problem is the problem of
quantified boolean formular — QBF:

QBF

Input: A quantified boolean formula of the form

∃x1∀x2∃x3∀x4 · · · ∃xn−1∀xn : ϕ,

where ϕ is a (standard) boolean formuala containing
variables x1, x2, . . . , xn.

Question: Is the given formula true?

Z. Sawa (TU Ostrava) Theoretical Computer Science January 17, 2022 10 / 18



PSPACE-Complete Problems

EqNFA

Input: Nondeterministic finite automata A1 and A2.

Question: Is L(A1) = L(A2) ?

Universality of NFA

Input: A nondeterministic finite automaton A.

Question: Is L(A) = Σ∗ ?

Z. Sawa (TU Ostrava) Theoretical Computer Science January 17, 2022 11 / 18



PSPACE-Complete Problems

EqRE

Input: Regular expressions α1 and α2.

Question: Is L(α1) = L(α2) ?

Universality of RE

Input: A regular expression α.

Question: Is L(α) = Σ∗ ?

Z. Sawa (TU Ostrava) Theoretical Computer Science January 17, 2022 12 / 18



PSPACE-Complete Problems

Consider the following game played by two players on a directed graph G :

Players alternate in moving one pebble on the nodes of the graph G .

During moves they mark nodes that were already visited with the
pebble.

A play starts in a specified node v0.

Let us say that the pebble is currently on a node v . The player whose
turn it is chooses a node v ′ such that there is an edge from v to v ′

and such that v ′ has not been visited yet.

A player that cannot move the pebble loses and his/her opponent
wins.

Generalized Geografy

Input: A directed graph G with a specified initial node v0.

Question: Does the player that plays first a winning strategy in the
game on the graph G if the play starts in the node v0 ?

Z. Sawa (TU Ostrava) Theoretical Computer Science January 17, 2022 13 / 18



Class EXPSPACE

The class EXPSPACE consists of those decision problems that can be
solved in exponential space:

EXPSPACE =
⋃

k∈N

DSPACE(2n
k

)

The notions EXPSPACE-hard problem and EXPSPACE-complete problem
are defined in a similar manner as the notions PSPACE-hard
and PSPACE-complete problem.

Z. Sawa (TU Ostrava) Theoretical Computer Science January 17, 2022 14 / 18



EXPSPACE-Complete Problem

Regular expressions with squaring are defined in a similar manner as
standard regular expressions but in addition to operators +, ·, and ∗ they
can contain a unary operator 2 with the following meaning:

α2 is a shorthand for α · α.

The following two problems are EXPSPACE-complete:

Input: Regular expressions with squaring α1 and α2.

Question: Is L(α1) = L(α2) ?

Input: A regular expression with squaring α.

Question: Is L(α) = Σ∗ ?

Z. Sawa (TU Ostrava) Theoretical Computer Science January 17, 2022 15 / 18



Complexity Classes

For definition of LOGSPACE class we specify more exacly what we
consider as a space complexity of an algorithm.

For example, let us consider a Turing machine with three tapes:

An input tape on which the input is written at the beginning.

A working tape which is empty at the start of the computation. It is
possible to read from this tape and to write on it.

An output tape which is also empty at the start of the computation.
It is only possible to write on it.

The amount of used space is then defined as the number of cells used on
the working tape.

Z. Sawa (TU Ostrava) Theoretical Computer Science January 17, 2022 16 / 18



Complexity Classes

Other examples of complexity classes:

2-EXPTIME – the set of all problems for which there exists an algorithm

with time complexity 22
O(nk )

where k is a constant

2-EXPSPACE – the set of all problems for which there exists an algorithm

with space complexity 22
O(nk )

where k is a constant

ELEMENTARY – the set of all problems for which there exists an
algorithm with time (or space) complexity

22
2·
·

·

22
O(nk )

where k is a constant and the number of exponents is
bounded by a constant.

Z. Sawa (TU Ostrava) Theoretical Computer Science January 17, 2022 17 / 18



Presburger Arithmetic

An example of a problem that is decidable but only with very high
computational complexity:

Problem

Input: A closed formula of the first order predicate logic where the
only predicate symbols are = and <, the only function
symbol is +, and the only constant symbols are 0 and 1.

Question: Is the given formula true in the domain of natural numbers
(using the natural interpretation of all function and predicate
symbols)?

For this problem, a (deterministic) algorithm is known with time

complexity 22
2O(n)

, and it is also known that every nondeterministic
algorithm solving this problem must have time complexity at least 22

Ω(n)
.

Z. Sawa (TU Ostrava) Theoretical Computer Science January 17, 2022 18 / 18


	Other Complexity Classes

