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Polynomial Algorithms

An algorithm is polynomial if its time complexity is polynomial, i.e., if it is
in O(nk) where k is a constant.

The notion of “polynomial algorithm” can be viewed as a certain
approximation of what algorithms are generally viewed as “efficient” and
useable in practive for quite long inputs.

Remark: Algorithms that are not polynomial (i.e., that have a greater
time complexity than polynomial, e.g., exponential) are generally not
viewed as efficient.

Such algorithms with nonpolynomial time complexity can be usually used
only for “small” inputs.
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Polynomial Algorithms

However, we must be aware of the following:

An algorithm whose time complexity is for example in Θ(n100) surely
can not be viewed as effiecient from a practical point of view.

It can be shown that for each k it is possible to construct an artificial
example of an algorithmic problem that can be solved using an
algorithm with time complexity in O(nk+1) but there with no
algorithm with time complexity in O(nk).

For “naturally” defined problems that are solved in practice it is not
the case that for there would be some polynomial algorithm with
a big degree of a polynomial and would not be some algorithm with
a small degree of polynomial.

Usually, we have one of two possibilities:

A polynomial algorithm is known and the degree of the polynomial is
quite small, e.g., at most 5.

There is no known algorithm for the given problem.
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Polynomial Algorithms

From the practical point of view, sometimes even an algorithm with
time complexity for example Θ(n2) can be viewed as inefficient for
some purpose — e.g., for extremely bigs inputs or if there are some
very strict timing constraints.

On the other hand, for some purposes even an algorithm with
exponential time complexity can sometimes useful in practice.

There are examples of algorithms that have an an exponential time
complexity in the worst case but for many inputs they actually work
efficiently and they can be used to process quite big inputs.
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Class PTIME

Complexity classes — sets of those algorithmic problems, for which there
exist algorithms with a certain computational complexity.

The class PTIME is the class of those algorithmic decision problems, for
which there exists an algorithm with a polynomial time complexity.
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Class PTIME

Note that the definition of the class PTIME is robust in the sense that
which problems belong to this class does not depend much on what model
of computation we consider.

For all “reasonable” sequential models of computation, this class contains
the same problems.

Remark: As “resonable” sequential models of computation are considered
those that can be simulated by Turing machines in such a way that the
running time increases only polynomially in such simulation.
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“Reasonable” Sequential Models of Computation

Examples of models of computation considered to be “reasonable” from
this point of view:

variants of Turing machines (one-tape, multi-tape, . . . )

RAMs with the use of logarithmic measure

RAMs without operations for multiplication and division with the use
of unit measure

RAMs that have operations for multiplication and division with the
use unit measure if it is ensured for the given RAM that during
a computation each memory cell contains a number whose size is
bounded by some polynomial
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Models of computation that are not “reasonable”

Examples of models of computation that are not “reasonable” from this
point of view:

RAMs with operations form multiplication and division using the unit
measure (without restrictions on the size of numbers, on which
arithmetic operations can be performed in one step) — they can
perform in one step perform arithmetic operations on numbers that
have exponential number of bits

Minsky machines — they are too slow, execution of simple operations
takes too much time; in a simulation of a computation of a Turing
machine, the time grows exponentially with respect to the original
Turing machine
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Nondeterministic Algorithms

So far, we have considered only deterministic algorithms.

We can also consider nondeterministic algorithms performed by
nondeterministic variants of various kinds of machines:

Turing machines

RAMs

. . .

The running time for nondeterministic variants of machines is specified as
the the running time of the longest possible computation of a given
machine for a given input.
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Nondeterministic Algorithms

A nondeterministic algorithm gives the answer Yes for a given input x if
there exists at least one computation of this machine that gives
answer Yes.

YESYESYES

NO

NONO

NO NONONONONO
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Problem SAT

SAT (boolean satisfiability problem)

Input: Boolean formula ϕ.

Question: Is ϕ satisfiable?

Example:
Formula ϕ1 = x1 ∧ (¬x2 ∨ x3) is satisfiable:
e.g., for valuation v where v(x1) = 1, v(x2) = 0, v(x3) = 1, the
formula ϕ1 is true.

Formula ϕ2 = (x1 ∧ ¬x1) ∨ (¬x2 ∧ x3 ∧ x2) is not satisfiable:
it is false for every valuation v .
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Nondeterministic Algorithms

A nondeterministic algorithm solving the SAT problem in polynomial time:

It reads a formula ϕ.

It cycles through all variables x1, x2, . . . , xkoccurring in the formula ϕ.

For each of these variables, it nondeterministically chooses if it
assigns value 0 or value 1 to it.

It evaluates the truth value of formula ϕ for the generated valuation.

It halts with answer Yes if the formula ϕ is true for the give
valuation.

Otherwise, it halts with answer No.
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Nondeterministic Algorithms

A behaviour of a nondeterministic algorithm can be easily simulated by
a deterministic algorithm:

the deterministic algorithm systematically simulates the behaviour of
all individual branches of the nondeterministic computation — it
traverses the tree of all computations in a depth-first manner

in this traversal, it uses a stack where it stores for each configuration
on the currently searched branch information that will allow it to
return to the previous configuration from the current configuration

Using this simple simulation, the running time of the deterministic
algorithm grows exponentially with respect to the original nondeterministic
algorithm.
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Nondeterministic Algorithms

Nondeterministic algorithms can be alternatively viewed as deterministic
algorithms that do not solve a given problem but instead they just allow to
verify, using some provided additional information they would be given to
them, whether the answer for the given input is Yes:

The algorithm expects as an input not just an instance x ∈ In of the
given problem but also an additional information y — a witness that
the answer is Yes.

A deterministic algorithm performs a computation for the pair (x , y)
and returns for it an answer Yes or No.

The following must hold for each instance x ∈ In:

If the correct answer for the instance x is Yes then there exists at least
one witness y such that the algorithm returns answer Yes for the
pair (x , y).

If the correct answer for the instance x is No then for each potential
witness y , the algorithm return answer No for the pair (x , y).
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Nondeterministic Algorithms

In the case of nondeterministic polynomial algorithms, the following holds:

The size of each potential witness is polynomial with respect to the
size of the original instance x .

I.e., there is a polynomial p such that for each instance x and each
potential witness y it holds that |y | ≤ p(|x |).

The time complexity of deterministic algorithm verifying a given
pair (x , y) is polynomial.

Example: For the SAT problem, a witness proving that the answer is Yes

(i.e., that the given formula is satisfiable) a truth valuation, for which the
formula is true.
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Class NPTIME

The class NPTIME is the class of all algorithmic decision problems, for
which there exists a nondeterministic algorithm with a polynomial time
complexity.

Example: It is obvious that the SAT problem belongs to the class
NPTIME.

Does SAT also belong to the class PTIME ?

Remark: The fact that each problem that belongs to PTIME belongs also
to NPTIME, is obvious.
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NP-Complete Problems

There is a big class of algorithmic problems called NP-complete problems
such that:

they can be solved by a nondeterministic algorithm with a polynomial
time complexity (and so also by a deterministic algorithm with an
exponential time complexity)

no polynomial time algorithm is known for any of these problems

on the other hand, for any of these problems it is not proved that
there cannot exist a polynomial time algorithm for the given problem

every NP-complete problem can be polynomially reduced to any other
NP-complete problem

Remark: This is not a definition of NP-complete problems. The precise
definition will be described later.
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Polynomial Reductions between Problems

There is a polynomial reduction of problem P1 to problem P2 if there
exists an algorithm Alg with a polynomial time complexity that reduces
problem P1 to problem P2.
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Polynomial Reductions between Problems

Inputs of problem P1 Inputs of problem P2

Yes
Yes

No

No
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Polynomial Reductions between Problems

Let us say that problem A can be reduced in polynomial time to
problem B , i.e., there is a polynomial algorithm P realizing this reduction.

If problem B is in the class PTIME then problem A is also in the class
PTIME.

A solution of problem A for an input x :

Call P with input x and obtain a returned value P(x).

Call a polynomial time algorithm solving problem B with the
input P(x).
Write the returned value as the answer for A.

That means:

If A is not in PTIME then also B can not be in PTIME.
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Polynomial Reductions between Problems

As an example, a polynomial time reduction from the 3-SAT problem to
the independent set problem (IS) will be described.

Remark: Both 3-SAT and IS are examples of NP-complete problems.
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Problem 3-SAT

3-SAT is a variant of the SAT problem where the possible inputs are
restricted to formulas of a certain special form:

3-SAT

Input: Formula ϕ is a conjunctive normal form where every clause
contains exactly 3 literals.

Question: Is ϕ satisfiable?
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Problem 3-SAT

Recalling some notions:

A literal is a formula of the form x or ¬x where x is an atomic
proposition.

A clause is a disjuction of literals.

Examples: x1 ∨ ¬x2 ¬x5 ∨ x8 ∨ ¬x15 ∨ ¬x23 x6

A formula is in a conjuctive normal form (CNF) if it is a conjuction
of clauses.

Example: (x1 ∨ ¬x2) ∧ (¬x5 ∨ x8 ∨ ¬x15 ∨ ¬x23) ∧ x6

So in the 3-SAT problem we require that a formula ϕ is in a CNF and
moreover that every clause of ϕ contains exactly three literals.

Example:
(x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4)
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Problem 3-SAT

The following formula is satisfiable:

(x1 ∨ ¬x2 ∨ x4) ∧ (¬x1 ∨ x3 ∨ x3) ∧ (¬x1 ∨ ¬x3 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x4)

It is true for example for valuation v where

v(x1) = 0
v(x2) = 1
v(x3) = 0
v(x4) = 1

On the other hand, the following formula is not satisfiable:

(x1 ∨ x1 ∨ x1) ∧ (¬x1 ∨ ¬x1 ∨ ¬x1)
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Independent Set (IS) Problem

Independent set (IS) problem

Input: An undirected graph G , a number k .

Question: Is there an independent set of size k in the graph G?

k = 4

Remark: An independent set in a graph is a subset of nodes of the
graph such that no pair of nodes from this set is connected by an edge.
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Independent Set (IS) Problem

An example of an instance where the answer is Yes:

k = 4

An example of an instance where the answer is No:

k = 5
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A Reduction from 3-SAT to IS

We describe a (polynomial-time) algorithm with the following properties:

Input: An arbitrary instance of 3-SAT, i.e., a formula ϕ in a
conjunctive normal form where every clause contains exactly three
literals.

Output: An instance of IS, i.e., an undirected graph G and a number
k .

Moreover, the following will be ensured for an arbitrary input (i.e., for
an arbitrary formula ϕ in the above mentioned form):

There will be an independent set of size k in graph G iff formula ϕ

will be satisfiable.
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A Reduction from 3-SAT to IS

(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3 ∨ x4) ∧ (x1 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ x2 ∨ x4)
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A Reduction from 3-SAT to IS
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For each occurrence of a literal we add a node to the graph.
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A Reduction from 3-SAT to IS
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We connect with edges the nodes corresponding to occurrences of literals
belonging to the same clause.
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A Reduction from 3-SAT to IS
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For each pair of nodes corresponding to literals xi and ¬xi we add an edge
between them.
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A Reduction from 3-SAT to IS
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k = 4

We put k to be equal to the number of clauses.
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A Reduction from 3-SAT to IS
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k = 4

The constructed graph and number k are the output of the algorithm.
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A Reduction from 3-SAT to IS
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k = 4

v(x1) = 1
v(x2) = 1
v(x3) = 0
v(x4) = 1

If the formula ϕ is satisfiable then there is a valuation v where every
clause contains at least one literal with value 1.
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A Reduction from 3-SAT to IS
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We select one literal that has a value 1 in the valuation v , and we put the
corresponding node into the independent set.
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A Reduction from 3-SAT to IS
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We can easily verify that the selected nodes form an independent set.
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A Reduction from 3-SAT to IS

The selected nodes form an independent set because:

One node has been selected from each triple of nodes corresponding
to one clause.

Nodes denoted xi and ¬xi could not be selected together.
(Exactly of them has the value 1 in the given valuation v .)
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A Reduction from 3-SAT to IS

On the other hand, if there is an independent set of size k in graph G ,
then it surely has the following properties:

At most one node is selected from each triple of nodes corresponding
to one clause.

But because there are k clauses and k nodes are selected, exactly one
node must be selected from each triple.

Nodes denoted xi and ¬xi cannot be selected together.

We can choose a valuation according to the selected nodes, since it follows
from the previous discussion that it must exist.
(Arbitrary values can be assigned to the remaining variables.)

For the given valuation, the formula ϕ has surely the value 1, since in each
clause there is at least one literal with value 1.
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A Reduction from 3-SAT to IS

It is obvious that the running time of the described algorithm polynomial:

Graph G and number k can be constructed for a formula ϕ in time O(n2),
where n is the size of formula ϕ.

We have also seen that there is an independent set of size k in the
constructed graph G iff the formula ϕ is satisfiable.

The described algorithm shows that 3-SAT can be reduced in polynomial
time to IS.
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NP-Complete Problems

Let us consider a set of all decision problems.
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NP-Complete Problems

By an arrow we denote that a problem A can be reduced in polynomial
time to a problem B .

A B
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NP-Complete Problems

For example 3-SAT can be reduced in polynomial time to IS.

3-SAT IS
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NP-Complete Problems

Let us consider now the class NPTIME and a problem P .

P

NPTIME
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NP-Complete Problems

A problem P is NP-hard if every problem from NPTIME can be reduced
in polynomial time to P .

P

NPTIME
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NP-Complete Problems

A problem P is NP-complete if it is NP-hard and it belongs to the class
NPTIME.

P

NPTIME
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NP-Complete Problems

If we have found a polynomial time algorithm for some NP-hard
problem P , then we would have polynomial time algorithms for all
problems P ′ from NPTIME:

At first we would apply an algorithm for the reduction from P ′ to P

on an input of a problem P ′.

Then we would use a polynomial algorithm for P on the constructed
instance of P and returned its result as the answer for the original
instance of P ′.

Is such case, PTIME = NPTIME would hold, since for every problem from
NPTIME there would be a polynomial-time (deterministic) algorithm.
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NP-Complete Problems

On the other hand, if there is at least one problem from NPTIME for
which a polynomial-time algorithm does not exist, then it means that for
none of NP-hard problems there is a polynomial-time algorithm.

It is an open question whether the first or the second possibility holds.
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NP-Complete Problems

It is not difficult to see that:

If a problem A can be reduced in a polynomial time to a problem B and
problem B can be reduced in a polynomial time to a problem C , then
problem A can be reduced in a polynomial time to problem C .

So if we know about some problem P that it is NP-hard and that P can
be reduced in a polynomial time to a problem P ′, then we know that the
problem P ′ is also NP-hard.
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NP-Complete Problems

Theorem (Cook, 1971)

Problem SAT is NP-complete.

It can be shown that SAT can be reduced in a polynomial time to 3-SAT
and we have seen that 3-SAT can be reduced in a polynomial time to IS.

This means that problems 3-SAT and IS are NP-hard.

It is not difficult to show that 3-SAT and IS belong to the class NPTIME.

Problems 3-SAT and IS are NP-complete.
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NP-Complete Problems

By a polynomial reductions from problems that are already known to be
NP-complete, NP-completeness of many other problems can be shown:

IS

3−SAT

3−CG

SUBSET−SUM

ILP

SAT

VC

CLIQUE

HC TSPHK
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Examples of Some NP-Complete Problems

The following previously mentioned problems are NP-complete:

SAT (boolean satisfiability problem)

3-SAT

IS — independent set problem

On the following slides, examples of some other NP-complete problems are described:

CG — graph coloring (remark: it is NP-complete even in the special case where we
have 3 colors)

VC — vertex cover

CLIQUE — clique problem

HC — Hamiltonian cycle

HK — Hamiltonian circuit

TSP — traveling salesman problem

SUBSET-SUM

ILP — integer linear programming
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Graph Coloring

Graph coloring

Input: An undirected graph G , a natural number k .

Question: Is it possible to color nodes of the graph G using k colors in
such a way that there is no pair of nodes where both nodes
are colored with the same color and connected with an edge?

Example: k = 3
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Graph Coloring

Graph coloring

Input: An undirected graph G , a natural number k .

Question: Is it possible to color nodes of the graph G using k colors in
such a way that there is no pair of nodes where both nodes
are colored with the same color and connected with an edge?

Example: k = 3

Answer: Yes
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VC – Vertex Cover

VC – vertex cover

Input: An undirected graph G and a natural number k .

Question: Is there some subset of nodes of G of size k such that every
edge has at least one of its nodes in this subset?

Example: k = 6
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VC – Vertex Cover

VC – vertex cover
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CLIQUE

CLIQUE

Input: An undirected graph G and a natural number k .

Question: Is there some subset of nodes of G of size k such that every
two nodes from this subset are connected by an edge?

Example: k = 4
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CLIQUE

CLIQUE

Input: An undirected graph G and a natural number k .

Question: Is there some subset of nodes of G of size k such that every
two nodes from this subset are connected by an edge?

Example: k = 4

Answer: Yes
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Hamiltonian Cycle

HC – Hamiltonian cycle

Input: A directed graph G .

Question: Is there a Hamiltonian cycle in G (i.e., a directed cycle going
through each node exactly once)?

Example:
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Hamiltonian Cycle

HC – Hamiltonian cycle

Input: A directed graph G .

Question: Is there a Hamiltonian cycle in G (i.e., a directed cycle going
through each node exactly once)?

Example:

Answer: No
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Hamiltonian Cycle

HC – Hamiltonian cycle

Input: A directed graph G .

Question: Is there a Hamiltonian cycle in G (i.e., a directed cycle going
through each node exactly once)?

Example:

Answer: Yes

Z. Sawa (TU Ostrava) Theoretical Computer Science January 12, 2022 42 / 53



Hamiltonian Circuit

HK – Hamiltonian circuit

Input: An undirected graph G .

Question: Is there a Hamiltonian circuit in G (i.e., an undirected cycle
going through each node exactly once)?

Example:

Answer: No
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Hamiltonian Circuit

HK – Hamiltonian circuit

Input: An undirected graph G .

Question: Is there a Hamiltonian circuit in G (i.e., an undirected cycle
going through each node exactly once)?

Example:

Answer: Yes
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Traveling Salesman Problem

TSP - traveling salesman problem

Input: An undirected graph G with edges labelled with natural
numbers and a number k .

Question: Is there a closed tour going through all nodes of the graph G

such that the sum of labels of edges on this tour is at
most k?

Example: k = 70

8

18 16

20

1

5 1

2

10
3

4

5

13

6
14

4
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Traveling Salesman Problem

TSP - traveling salesman problem

Input: An undirected graph G with edges labelled with natural
numbers and a number k .

Question: Is there a closed tour going through all nodes of the graph G

such that the sum of labels of edges on this tour is at
most k?

Example: k = 70
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Answer: Yes, since there is a tour with the sum 69.
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SUBSET-SUM

Problem SUBSET-SUM

Input: A sequence a1, a2, . . . , an of natural numbers and a natural
number s.

Question: Is there a set I ⊆ {1, 2, . . . , n} such that
∑

i∈I
ai = s ?

In other words, the question is whether it is possible to select a subset
with sum s of a given (multi)set of numbers.

Example: For the input consisting of numbers 3, 5, 2, 3, 7 and number
s = 15 the answer is Yes, since 3 + 5 + 7 = 15.

For the input consisting of numbers 3, 5, 2, 3, 7 and number s = 16 the
answer is No, since no subset of these numbers has sum 16.
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SUBSET-SUM

Remark:
The order of numbers a1, a2, . . . , an in an input is not important.

Note that this is not exactly the same as if we have formulated the
problem so that the input is a set {a1, a2, . . . , an} and a number s —
numbers cannot occur multiple times in a set but they can in a sequence.
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SUBSET-SUM

Problem SUBSET-SUM is a special case of a knapsack problem:

Knapsack problem

Input: Sequence of pairs of natural numbers
(a1, b1), (a2, b2), . . . , (an, bn) and two natural numbers s
and t.

Question: Is there a set I ⊆ {1, 2, . . . , n} such that
∑

i∈I
ai ≤ s and

∑

i∈I
bi ≥ t ?
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SUBSET-SUM

Informally, the knapsack problem can be formulated as follows:

We have n objects, where the i-th object weights ai grams and its price
is bi dollars.

The question is whether there is a subset of these objects with total
weight at most s grams (s is the capacity of the knapsack) and with total
price at least t dollars.

Remark:
Here we have formulated this problem as a decision problem.

This problem is usually formulated as an optimization problem where the
aim is to find such a set I ⊆ {1, 2, . . . , n}, where the value

∑

i∈I
bi is

maximal and where the condition
∑

i∈I
ai ≤ s is satisfied, i.e., where the

capacity of the knapsack is not exceeded.
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SUBSET-SUM

That SUBSET-SUM is a special case of the Knapsack problem can be
seen from the following simple construction:

Let us say that a1, a2, . . . , an, s1 is an instance of SUBSET-SUM.
It is obvious that for the instance of the knapsack problem where we have
the sequence (a1, a1), (a2, a2), . . . , (an, an), s = s1 and t = s1, the answer
is the same as for the original instance of SUBSET-SUM.
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SUBSET-SUM

If we want to study the complexity of problems such as SUBSET-SUM or
the knapsack problem, we must clarify what we consider as the size of an
instance.

Probably the most natural it is to define the size of an instance as the
total number of bits needed for its representation.

We must specify how natural numbers in the input are represented – if in
binary (resp. in some other numeral system with a base at least 2 (e.g.,
decimal or hexadecimal) or in unary.

If we consider the total number of bits when numbers are written in
binary as the size of an input, no polynomial time algorithm is known
for SUBSET-SUM.

If we consider the total number of bits when numbers are written in
unary as the size of an input, SUBSET-SUM can be solved by an
algorithm whose time complexity is polynomial.
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ILP – Integer Linear Programming

Problem ILP (integer linear programming)

Input: An integer matrix A and an integer vector b.

Question: Is there an integer vector x such that Ax ≤ b?

An example of an instance of the problem:

A =





3 −2 5
1 0 1
2 1 0



 b =





8
−3
5





So the question is if the following system of inequations has some integer
solution:

3x1 − 2x2 + 5x3 ≤ 8
x1 + x3 ≤ −3
2x1 + x2 ≤ 5
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ILP – Integer Linear Programming

One of solutions of the system

3x1 − 2x2 + 5x3 ≤ 8
x1 + x3 ≤ −3
2x1 + x2 ≤ 5

is for example x1 = −4, x2 = 1, x3 = 1, i.e.,

x =





−4
1
1





because
3 · (−4)− 2 · 1 + 5 · 1 = −9 ≤ 8

−4 + 1 = −3 ≤ −3
2 · (−4) + 1 = −7 ≤ 5

So the answer for this instance is Yes.
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ILP – Integer Linear Programming

Remark: A similar problem where the question for a given system of linear
inequations is whether it has a solution in the set of real numbers, can be
solved in a polynomial time.
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