
Computational Complexity of Algorithms

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 1 / 34



Complexity of Algorithms

Computers work fast but not infinitely fast. Execution of each
instruction takes some (very short) time.

The same problem can be solved by several different algorithms. The
time of a computation (determined mostly by the number of executed
instructions) can be different for different algorithms.

We would like to compare different algorithms and choose a better
one.

We can implement the algorithms and then measure the time of their
computation. By this we find out how long the computation takes on
particular data on which we test the algorithm.

We would like to have a more precise idea how long the computation
takes on all possible input data.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 2 / 34



Complexity of Algorithms

Consider some particular machine executing an algorithm — e.g., RAM,
Turing machine, . . .

We will assume that for the given machine M we have defined the
following two functions for each input x from set of all inputs In:

timeM : In → N — represents the running time of the machine M on
an input x

spaceM : In → N — represents an amount of memory used by the
machine M in a computation on an input x

Remark: We assume that a computation of the machine M halts after
a finite number of steps for each input x .

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 3 / 34



Size of Input

For different input data the program performs a different number of
instructions.

If we want to analyze somehow the number of performed instructions, it is
useful to introduce the notion of the size of an input.

Typically, the size of an input is a number specifying how “big” is the
given instance (a bigger number means a bigger instance).

Remark: We can define the size of an input as we like depending on what
is useful for our analysis.

The size of an input is not strictly determinable but there are usually some
natural choices based on the nature of the problem.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 4 / 34



Size of Input

Examples:

For the problem “Sorting”, where the input is a sequence of numbers
a1, a2, . . . , an and the output the same sequence sorted, we can take
n as the size of the input.

For the problem “Primality” where the input is a natural number x
and where the question is whether x is a prime, we can take the
number of bits of the number x as the size of the input.

(The other possibility is to take directly the value x as the size of the
input.)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 5 / 34



Size of Input

Sometimes it is useful to describe the size of an input with several
numbers.

For example for problems where the input is a graph, we can define the
size of the input as a pair of numbers n,m where:

n – the number of nodes of the graph

m – the number of edges of the graph

Remark: The other possibility is to define the size of the input as one
number n +m.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 6 / 34



Size of Input

In general, we can define the size of an input for an arbitrary problem as
follows:

When the input is a word over some alphabet Σ:
the length of word w

When the input as a sequence of bits (i.e., a word over {0, 1}):
the number of bits in this sequence

When the input is a natural number x :
the number of bits in the binary representation of x

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 7 / 34



Time Complexity

We want to analyze a particular algorithm (its particular implementation).

We want to know how many steps the algorithm performs when it gets an
input of size 0, 1, 2, 3, 4, . . ..

It is obvious that even for inputs of the same size the number of performed
steps can be different.

Let us denote the size of input x ∈ In as size(x).

Now we define a function T : N → N such that for n ∈ N is

T (n) = max { timeM(x) | x ∈ In, size(x) = n }

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 8 / 34



Time Complexity in the Worst Case

20 1 3 5 6 8 94 7 10 1511 12 13 14 n

timeM(x)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 9 / 34



Time Complexity in the Worst Case

20 1 3 5 6 8 94 7 10 1511 12 13 14 n

timeM(x)

T (n)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 9 / 34



Time Complexity in the Worst Case

Such function T (n) (i.e., a function that for the given algorithm and the
given definition of the size of an input assignes to every natural number n
the maximal number of instructions performed by the algorithm if it
obtains an input of size n) is called the time complexity of the

algorithm in the worst case.

T (n) = max { timeM(x) | x ∈ In, size(x) = n }

Analogously, we can define space complexity of the algorithm in the
worst case as a function S(n) where:

S(n) = max { spaceM(x) | x ∈ In, size(x) = n }

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 10 / 34



Time Complexity in an Average Case

Sometimes it make sense to analyze the time complexity in an average

case.

In this case, we do not define T (n) as the maximum but as the arithmetic
mean of the set

{ timeM(x) | x ∈ In, size(x) = n }

It is usually more difficult to determine the time complexity in an
average case than to determine the time complexity in the worst case.

Often, these two function are not very different but sometimes the
difference is significant.

Remark: It usually makes no sense to analyze the time complexity in the
best case.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 11 / 34



Time Complexity in an Average Case

20 1 3 5 6 8 94 7 10 1511 12 13 14 n

timeM(x)

T (n)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 12 / 34



Growth of Functions

A program works on an input of size n.
Let us assume that for an input of size n, the program performs T (n)
operations and that an execution of one operation takes 1µs (10−6 s).

n

T (n) 20 40 60 80 100 200 500 1000

n 20µs 40µs 60µs 80µs 0.1ms 0.2ms 0.5ms 1ms

n log n 86µs 0.213ms 0.354ms 0.506ms 0.664ms 1.528ms 4.48ms 9.96ms

n2 0.4ms 1.6ms 3.6ms 6.4ms 10ms 40ms 0.25 s 1 s

n3 8ms 64ms 0.216 s 0.512 s 1 s 8 s 125 s 16.7min.

n4 0.16 s 2.56 s 12.96 s 42 s 100 s 26.6min. 17.36 hours 11.57 days

2n 1.05 s 12.75 days 36560 years 38.3·109 years 40.1·1015 years 50·1045 years 10.4·10136 years –

n! 77147 years 2.59·1034 years 2.64·1068 years 2.27·10105 years 2.96·10144 years – – –

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 13 / 34



Growth of Functions

Let us consider 3 algorithms with complexities
T1(n) = n,T2(n) = n3,T3(n) = 2n. Our computer can do in a reasonable
time (the time we are willing to wait) 1012 steps.

Complexity Input size

T1(n) = n 1012

T2(n) = n3 104

T3(n) = 2n 40

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 14 / 34



Growth of Functions

Let us consider 3 algorithms with complexities
T1(n) = n,T2(n) = n3,T3(n) = 2n. Our computer can do in a reasonable
time (the time we are willing to wait) 1012 steps.

Complexity Input size

T1(n) = n 1012

T2(n) = n3 104

T3(n) = 2n 40

Now we speed up our computer 1000 times, meaning it can do 1015 steps.

Complexity Input size Growth

T1(n) = n 1015 1000×

T2(n) = n3 105 10×

T3(n) = 2n 50 +10

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 14 / 34



Asymptotic Notation

It is usually quite difficult to express the complexity exactly.

The exact complexity depends on the used model of computation and
on the particular implementation (on details of this implementation).

We are interested in the complexity for big inputs. For small inputs
usually even nonefficient algorithms work fast.

We usually do not need to know the exact number of performed
instructions and we will be satisfied with some estimation of how fast
this number grows when the size of an input grows.

So we use the so called asymptotic notation, which allows us to
ignore unimportant details and to estimate approximately how fast
the given function grows. This simplifies the analysis considerably.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 15 / 34



Asymptotic Notation

Let us take an arbitrary function g : N → N. Expressions O(g), Ω(g),
Θ(g), o(g), and ω(g) denote sets of functions of the type N → N,
where:

O(g) – the set of all functions that grow at most as fast as g

Ω(g) – the set of all functions that grow at least as fast as g

Θ(g) – the set of all functions that grow as fast as g

o(g) – the set of all fuctions that grow slower than function g

ω(g) – the set of all functions that grow faster than function g

Remark: These are not definitions! The definitions will follow on the next
slides.

O – big “O”

Ω – uppercase Greek letter “omega”

Θ – uppercase Greek letter “theta”

o – small “o”

ω – small “omega”
Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 16 / 34



Asymptotic Notation – Symbol O

nn0

cg(n)

f (n)

Definition

Let us consider an arbitrary function g : N → N. For a function f : N → N

we have f ∈ O(g) iff

(∃c > 0)(∃n0 ≥ 0)(∀n ≥ n0) : f (n) ≤ c g(n).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 17 / 34



Asymptotic Notation – Symbol Ω

nn0

cg(n)

f (n)

Definition

Let us consider an arbitrary function g : N → N. For a function f : N → N

we have f ∈ Ω(g) iff

(∃c > 0)(∃n0 ≥ 0)(∀n ≥ n0) : c g(n) ≤ f (n).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 18 / 34



Asymptotic Notation – Symbol Θ

nn0

c2g(n)

f (n)

c1g(n)

Definition

Let us consider an arbitrary function g : N → N. For a function f : N → N

we have f ∈ Θ(g) iff

f ∈ O(g) and f ∈ Ω(g).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 19 / 34



Asymptotic Notation – Symbols o and ω

Definition

Let us consider an arbitrary function g : N → N. For a function f : N → N

we have f ∈ o(g) iff
lim

n→+∞

f (n)

g(n)
= 0

Definition

Let us consider an arbitrary function g : N → N. For a function f : N → N

we have f ∈ ω(g) iff
lim

n→+∞

f (n)

g(n)
= +∞

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 20 / 34



Asymptotic Notation

For simplicity, we consider only functions of type N → N in the previous
definitions.

In fact, these definitions could be extended to all asymptotically

nonnegative functions of type R+ → R, which moreover can be
undefined on some finite subinterval of its domain.

Function f : R+ → R is asymptotically nonnegative if it satisfies:

(∃n0 ≥ 0)(∀n ≥ n0)(f (n) ≥ 0)

Remark: For n < n0, the value of f (n) can be undefined.

R+ = {x ∈ R | x ≥ 0}

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 21 / 34



Asymptotic Notation

There are pairs of functions f , g : N → N such that

f 6∈ O(g) and g 6∈ O(f ),

for example

f (n) = n g(n) =

{

n2 if n mod 2 = 0

⌈log2 n⌉ otherwise
.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 22 / 34



Asymptotic Notation

O(1) denotes the set of all bounded functions, i.e., functions whose
function values can be bounded from above by a constant.

A function f is called:

logarithmic, if f (n) ∈ Θ(log n)
linear, if f (n) ∈ Θ(n)
quadratic, if f (n) ∈ Θ(n2)
cubic, if f (n) ∈ Θ(n3)
polynomial, if f (n) ∈ O(nk) for some k > 0

exponential, if f (n) ∈ O(cn
k
) for some c > 1 and k > 0

Exponential functions are often written in the form 2O(nk) when the
asymptotic notation is used, since then we do not need to consider
different bases.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 23 / 34



Asymptotic Notation

As mentioned before, expressions O(g), Ω(g), Θ(g), o(g), and ω(g)
denote certain sets of functions.

In some texts, these expressions are sometimes used with a slightly
different meaning:

an expression O(g), Ω(g), Θ(g), o(g) or ω(g) does not represent the
corresponding set of functions but some function from this set.

This convention is often used in equations and inequations.

Example: 3n3 + 5n2 − 11n + 2 = 3n3 + O(n2)

When using this convention, we can for example write f = O(g) instead of
f ∈ O(g).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 24 / 34



Complexity of Algorithms

Let us say we would like to analyze the time complexity T (n) of some
algorithm consisting of instructions I1, I2, . . . , Ik :

If m1,m2, . . . ,mk are the number of executions of individual
instructions for some input x (i.e., the instruction Ii is performed
mi times for the input x), then the total number of executed
instructions for input x is

m1 +m2 + · · ·+mk .

Let us consider functions t1, t2, . . . , tk , where ti : N → N, and where
ti (n) is the maximum of numbers of executions of instruction Ii for all
inputs of size n.

Obviously, T ∈ Ω(ti ) for any function ti .

It is also obvious that T ∈ O(t1 + t2 + · · ·+ tk).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 25 / 34



Complexity of Algorithms

Let us recall that if f ∈ O(g) then f + g ∈ O(g).

If there is a function ti such that for all tj , where j 6= i , we have
tj ∈ O(ti ), then

T ∈ O(ti ).

This means that in an analysis of the time complexity T (n), we can
restrict our attention to the number of executions of the instruction
that is performed most frequently (and which is performed at most
ti (n) times for an input of size n), since we have

T ∈ Θ(ti ).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 26 / 34



Complexity of Algorithms

Let us try to analyze the time complexity of the following algorithm:

Algorithm 1: Insertion sort

Insertion-Sort (A, n):
for j := 1 to n − 1 do

x := A[j ]
i := j − 1
while i ≥ 0 and A[i ] > x do

A[i + 1] := A[i ]
i := i − 1

end

A[i + 1] := x

end

I.e., we want to find a function T (n) such that the time complexity of the
algorithm Insertion-Sort in the worst case is in Θ(T (n)).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 27 / 34



Complexity of Algorithms

Let us consider inputs of size n:

The outer cycle for is performed at most n − 1 times.

The inner cycle while is performed at most j times for a given value j .

There are inputs such that the cycle while is performed exactly
j times for each value j from 1 to (n − 1).

So in the worst case, the cycle while is performed exactly m times,
where

m = 1 + 2 + · · ·+ (n − 1) = (1 + (n − 1)) · n−1
2 = 1

2n
2 − 1

2n

This means that the total running time of the algorithm
Insertion-Sort in the worst case is Θ(n2).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 28 / 34



Complexity of Algorithms

In the previous case, we accurately computed the total number of
executions of the cycle while.

This is not always possible in general, or it can be quite complicated. It is
also not necessary, if we only want an asymptotic estimation.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 29 / 34



Complexity of Algorithms

For example, if we were not able to compute the sum of the arithmetic
progression, we could proceed as follows:

The outer cycle for is not performed more than n times and the inner
cycle while is performed at most n times in each iteration of the
outer cycle.

So we have T ∈ O(n2).

For some inputs, the cycle while is performed at least ⌈n/2⌉ times in
the last ⌊n/2⌋ iterations of the cycle for.

So the cycle while is performed at least ⌊n/2⌋ · ⌈n/2⌉ times for some
inputs.

⌊n/2⌋ · ⌈n/2⌉ ≥ (n/2− 1) · (n/2) = 1
4n

2 − 1
2n

This implies T ∈ Ω(n2).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 30 / 34



Complexity of Algorithms

When we use asymptotic estimations of the complexity of algorithms, we
should be aware of some issues:

Asymptotic estimations describe only how the running time grows
with the growing size of input instance.

They do not say anything about exact running time. Some big
constants can be hidden in the asymptotic notation.

An algorithm with better asymptotic complexity than some other
algorithm can be in reality faster only for very big inputs.

We usually analyze the time complexity in the worst case. For some
algorithms, the running time in the worst case can be much higher
than the running time on “typical” instances.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 31 / 34



Complexity of Algorithms

This can be illustrated on algorithms for sorting.

Algorithm Worst-case Average-case

Bubblesort Θ(n2) Θ(n2)

Heapsort Θ(n log n) Θ(n log n)

Quicksort Θ(n2) Θ(n log n)

Quicksort has a worse asymptotic complexity in the worst case than
Heapsort and the same asymptotic complexity in an average case but
it is usually faster in practice.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 32 / 34



Space Complexity of Algorithms

So far we have considered only the time necessary for a computation

Sometimes the size of the memory necessary for the computation is
more critical.

Let us recall that for a machine M, the function spaceM(x) gives a value
repsenting a amount of memory used by the machine M in a computation
on input x .

Definition

For a given machine M, the space complexity of the machine M is the
function S : N → N defined as

S(n) = max{ spaceM(x) | x ∈ In, size(x) = n }

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 33 / 34



Space Complexity of Algorithms

There can be two algorithms for a particular problem such that one of
them has a smaller time complexity and the other a smaller space
complexity.

If the time comlexity of a given algorithm is in O(f (n)) then the
space complexity of the algorithm is also in O(f (n)).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 34 / 34


	Computation complexity of algorithms

