Undecidable Problems

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 1/24



Algorithmically Solvable Problems

Let us assume we have a problem P.

If there is an algorithm solving the problem P then we say that the
problem P is algorithmically solvable.

If P is a decision problem and there is an algorithm solving the problem P
then we say that the problem P is decidable (by an algorithm).

If we want to show that a problem P is algorithmically solvable, it is
sufficient to show some algorithm solving it (and possibly show that the
algorithm really solves the problem P).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021



Algorithmically Unsolvable Problems

A problem that is not algorithmically solvable is algorithmically
unsolvable.

A decision problem that is not decidable is undecidable.

Surprisingly, there are many (exactly defined) problems, for which it was
proved that they are not algorithmically solvable.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021



Halting Problem

Let us consider some general programming language L.

Futhermore, let us assume that programs in language £ run on some
idealized machine where a (potentially) unbounded amount of memory is
available — i.e., the allocation of memory never fails.

Example: The following problem called the Halting problem is
undecidable:

Halting problem

Input: A source code of a £ program P, input data x.

Question: Does the computation of P on the input x halt after some
finite number of steps?

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 4/24



Halting Problem

Let us assume that there is a program that can decide the Halting problem.
So we could construct a subroutine H, declared as
Bool H(String code, String input)

where H(P, x) returns:
@ true if the program P halts on the input x,

o false if the program P does not halt on the input x.

Remark: Let us say that subroutine H(P, x) returns false if P is not
a syntactically correct program.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021



Halting Problem

Using the subroutine H we can construct a program D that performs the
following steps:

@ It reads its input into a variable x of type String.
o It calls the subroutine H(x, x).

o If subroutine H returns true, program D jumps into an infinite loop
loop: goto loop

In case that H returns false, program D halts.

What does the program D do if it gets its own code as an input?

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021



Halting Problem

If D gets its own code as an input, it either halts or not.

e If D halts then H(D, D) returns true and D jumps into the infinite
loop. A contradiction!

e If D does not halt then H(D, D) returns false and D halts.
A contradiction!

In both case we obtain a contradiction and there is no other possibility. So
the assumption that H solves the Halting problem must be wrong.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021



Semidecidable Problems

A problem is semidecidable if there is an algorithm such that:

o If it gets as an input an instance for which the answer is YES, then it
halts after some finite number of steps and writes "YES" on the
output.

@ If it gets as an input an instance for which the answer is NO, then it
either halts and writes "NO" on the input, or does not halt and runs

forever.
It is obvious that for example HP (Halting Problem) is semidecidable.

Some problems are not even semidecidable.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021



Post’'s Theorem

The complement problem for a given decision problem P is a problem
where inputs are the same as for the problem P and the question is
negation of the question from the problem P.

Post’s Theorem

If a problem P and its complement problem are semidecidable then the
problem P is decidable.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021



Reduction between Problems

If we have already proved a (decision) problem to be undecidable, we can
prove undecidability of other problems by reductions.

Problem P; can be reduced to problem P, if there is an algorithm Alg
such that:
@ It can get an arbitrary instance of problem P; as an input.
e For an instance of a problem P; obtained as an input (let us denote it
as w) it produces an instance of a problem P, as an output.
o It holds i.e., the answer for the input w of problem P; is YEs iff the
answer for the input Alg(w) of problem P, is YES.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 10 /24



Reductions between Problems

Inputs of problem P; Inputs of problem P,

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 11/24



Reductions between Problems

Inputs of problem P; Inputs of problem P,

Alg

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 11/24



Reductions between Problems

Let us say there is some reduction Alg from problem P; to problem Ps.

If problem P is decidable then problem Py is also decidable.
Solution of problem P; for an input x:
o Call Alg with x as an input, it returns a value Alg(x).
o Call the algorithm solving problem P, with input Alg(x).
@ Write the returned value to the output as the result.

It is obvious that if P; is undecidable then P> cannot be decidable.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 12 /24



Other Undecidable Problems

By reductions from the Halting problem we can show undecidability of
many other problems dealing with a behaviour of programs:

Is for some input the output of a given program YES?

Does a given program halt for an arbitrary input?

Do two given programs produce the same outputs for the same
inputs?

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 13 /24



Halting Problem

For purposes of proofs, the following version of Halting problem is often
used:

Halting problem

Input: A description of a Turing machine M and a word w.

Question: Does the computation of the machine M on the word w
halt after some finite number of steps?

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 14 /24



Other Undecidable Problems

We have already seen the following example of an undecidable problem:

Input: Context-free grammars G; and G».
Question: Is £(G1) = £(G2)?

respectively

Input: A context-free grammar generating a language over an
alphabet .

Question: Is £(G) = X*?

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 15 /24



An input is a set of types of cards, such as:

abb

a

bab

baba

aba

bbab

aa

ab

aa

Other Undecidable Problems

The question is whether it is possible to construct from the given types of

cards a non-empty finite sequence such that the concatenations of the

words in the upper row and in the lower row are the same. Every type of a

card can be used repeatedly.

a

abb

abb

baba

abb

aba

aa

bbab

bbab

aa

bbab

In the upper and in the lower row we obtained the word

aabbabbbabaabbaba.

Z. Sawa (TU Ostrava)

Theoretical Computer Science

December 12, 2021

16 /24



Other Undecidable Problems

Undecidability of several other problems dealing with context-free
grammars can be proved by reductions from the previous problem:

Input: Context-free grammars G; and G,.
Question: Is £(G1) N L(G2) = 0?

Input: A context-free grammar G.

Question: Is G ambiguous?

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 17 /24



Other Undecidable Problems

An input is a set of types of tiles, such as:

L X

The question is whether it is possible to cover every finite area of an
arbitrary size using the given types of tiles in such a way that the colors of
neighboring tiles agree.

Remark: We can assume that we have an infinite number of tiles of all
types.

The tiles cannot be rotated.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 18 /24



Other Undecidable Problems

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 19 /24



Other Undecidable Problems

Input: A closed formula of the first order predicate logic where the
only predicate symbols are = and <, the only function

symbols are 4+ and *, and the only constant symbols are 0
and 1.

Question: Is the given formula true in the domain of natural numbers

(using the natural interpretation of all function and predicate
symbols)?

An example of an input:
Vx3yVz((xxy =z) A(y + 1 = x))
Remark: There is a close connection with Godel's incompleteness

theorem.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 20/24



Other Undecidable Problems

It is interesting that an analogous problem, where real numbers are
considered instead of natural numbers, is decidable (but the algorithm for
it and the proof of its correctness are quite nontrivial).

Also when we consider natural numbers or integers and the same formulas
as in the previous case but with the restriction that it is not allowed to use
the multiplication function symbol x, the problem is algorithmically
decidable.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 21/24



Other Undecidable Problems

If the function symbol * can be used then even the very restricted case is
undecidable:

Hilbert's tenth problem

Input: A polynomial f(x1,x2,...,Xp) constructed from variables
X1,X2,...,X, and integer constants.
Question: Are there some natural numbers x1, xo, . . ., x, such that
f(x1,x2,...,xp) =07

An example of an input: 5x%y — 8yz 4+ 3z% — 15

l.e., the question is whether
AxIyIz(Bx xx xxy + (=8)*x y x z+ 3% z*x z + (—15) = 0)
holds in the domain of natural numbers.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 22/24



Other Undecidable Problems

Also the following problem is algorithmically undecidable:

Problem

Input: A closed formula ¢ of the first-order predicate logic.
Question: Is =7

Remark: Notation = ¢ denotes that formula ¢ is logically valid, i.e., it is
true in all interpretations.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 23 /24



Rice's Theorem

Let P be an arbitrary prorperty of Turing machines.
The property P is:

@ nontrivial — if there exists at least one machine that has the
property P, and at least one machine that does not have the
property P

@ input-output — if in every pair of machines that halt on the same
inputs and that give the same outputs for the same inputs, either
both machines have the property P or both do not have it

Theorem

Every problem of the form

Input: A Turing machine M.
Question: Does machine M have property P?

where P is a nontrivial input-output property, is undecidable.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 24 /24



	Undecidable problems

