
Algorithms

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 1 / 66



Algorithms

Example: An algorithm described by pseudocode:

Algorithm 1: An algorithm for finding the maximal element in an array

Find-Max (A, n):
k := 0
for i := 1 to n − 1 do

if A[i ] > A[k] then
k := i

return A[k]
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Algorithms

Algorithm

processes an input

generates an output

From the point of view of an analysis how a given algorithm works, it
usually makes only a little difference if the algorithm:

reads input data from some input device (e.g., from a file, from
a keyboard, etc.)

writes data to some output device (e.g., to a file, on a screen, etc.)

or

reads input data from a memory (e.g., they are given to it as
parameters)

writes data somewhere to memory (e.g., it returns them as a return
value)
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Control Flow

Instructions can be roughly devided into two groups:

instructions working directly with data:

assignment
evaluation of values of expressions in conditions
reading input, writing output
. . .

instructions affecting the control flow — they determine, which
instructions will be executed, in what order, etc.:

branching (if, switch, . . . )
cycles (while, do .. while, for, . . . )
organisation of instructions into blocks
returns from subprograms (return, . . . )
. . .
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Control Flow Graph
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Some Basic Constructions of Structured Programming

S1

S2

[B] [¬B]

S1 S2

[B] [¬B]

S

S1; S2 if B then S1 else S2 if B then S
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Some Basic Constructions of Structured Programming

[B][¬B]

S
[B]

[¬B]

S

while B do S do S while B
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Some Basic Constructions of Structured Programming

[i ≤ b][i > b]

i := a

i := i + 1S

for i := a to b do S

i := a

while i ≤ b do
S

i := i + 1
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Some Basic Constructions of Structured Programming

Short-circuit evaluation of compound conditions, e.g.:

while i < n and A[i ] > x do . . .

[B1]

[¬B1]

[B2]
[¬B2]

S1 S2

[B1]

[¬B1]

[B2]
[¬B2]

S1 S2

if B1 and B2 then S1 else S2 if B1 or B2 then S1 else S2
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Control-flow Realized by GOTO

goto ℓ — unconditional jump

if B then goto ℓ — conditional jump

Example:

0: k := 0
1: i := 1
2: goto 6

3: if A[i ] ≤ A[k] then goto 5

4: k := i

5: i := i + 1
6: if i < n then goto 3

7: return A[k]
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Control-flow Realized by GOTO

goto ℓ — unconditional jump

if B then goto ℓ — conditional jump

Example:

start: k := 0
i := 1
goto L3

L1: if A[i ] ≤ A[k] then goto L2

k := i

L2: i := i + 1
L3: if i < n then goto L1

return A[k]
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Evaluation of Complicated Expressions

Evaluation of a complicated expression such as

A[i + s] := (B[3 ∗ j + 1] + x) ∗ y + 8

can be replaced by a sequence of simpler instructions on the lower level,
such as

t1 := i + s

t2 := 3 ∗ j
t2 := t2 + 1
t3 := B[t2]
t3 := t3 + x

t3 := t3 ∗ y
t3 := t3 + 8
A[t1] := t3
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Computation of an Algorithm

An algorithm is execuded by a machine — it can be for example:

real computer — executes instructions of a machine code

virtual machine — executes instructions of a bytecode

some idealized mathematical model of a computer

. . .

The machine can be:

specialized — executes only one algorithm

universal — can execute arbitrary algorithm, given in a form of
program

The machine performs steps.

The algorithm processes a particular input during its computation.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 12 / 66



Computation of an Algorithm

During a computation, the machine must remember:

the current instruction

the content of its working memory

It depends on the type of the machine:

what is the type of data, with which the machine works

how this data are organized in its memory

Depending on the type of the algorithm and the type of analysis, which we
want to do, we can decide if it makes sense to include in memory also the
places

from which the input data are read

where the output data are written
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Computation of an Algorithm

Configuration — the description of the global state of the machine in
some particular step during a computation

Example: A configuration of the form

(q,mem)

where

q — the current control state

mem — the current content of memory of the machine — the values
assigned currently to variables.

An example of a content of memory mem:

〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k : 0, result: ?〉
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Computation of an Algorithm

An example of a configuration:

(2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k : 0, result: ?〉)

A computation of a machine M executing an algorithm Alg , where it
processes an input w , in a sequence of configurations.

It starts in an initial configuration.

In every step, it goes from one configuration to another.

The computation ends in a final configuration.
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Computation of an Algorithm
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 17 / 66



Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α9: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α9: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α10: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α9: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α10: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α11: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 17 / 66



Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α9: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α10: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α11: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α12: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α9: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α10: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α11: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α12: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?〉)
α13: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α9: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α10: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α11: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α12: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?〉)
α13: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?〉)
α14: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α9: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α10: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α11: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α12: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?〉)
α13: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?〉)
α14: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?〉)
α15: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α9: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α10: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α11: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α12: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?〉)
α13: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?〉)
α14: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?〉)
α15: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?〉)
α16: (6, 〈A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?〉)
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Computation of an Algorithm

Example: A computation, where algorithm Find-Max processes an input
where A = [3, 8, 1, 3, 6] and n = 5.

α0: (0, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: ?, result: ?〉)
α1: (1, 〈A: [3, 8, 1, 3, 6], n: 5, i : ?, k: 0, result: ?〉)
α2: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α3: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α4: (4, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 0, result: ?〉)
α5: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 1, k: 1, result: ?〉)
α6: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α7: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α8: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 2, k: 1, result: ?〉)
α9: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α10: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α11: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 3, k: 1, result: ?〉)
α12: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?〉)
α13: (3, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?〉)
α14: (5, 〈A: [3, 8, 1, 3, 6], n: 5, i : 4, k: 1, result: ?〉)
α15: (2, 〈A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?〉)
α16: (6, 〈A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: ?〉)
α17: (7, 〈A: [3, 8, 1, 3, 6], n: 5, i : 5, k: 1, result: 8〉)
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Computation of an Algorithm

By executing an instruction I , the machine goes from configuration α to
configuration α′:

α
I

−→ α′

A computation can be:

Finite:

α0
I0−→ α1

I1−→ α2
I2−→ α3

I3−→ α4
I4−→ · · ·

It−2
−→ αt−1

It−1
−→ αt

where αt is a final configuration

Infinite:
α0

I0−→ α1
I1−→ α2

I2−→ α3
I3−→ α4

I4−→ · · ·

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 18 / 66



Computation of an Algorithm

A computation can be described in two different ways:

as a sequence of configurations α0, α1, α2, . . .

as a sequence of executed instructions I0, I1, I2, . . .
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Correctness of Algorithms

Algorithms are used for solving problems.

Problem — a specification what should be computed by
an algorithm:

Description of inputs
Description of outputs
How outputs are related to inputs

Algorithm — a particular procedure that describes how to compute
an output for each possible input

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 20 / 66



Correctness of Algorithms

Example: The problem of finding a maximal element in an array:

Input: An array A indexed from zero and a number n representing
the number of elements in array A. It is assumed that n ≥ 1.

Output: A value result of a maximal element in the array A, i.e., the
value result such that:

A[j ] ≤ result for all j ∈ N, where 0 ≤ j < n, and

there exists j ∈ N such that 0 ≤ j < n and A[j ] = result.

An instance of a problem — concreate input data, e.g.,

A = [ 3, 8, 1, 3, 6 ], n = 5.

The output for this instance is value 8.
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Correctness of Algorithms

Definition

An algorithm Alg solves a given problem P , if for each instance w of
problem P , the following conditions are satisfied:

(a) The computation of algorithm Alg on input w halts after finite
number of steps.

(b) Algorithm Alg generates a correct output for input w according to
conditions in problem P .

An algorithm that solves problem P is a correct solution of this problem.
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Correctness of Algorithms

Algorithm Alg is not a correct solution of problem P if there exists an
input w such that in the computation on this input, one of the following
incorrect behaviours occurs:

some incorrect illegal operation is performed (an access to an element
of an array with index out of bounds, division by zero, . . . ),

the generated output does not satisfy the conditions specified in
problem P ,

the computation never halts.

Testing — running the algorithm with different inputs and checking
whether the algorithm behaves correctly on these inputs.

Testing can be used to show the presence of bugs but not to show that
algorithm behaves correctly for all inputs.
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Correctness of Algorithms

Generally, it is reasonable to divide a proof of correctness of an algorithm
into two parts:

Showing that the algorithm never does anything “wrong” for any
input:

no illegal operation is performed during a computation
if the program halts, the generated output will be “correct”

Showing that for every input the algorithm halts after a finite number
of steps.
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Correctness of Algorithms

Invariant — a condition that must be always satisfied in a given position
in a code of the algorithm (i.e., in all possible computations for all allowed
inputs) whenever the algorithm goes through this position.

We say that a configuration α is reachable if there exists an input w such
that α is one of configurations through which the algorithm goes in the
computation on input w .

If an algorithm is represented by a control-flow graph, for a given control
state q (i.e., a node of the graph) we can specify invariants that hold in
every reachable configuration with control state q.
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Invariants

Invariants can be written as formulas of predicate logic:

free variables correspond to variables of the program

a valuation is determined by values of program variables in a given
configuration

Example: Formula

(1 ≤ i) ∧ (i ≤ n)

holds for example in a configuration where variable i has value 5 and
variable n has value 14.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 26 / 66



Invariants

k := 0

i := 1

[i < n]

[i ≥ n]

[A[i ] > A[k]]

[A[i ] ≤ A[k]]

k := i

i := i + 1
result := A[k]

0

1

2

3

4

5

6

7
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Invariants

Examples of invariants:

an invariant in a control state q is represented by a formula ϕq

Invariants for individual control states (so far only hypotheses):

ϕ0: (n ≥ 1)

ϕ1: (n ≥ 1) ∧ (k = 0)

ϕ2: (n ≥ 1) ∧ (1 ≤ i ≤ n) ∧ (0 ≤ k < i)

ϕ3: (n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k < i)

ϕ4: (n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k < i)

ϕ5: (n ≥ 1) ∧ (1 ≤ i < n) ∧ (0 ≤ k ≤ i)

ϕ6: (n ≥ 1) ∧ (i = n) ∧ (0 ≤ k < n)

ϕ7: (n ≥ 1) ∧ (i = n) ∧ (0 ≤ k < n)
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Invariants

Examples of invariants:

an invariant in a control state q is represented by a formula ϕq

Invariants for individual control states (so far only hypotheses):

ϕ0: n ≥ 1

ϕ1: n ≥ 1, k = 0

ϕ2: n ≥ 1, 1 ≤ i ≤ n, 0 ≤ k < i

ϕ3: n ≥ 1, 1 ≤ i < n, 0 ≤ k < i

ϕ4: n ≥ 1, 1 ≤ i < n, 0 ≤ k < i

ϕ5: n ≥ 1, 1 ≤ i < n, 0 ≤ k ≤ i

ϕ6: n ≥ 1, i = n, 0 ≤ k < n

ϕ7: n ≥ 1, i = n, 0 ≤ k < n
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Invariants

Checking that the given invariants really hold:

It is necessary to check for each instruction of the algorithm that
under the assumption that a specified invariant holds before an
execution of the instruction, the other specified invariant holds after
the execution of the instruction.

Let us assume the algorithm is represented as a control-flow graph:

edges correspond to instructions

consider an edge from state q to state q′ labelled with instruction I

let us say that (so far non-verified) invariants for states q and q′ are
expressed by formulas ϕ and ϕ′

for this edge we must check that for every configurations

α = (q,mem) and α′ = (q′,mem′) such that α
I

−→ α′, it holds that
if

ϕ holds is configuration α,
then

ϕ′ holds in configuration α′
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Invariants

Checking instructions, which are conditional tests:

an edge labelled with a conditional test [B]

A content of memory is not modified.
It is sufficient to check that the following implication holds

(ϕ ∧ B) → ϕ′

Remark: The given implication must hold for all possible values of
variables.

Example: Let us assume that formulas contain only variables n, i , k , and
that values of these variables are integers:

(∀n ∈ Z)(∀i ∈ Z)(∀k ∈ Z) (ϕ ∧ B → ϕ′)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 30 / 66



Invariants

Checking those instructions that assign values to variables (they modify
a content of memory):

an edge labelled with assignment x := E

ϕ′′ — a formula obtained from formula ϕ′ by renaming of all free
occurrences of variable x to x ′

It is necessary to check the validity of implication

(ϕ ∧ (x ′ = E )) → ϕ′′

Example: Assignment k := 3 ∗ k + i + 1:

(∀n ∈ Z)(∀i ∈ Z)(∀k ∈ Z)(∀k ′ ∈ Z) (ϕ ∧ (k ′ = 3 ∗ k + i + 1) → ϕ′′)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 31 / 66



Invariants

Finishing the checking that the algorithm for finding maximal element in
an array returns a correct result (under assumption that it halts):

ψ0: ϕ0

ψ1: ϕ1 ∧ (∀j ∈ N)(0 ≤ j < 1 → A[j ] ≤ A[k])

ψ2: ϕ2 ∧ (∀j ∈ N)(0 ≤ j < i → A[j ] ≤ A[k])

ψ3: ϕ3 ∧ (∀j ∈ N)(0 ≤ j < i → A[j ] ≤ A[k])

ψ4: ϕ4 ∧ (∀j ∈ N)(0 ≤ j < i → A[j ] ≤ A[k]) ∧ (A[i ] > A[k])

ψ5: ϕ5 ∧ (∀j ∈ N)(0 ≤ j ≤ i → A[j ] ≤ A[k])

ψ6: ϕ6 ∧ (∀j ∈ N)(0 ≤ j < n → A[j ] ≤ A[k])

ψ7: ϕ7 ∧ (result = A[k]) ∧ (∀j ∈ N)(0 ≤ j < n → A[j ] ≤
result) ∧ (∃j ∈ N)(0 ≤ j < n ∧ A[j ] = result)
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Invariants

Usually it is not necessary to specify invariants in all control states but
only in some “important” states — in particular, in states where the
algorithm enters or leaves loops:

It is necessary to verify:

That the invariant holds before entering the loop.

That if the invariant holds before an iteration of the loop then it
holds also after the iteration.

That the invariant holds when the loop is left.
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Invariants

Example: In algorithm Find-Max, state 2 is such “important” state.

In state 2, the following holds:

n ≥ 1

1 ≤ i ≤ n

0 ≤ k < i

For each j such that 0 ≤ j < i it holds that A[j ] ≤ A[k].
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Finiteness of a Computation

Two possibilities how an infinite computation can look:

some configuration is repeated — then all following configurations are
also repeated

all configurations in a computation are different but a final
configuration is never reached
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Finiteness of a Computation

One of standard ways of proving that an algorithm halts for every input
after a finite number of steps:

to assign a value from a set W to every (reachable) configuration

to define an order ≤ on set W such that there are no infinite
(strictly) decreasing sequences of elements of W

to show that the values assigned to configuration decrease with every

execution of each instruction, i.e., if α
I

−→ α′ then

f (α) > f (α′)

(f (α), f (α′) are values from set W assigned to configurations α
and α′)
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Finiteness of a Computation

As a set W , we can use for example:

The set of natural numbers N = {0, 1, 2, 3, . . . } with ordering ≤.

The set of vectors of natural numbers with lexicographic ordering,
i.e., the ordering where vector (a1, a2, . . . , am) is smaller than
(b1, b2, . . . , bn), if

there exists i such that 1 ≤ i ≤ m and i ≤ n, where ai < bi and for
all j such that 1 ≤ j < i it holds that aj = bj , or

m < n and for all j such that 1 ≤ j ≤ m is aj = bj .

For example, (5, 1, 3, 6, 4) < (5, 1, 4, 1) and (4, 1, 1) < (4, 1, 1, 3).

Remark: The number of elemets in vectors must be bounded by
some constant.
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Finiteness of a Computation

k := 0

i := 1

[i < n]

[i ≥ n]

[A[i ] > A[k]]

[A[i ] ≤ A[k]]

k := i

i := i + 1
result := A[k]
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Finiteness of a Computation

Example: Vectors assigned to individual configurations:

State 0: f (α) = (4)

State 1: f (α) = (3)

State 2: f (α) = (2, n − i , 3)

State 3: f (α) = (2, n − i , 2)

State 4: f (α) = (2, n − i , 1)

State 5: f (α) = (2, n − i , 0)

State 6: f (α) = (1)

State 7: f (α) = (0)
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Algorithmic problems
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Problems

Problem

When specifying a problem we must determine:

what is the set of possible inputs

what is the set of possible outputs

what is the relationship between inputs and outputs

inputs outputs
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Examples of Problems

Problem “Sorting”

Input: A sequence of elements a1, a2, . . . , an.

Output: Elements of the sequence a1, a2, . . . , an ordered from the
least to the greatest.

Example:

Input: 8, 13, 3, 10, 1, 4

Output: 1, 3, 4, 8, 10, 13

Remark: A particular input of a problem is called an instance of the
problem.
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Examples of Problems

Problem “’Finding the shortest path in an (undirected) graph’

Input: An undirected graph G = (V ,E ) with edges labelled with
numbers, and a pair of nodes u, v ∈ V .

Output: The shortest path from node u to node v .

Example:

u v

10

12
9

14

11
6

9

13 10

7

12

11

8
10

17
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Problems

Problem

So formally, a problem can be defined as a tuple (In,Out,R), where:

In is the set of possible inputs

Out is the set of possible outputs

R ⊆ In × Out is a relation assigning corresponding outputs to each
input. This relation must satisfy

∀x ∈ In : ∃y ∈ Out : R(x , y).

In Out
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Encoding of Input and Output

In general, we can restrict to the case, where inputs and outputs of
a problem are words over some Σ, i.e., In = Out = Σ∗.

Some other object (numbers, sequences of numbers, graphs, . . . ,) then
can be written (encoded) as words over this alphabet.

Example: In the problem “Sorting”, we can select as an alphabet
Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ,}.

Then an input can be for example the word

826,13,3901,101,128,562

and the output is then the word

13,101,128,562,826,3901
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Encoding of Input and Output

Example: If an input of some problem is for example a graph, it can be
represented as a list of nodes and edges:

For example, the following graph

1 2

3 4

5

can be represented as word

(1,2,3,4,5),((1,2),(2,4),(4,3),(3,1),(1,1),(2,5),(4,5),(4,1))

over alphabet Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ,, (, )}.
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Encoding of Input and Output

Remark: Not all words from Σ∗ necessarily represent some input. We
should choose such encoding that allows us to recognize easily if a word
represents some input or not.
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Encoding of Input and Output

We can restrict our attention to the case where both inputs and outputs
are encoded as words over alphabet {0, 1} (i.e., as sequences of bits).

Symbols of any other alphabet can be represented as sequences of bits.

Example: Alphabet {a, b, c, d, e, f, g}

a ↔ 001
b ↔ 010
c ↔ 011
d ↔ 100
e ↔ 101
f ↔ 110
g ↔ 111

Word ‘defb’ can be represented as ‘100101110010’.
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Encoding of Input and Output

Words over alphabet Σ = {0, 1}∗ (i.e., sequences of bits) can be viewed as
representations of numbers written in binary.

So, alternatively we could restrict to the case where

In = Out = N,

where N = {0, 1, 2, 3, . . .} is the set of natural numbers.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 13, 2021 49 / 66



Other Examples of Problems

Problem “Primality”

Input: A natural number n.

Output: Yes if n is a prime, No otherwise.

Remark: A natural number n is a prime if it is greater than 1 and is
divisible only by numbers 1 and n.

Few of the first primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .
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Decision Problems

The situation when the set of outputs Out is {Yes,No} is quite frequent.
Such problems are called decision problems.

We usually specify decision problems in such a way that instead describing
what the output is, we introduce a question.

Example:

Problem “Primality”

Input: A natural number n.

Question: Is n a prime?
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Decision Problems

Decision problem

One possibility, how the notion of a decision problem can be defined
formally, is to define it as a pair (In,T ), where:

In is the set of all inputs,

T ⊆ In is the set of all inputs, for which the answer is Yes.
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Decision Problems and Languages

If we restrict to the cases where inputs are words over some alphabet Σ,
then decision problems can be viewed as languages.

A language corresponding to a given decision problem is the set of those
words from Σ∗ that represent inputs for which the answer is Yes.

Example: A language consisting of those words from {0, 1}∗ that are
binary representations of primes.

For example, 101 ∈ L but 110 6∈ L.
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An Example of a Decision Problem

SAT problem (boolean satisfiability problem)

Input: Boolean formula ϕ.

Question: Is ϕ satisfiable?

Example:
Formula ϕ1 = x1 ∧ (¬x2 ∨ x3) is satisfiable:
e.g., for valuation ν where ν(x1) = 1, ν(x2) = 0, ν(x3) = 1, it holds that
ν(ϕ1) = 1.

Formula ϕ2 = (x1 ∧ ¬x1) ∨ (¬x2 ∧ x3 ∧ x2) is not satisfiable:
for every valuation ν it holds that ν(ϕ2) = 0.
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Optimization Problems

Other special case are the so called optimization problems.

An optimization problem is a problem where the aim is to choose, from
a set of feasible solutions, a solution that in some respect is optimal.
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Optimization Problems

Other special case are the so called optimization problems.

An optimization problem is a problem where the aim is to choose, from
a set of feasible solutions, a solution that in some respect is optimal.

Example: In the problem “Finding the shortest path in a graph”, the set
of feasible solutions consists of all paths from the node u to the node v .
The criterion by which we compare the paths is the length of a path.
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Optimization Problems

Formally, an optimization problems can be defined as a tuple
(In,Out, f ,m, g), where:

In is the set of inputs,

Out is the set of solutions,

f : In → P(Out) is a function assigning to each input x a set of
corresponding feasible solutions f (x),

m :
⋃

x∈In({x} × f (x)) → R is an optimization function (cost
function),

g is min or max.

The goal is to find for a given input x ∈ In some feasible solution y ∈ f (x)
such that

m(x , y) = g{m(x , y ′) | y ′ ∈ f (x)},

or to find out that there is no such feasible solution for the input x
(i.e., f (x) = ∅).
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Optimization Problems

The optimization problems, where g is min, are called minimization
problems.

The optimization problems, where g is max, are called maximization
problems.
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Examples of Problems

Problem “Coloring of a graph with k colors”

Input: An undirected graph G and a natural number k .

Question: Is it possible to color the nodes of the graph G with k colors
in such a way that no two nodes connected with an edge are
colored with the same color?

k = 3
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Examples of Problems

Independent set (IS) problem

Input: An undirected graph G , a number k .

Question: Is there an independent set of size k in the graph G?

k = 4

Remark: An independent set in a graph is a subset of nodes of the
graph such that no pair of nodes from this set is connected by an edge.
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Independent Set (IS) Problem

An example of an instance where the answer is Yes:

k = 4

An example of an instance where the answer is No:

k = 5
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ILP – Integer Linear Programming

Problem ILP (integer linear programming)

Input: An integer matrix A and an integer vector b.

Question: Is there an integer vector x such that Ax ≤ b?

An example of an instance of the problem:

A =





3 −2 5
1 0 1
2 1 0



 b =





8
−3
5





So the question is if the following system of inequations has some integer
solution:

3x1 − 2x2 + 5x3 ≤ 8
x1 + x3 ≤ −3
2x1 + x2 ≤ 5
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ILP – Integer Linear Programming

One of solutions of the system

3x1 − 2x2 + 5x3 ≤ 8
x1 + x3 ≤ −3
2x1 + x2 ≤ 5

is for example x1 = −4, x2 = 1, x3 = 1, i.e.,

x =





−4
1
1





because
3 · (−4)− 2 · 1 + 5 · 1 = −9 ≤ 8

−4 + 1 = −3 ≤ −3
2 · (−4) + 1 = −7 ≤ 5

So the answer for this instance is Yes.
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Examples of Problems

Problem

Input: Deterministic finite automata A1 and A2.

Question: Is L(A1) = L(A2)?

Problem

Input: Context-free grammars G1 and G2.

Question: Is L(G1) = L(G2)?
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Algorithmically Solvable Problems

Let us assume we have a problem P .

If there is an algorithm solving the problem P then we say that the
problem P is algorithmically solvable.

If P is a decision problem and there is an algorithm solving the problem P

then we say that the problem P is decidable (by an algorithm).

If we want to show that a problem P is algorithmically solvable, it is
sufficient to show some algorithm solving it (and possibly show that the
algorithm really solves the problem P).
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Algorithmically Solvable Problems

For many problems it is immediately obvious that they are algorithmically
solvable, as for example:

Sorting

Finding a shortest path in a graph

Primality

where it is sufficient to test all possible solutions (in all these examples
there are only finitely many possibilities that must be tested), although
such trivial algorithm based on brute force solution is usually not very
efficient.

On the other hand, there are many problems where it is not so clear.

It can be a nontrivial task to find an algorithm solving the given
problem and to show that it really solves it.

It is possible that there is no algorithm solving the given problem.
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Algorithmically Unsolvable Problems

A problem that is not algorithmically solvable is algorithmically
unsolvable.

A decision problem that is not decidable is undecidable.
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