
Random Access Machines

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 1 / 30

Random Access Machine

A Random Access Machine (RAM) is an idealized model of a computer.

It consists of the following parts:

Program unit – contains a program for the RAM and a pointer to
the currently executed instruction

Working memory consists of cells numbered 0, 1, 2, . . .

These cells will be denoted R0,R1,R2, . . .

The content of the cells can be read and written to.

Input tape – read-only

Output tape – write-only

The cells of memory, as well as the cells of input and output tapes contain
integers (i.e., elements of set Z) as their values.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 2 / 30

Random Access Machine

3

2

1

4

5

6

8

0

7

0

0

0

0

0

0

0

0

0

7 5 2 0

IP

ALU

11

10

0

2

5

9

8

7

6

4

3

1

input

output

working
memory

program
unit

R0 := 3

R1 := R0

R2 := read ()

if (R2 = 0) goto 10

[R1] := R2

R1 := R1 + 1

goto 2

R1 := R1 − 1

R2 := [R1]

write (R2)

if (R1 > R0) goto 7

halt

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 3 / 30

Random Access Machine

Overview of instructions:

Ri := c – assignment of a constant

Ri := Rj – assignment

Ri := [Rj] – load (reading from memory)

[Ri] := Rj – store (writing to memory)

Ri := Rj op Rk – arithmetic instructions, op ∈ {+,−, ∗, /}

or Ri := Rj op c

if (Ri rel Rj) goto ℓ – conditional jump, rel ∈ {=, 6=,≤,≥, <,>}

or if (Ri rel c) goto ℓ

goto ℓ – unconditional jump

Ri := read () – reading from input

write (Ri) – writing to output

halt – program termination

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 4 / 30

Random Access Machine

Examples of instructions:

R5 := 42 – assignment of a constant

R12 := R3 – assignment

R8 := [R2] – load (reading from memory)

[R15] := R9 – store (writing to memory)

R7 := R3 + R6 – arithmetic instruction

R18 := R18 − 1 – arithmetic instruction

if (R4 ≥ R1) goto 2801 – conditional jump

if (R2 6= 0) goto 3581 – conditional jump

goto 537 – unconditional jump

R23 := read () – reading from input

write (R17) – writing to output

halt – program termination

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 5 / 30

Random Access Machine

� R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

?0

?1

?2

?3

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3
� R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

?1

?2

?3

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

� L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

31

?2

?3

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()
� if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

31

132

?3

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3
� [R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

31

132

?3

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

� R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

31

132

133

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1
� goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

41

132

133

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

� L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

41

132

133

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()
� if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

41

-22

133

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3
� [R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

41

-22

133

?4

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

� R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

41

-22

133

-24

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1
� goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

51

-22

133

-24

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

� L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

51

-22

133

-24

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()
� if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

51

422

133

-24

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3
� [R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

51

422

133

-24

?5

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

� R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

51

422

133

-24

425

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1
� goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

61

422

133

-24

425

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

� L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

61

422

133

-24

425

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()
� if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

61

52

133

-24

425

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3
� [R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

61

52

133

-24

425

?6

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

� R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

61

52

133

-24

425

56

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1
� goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

71

52

133

-24

425

56

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

� L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

71

52

133

-24

425

56

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()
� if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

71

172

133

-24

425

56

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3
� [R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

71

172

133

-24

425

56

?7

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

� R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

71

172

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1
� goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

81

172

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

� L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

81

172

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()
� if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

81

02

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)
� L3 : if (R1 > R0) goto L2

halt

30

81

02

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1
� L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

81

02

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1
� R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

71

02

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]
� write (R2)

L3 : if (R1 > R0) goto L2

halt

30

71

172

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)
� L3 : if (R1 > R0) goto L2

halt

30

71

172

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1
� L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

71

172

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1
� R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

61

172

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]
� write (R2)

L3 : if (R1 > R0) goto L2

halt

30

61

52

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)
� L3 : if (R1 > R0) goto L2

halt

30

61

52

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1
� L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

61

52

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1
� R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

51

52

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]
� write (R2)

L3 : if (R1 > R0) goto L2

halt

30

51

422

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)
� L3 : if (R1 > R0) goto L2

halt

30

51

422

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1
� L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

51

422

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1
� R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

41

422

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]
� write (R2)

L3 : if (R1 > R0) goto L2

halt

30

41

-22

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)
� L3 : if (R1 > R0) goto L2

halt

30

41

-22

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42 -2

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1
� L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

41

-22

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42 -2

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1
� R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2

halt

30

31

-22

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42 -2

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]
� write (R2)

L3 : if (R1 > R0) goto L2

halt

30

31

132

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42 -2

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)
� L3 : if (R1 > R0) goto L2

halt

30

31

132

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42 -2 13

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

R0 := 3

R1 := R0

L1 : R2 := read ()

if (R2 = 0) goto L3

[R1] := R2

R1 := R1 + 1

goto L1

L2 : R1 := R1 − 1

R2 := [R1]

write (R2)

L3 : if (R1 > R0) goto L2
� halt

30

31

132

133

-24

425

56

177

?8

?9

?10

?11

Input

13 -2 42 5 17 0

Output

17 5 42 -2 13

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 6 / 30

Random Access Machine

Main differences with respect to real computers:

The size of memory is not limited (an address can be an arbitrary
natural number).

The size of a content of individual memory cells is not limited (a cell
can contain an arbitrary integer).

It reads data sequantially from an input that consists of a sequence of
integers. The input is read-only.

It writes data sequantially on the output that consists of a sequence
of integers. The output is write-only.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 7 / 30

Random Access Machine

Operations like an access to a memory cell with an address less than
zero or division by zero result in an error — the computation is stuck.

For an initial content of memory there are basically two possibilities
how to define it:

All cells are initialized with value 0.

Reading a cell, to which nothing has been written, results in an error.

Cells at the beginning contain a special value (denoted here by
symbol ‘?’) that represents that the given cell has not been initialized
yet.

We could consider also variants of RAMs where memory cells (and
cells of input and output) do not contain integers (i.e., the elements
of set Z) but they can contain only natural numbers (i.e., elements of
set N).

For example, operation of subtraction (Ri := Rj − Rk) then behaves
in such a way that whenever the result should be a negative number,
then value 0 is assigned as the result.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 8 / 30

Random Access Machine

Different variants of RAMs can differ in what particular operations
can be used in arithmetic instructions.

For example:

a support of bitwise operations (and, or, not, xor, . . .), bit shifts, . . .

a variant of RAM that does not have operations for multiplication and
division

We could also consider a variant of RAM where instead of
instructions of the form

if (Ri rel Rj) goto ℓ nebo if (Ri rel c) goto ℓ

all conditional jumps are of the form

if (Ri rel 0) goto ℓ

Instead of all relations {=, 6=,≤,≥, <,>}, only a subset of them can
be supported, e.g., {=, >}.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 9 / 30

Random Access Machine

In some variants of RAM, the input and output are not in a form of
sequence of numbers.

Instead, such machine could work with input and output tapes
containg sequences of symbols from some alphabet, e.g., {0, 1}.

This machine then could have for example some instructions that
allow the branch the computation according to a symbol read from
the input.

However, the internal memory even in this variant works with
numbers.

When a machine should produce an answer of the form Yes/No
(i.e., to accept or reject the given input), it does not need to have an
output tape.

Instruction halt is then replaced with instructions accept and reject.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 10 / 30

Random Access Machine

In the standard definition of RAM, jump instructions jumping to an
adress stored in some memory cell are usualy not considered:

goto Ri

RAM could be extended with these instructions.

For RAMs, a code of a program is usually stored in a separate
read-only memory, not in a working memory.

So the code can not be modified during a computation.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 11 / 30

Random Access Machine

A type of a machine, similar to RAM, but where its program is stored
in its working memory (instructions are encoded by numbers) and so
it can be modified during a computations, is called RASP

(random-access stored program).

RASP can simulate behaviour of self-modifying programs.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 12 / 30

Random Access Machine

A running time of a RAM can be computed in two different ways:

uniform cost — the number of executed instructions

logarithmic cost — the sum of cost of individual instructions;
the cost of one instruction depends on the number of bits of values
used in the given instruction.

For example:

The cost of execution of instructions for addition and subtruction is the
sum of the number of bits of their operands.

The cost of execution of instructions for multiplication and division is
the product of the number of bits of their operands.

The cost of instructions accessing memory (load, store) is the sum of
the number of bits of an address and the number of bits of a number
that is read or written.

Remark: When counting the number of bits of a given number, it is
assumed that value 0 has 1 bit.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 13 / 30

Random Access Machine

Also the amount of memory used during a computation by a RAM can be
computed in two different ways:

uniform cost — the number of memory cells used, i.e., the number
of cells, which were read or written to during the computation.

logarithmic cost — the maximal number of bits of memory that
were used during the computation.

The number of bits includes both the number of bits of used cells and
the number of bits of their addresses.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 14 / 30

Random Access Machine

The uniform cost realistically represents the amount of a work done during
the execution and the amount of used memory only in those cases where
the values stored in memory cells are “small”, i.e., if in a real
implemantation for “reasonably” big inputs it would be possible to
represents them for example as 32-bit or 64-bit numbers.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 15 / 30

Random Access Machine

For those machines that do not have an instruction for multiplication,
it can be easily shown that each instruction can produce a number
that has at most one bit more than the bigger (in absolute value) of
its operands.

For such machines, after t steps of computation, each cell contains
a number that has at most t +m + n bits where m is the number of
bits of the biggist constant occurring in the program and n is the
biggest number of bits of a number in the input.

If the machine has an instruction for the multiplication then after
t steps, some memory cell can contain a number that has
approximately 2t bits.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 16 / 30

Random Access Machine and Turing Machine

Any program in any programming language can be implemented as
a program for a RAM.

It is not difficult (although a little bit tedious) to realize that every
algorithm performed by a RAM can also be implemented by a Turing
machine.

A Turing machine can implement any algorithm that can be written as
a program in an arbitrary programming language.

Remark: And of course, it is possible to simulate a behaviour of a Turing
machine by a RAM.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 17 / 30

Turing Machine Simulating RAM

In the description of how a Turing machine can simulate a RAM, it is
simpler to proceed by smaller steps:

We will show how to simulate a varint of RAM described before by
a variant of RAM with somewhat simpler instructions.

We will show how to simulate the behaviour of this simpler variant of
RAM by a multitape Turing machine.

We have already seen before how a multitape Turing machine can be
simulated by one-tape Turing machine.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 18 / 30

A simpler variant of RAM

This simpler variant of RAM has, in addition to its working memory, also
three registers:

register A — almost all instructions work with this register, results of
all operations are stored into this register

Remark: This kind of register is often called an accumulator.

register B — this register is used to store the second operand of
arithmetic instructions (the first operand is always in the accumulator)

register C — this register is used to store an address of a memory
cell, to which a value is written by a store operation

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 19 / 30

A simpler variant of RAM

Overview of instructions:

A := c – assinment of a constant

B := A – assinment to register B

C := A – assinment to register C

A := [A] – load (reading from memory)

[C] := A – store (writing to memory)

A := A op B – arithmetic instructions, op ∈ {+,−, ∗, /}

if (A rel 0) goto ℓ – conditional jump, rel ∈ {=, 6=,≤,≥, <,>}

goto ℓ – unconditional jump

A := read () – reading from input

write (A) – writing to output

halt – program termination

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 20 / 30

A simpler variant of RAM

For example, instruction

R5 := 42

can be replaced with a sequence of instructions:

A := 5

C := A

A := 42

[C] := A

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 21 / 30

A simpler variant of RAM

For example, instruction

R12 := R3

can be replaced with a sequence of instructions:

A := 12

C := A

A := 3

A := [A]

[C] := A

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 21 / 30

A simpler variant of RAM

For example, instruction

R8 := [R2]

can be replaced with a sequence of instructions:

A := 8

C := A

A := 2

A := [A]

A := [A]

[C] := A

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 21 / 30

A simpler variant of RAM

For example, instruction

[R15] := R9

can be replaced with a sequence of instructions:

A := 15

A := [A]

C := A

A := 9

A := [A]

[C] := A

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 21 / 30

A simpler variant of RAM

For example, instruction

R7 := R3 + R6

can be replaced with a sequence of instructions:

A := 7

C := A

A := 6

A := [A]

B := A

A := 3

A := [A]

A := A+ B

[C] := A

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 21 / 30

A simpler variant of RAM

For example, instruction

if (R4 ≥ R11) goto ℓ

can be replaced with a sequence of instructions:

A := 11

A := [A]

B := A

A := 4

A := [A]

A := A− B

if (A ≥ 0) goto ℓ

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 21 / 30

A simpler variant of RAM

For example, instruction

R23 := read ()

can be replaced with a sequence of instructions:

A := 23

C := A

A := read ()

[C] := A

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 21 / 30

A simpler variant of RAM

For example, instruction

write (R17)

can be replaced with a sequence of instructions:

A := 17

A := [A]

write (A)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 21 / 30

Turing Machine Simulating RAM

A Turing machine works with words over some alphabet, while a RAM
works with numbers. But numbers can be written as sequences of symbols
and conversely symbols of an alphabet can be written as numbers.

For example the following input of a RAM

5 13 -3 0 6

can be represented for a Turing machine as

1 0 1 # 1 1 0 1 # - 1 1 # 0 # 1 1 0

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 22 / 30

Turing Machine Simulating RAM

A Turing machine simulating a computation of a RAM has several tapes:

A tape containing a content of the working memory of the RAM.

Three tapes containing values of registers A, B , and C .

(Values of registers A, B , and C will be written on these tapes in
binary and delimited from the left and from the right by symbols #.)

A tape representing the input tape of the RAM.

A tape representing the output tape of the RAM.

One auxiliary tape used for an implementation of the simulation of
some instructions.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 23 / 30

Turing Machine Simulating RAM

The Turing machine stores the information about the instruction of the
RAM that is currently executed in its control unit.

Execution of most of instructions is not difficult:

A := c

it writes bits of the constant c to the tape of register A

B := A or C := A

it will copy a content of the tape of register A to the tape of
register B or C

goto ℓ

just changes the state of the control unit of the Turing machine

if (A rel 0) goto ℓ, kde rel ∈ {=, 6=,≤,≥, <,>}

the content of the working register is tested and the state of the
control unit is changed accordingly

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 24 / 30

Turing Machine Simulating RAM

A := read ()

copy the value (marked at the ends by symbols “#”) from the input
tape to the tape of register A

write (A)

copy the value of register A to the output tape.

halt

the computation halts

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 25 / 30

Turing Machine Simulating RAM

Also arithmetic instructions are rather easy to implement, although the
a little bit more complicated than the previous instructions:

A := A op B , where op ∈ {+,−, ∗, /}

The Turing machine performs the given operation (such as addition
or subtraction) bit by bit, the result is stored to register A.

Remark: Multiplication and division can be done as a sequence of
additions and bit shifts.

In the implementation of addition and division, it may be necessary to use
an auxiliary tape to store intermediate results.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 26 / 30

Turing Machine Simulating RAM

Probably the most complex is the implementation of the RAM memory.

One possibility is to store only values of those cells that were actually used
so far in the computation of the RAM (we know that all other cells
contain value 0).

Example: The RAM worked so far only with cells 2, 3 and 6:

Cell 2 contains value 11.

Cell 3 contains value −1.

Cell 6 contains value 2.

The content of the tape of the Turing machine representing the content of
the memory of the RAM will be as follows:

$ # 1 0 : 1 0 1 1 # 1 1 : - 1 # 1 1 0 : 1 0 # $

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 27 / 30

Turing Machine Simulating RAM

Load instruction, i.e., A := [A]:

The Turing machine will search the given address, stored in register A,
on the tape containg the content of the memory of the RAM.
(If it does not find it, it will appened it at the end with value 0.)

The given value in the cell is copied to the tape of register A.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 28 / 30

Turing Machine Simulating RAM

Store instruction, i.e., [C] := A:

Similarly as before, the Turing machine will find the position of the
tape representing a content of the memory, where the value in the
given address, stored in register C , occurs.

The rest of the memory tape is copied to an auxiliary tape.

The content of the tape of register A is copied to the corresponding
place.

The rest of the tape, copied on the auxiliary tape, is copied back to
the memory tape (after the newly written value).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 29 / 30

Turing Machine Simulating RAM

It is not hard to see that in the simulation of a RAM by a Turing machine
described above, the number of steps performed by the Turing machine is
polynomial (quadratic) with respect to the running time of the RAM
computed using logarithmic cost.

Remark: For those RAMs that do not have an instruction for
multiplication, the number of steps performed by the simulating Turing
machine is polynomial also with respect to the running time of the RAM
computed using uniform cost.

It the RAM executes t instruction, the Turing machine that simulates it
executes approximately O(t3) instructions.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 12, 2021 30 / 30

	Random Access Machines

