Limitations of Context-free Languages

o Context-free grammars and pushdown automata are not able to
generate or accept all possible languages.

@ Some examples of languages for which it can be proved that they are
not context-free (i.e., that there is no context-free grammar
generating them):

L; ={a"b"c" | n > 0}
Ly ={ww | w € {a, b}*}

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021

Pumping Lemma for Context-free Languages

Consider some arbitrary context-free grammar G = ([, X, S, P):
o Consider an arbitrary word z € £L(G).

o For a derivation of word z using grammar G, there is a corresponding
derivation tree.

@ Consider individual branches of this derivation tree.

@ |t is possible that on some branch of the tree, some nonterminal
B € 1 occurs at least two times.

@ Assume now, that the given tree contains at least one such branch
with a repeated occurrences of a nonterminal.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 2/25

Pumping Lemma for Context-free Languages

i
1
1

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 3/25

Pumping Lemma for Context-free Languages

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 3/25

Pumping Lemma for Context-free Languages

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 3/25

Pumping Lemma for Context-free Languages

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 3/25

Pumping Lemma for Context-free Languages

B
B
u v X y
i
v w X

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 3/25

Pumping Lemma for Context-free Languages

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021

Pumping Lemma for Context-free Languages

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021

Pumping Lemma for Context-free Languages

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021

Pumping Lemma for Context-free Languages

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021

Pumping Lemma for Context-free Languages

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021

Pumping Lemma for Context-free Languages

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021

Pumping Lemma for Context-free Languages

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 4/25

Pumping Lemma for Context-free Languages

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 4/25

Pumping Lemma for Context-free Languages

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 4/25

Pumping Lemma for Context-free Languages

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 4/25

Pumping Lemma for Context-free Languages

We can see that if the given derivation tree representing a derivation of
a word z contains some branch where some nonterminal is repeated at
least twice, then the word z could be decomposed into five

subwords u, v, w, x, y such that:

e all words of the form uv/wx'y, where i > 0,

i.e., words uwy, UVWXy, UVVWXXY, UVVWWXXXY, UVVVWWXXXXY, . ..

also belong to the language £(G).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021

Pumping Lemma for Context-free Languages

Of course, in general a given derivation tree representing a derivation of
word z need not contain a branch where some nonterminal occurs at least
twice.

However, in this case the word z can not be too long:

@ Let k be the number of nonterminal in the given
grammar G = (I, X, S, P), i.e., k =|M].

@ Obviously, every branch then contains at most k nonterminals and
one terminal.

@ So the length of each branch is at most k.

@ The number of children of each node is at most the length of the
longest right-hand side of a rule from the set P.
Let ¢ be the length of this longest right-hand side, i.e.,

¢ = max{|a|| (A —= a)e P}

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 6/25

Pumping Lemma for Context-free Languages

@ It hold in general that a tree with branches of length k where every
node has at most ¢ childen, can have at most ¢ leafs.

@ So we see that the length of the word z can be at most (.

It follows from this that for a given grammar G there exists a constant p
such that:

e for every word z € L£(G), such that |z| > p, it holds that a derivation
tree representing a derivation of the word z in grammar G must
contain at least one branch where some nonterminal occurs at least
twice.

We can see that this constant can be computed for the given grammar G.
In particular, we can put p = ¢k +1.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 7/25

Pumping Lemma for Context-free Languages

Moreover, we can choose a branch, a repeated nonterminal B, and two
particular occurrences of this nonterminal B in such way that it holds that:

@ at least one of words v and x is nonempty, i.e., |vx| > 1,

o the total length of words v, w, x is bounded from above by some
constant q, i.e., [vwx| < g, and the value of this constant g depends
only on the grammar G, not on a particular word z.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 8/25

Pumping Lemma for Context-free Languages

It is obvious that for the given word z we can find such derivation tree
where for every subtree holds that:

o if a given subtree has a root labelled with nonterminal B and the
given subtree contains one more occurrence of the nonterminal B,
then the word generated by the subtree with the root in this second
occurrence is shorter than the word generated by the whole subtree.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021

Pumping Lemma for Context-free Languages

In such tree, we can choose such nonterminal B and such subtree with
a root labelled with B satisfying the following:

@ The given subtree contains at least one other occurrence on the
nonterminal B.

@ None of the branches of the subtree contains nonterminal B more
than twice
— once in the tree of the subtree and at most one additional
occurrence.

@ No other nonterminal occurs twice on any of branches of the subtree.

It is obvious that such subtree satisfies the following:

@ the length of all its branches is at most k + 1

So the given subtree has at most £<*1 |eafs.

We can put constant g equal to ¢KT1.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 10/25

Pumping Lemma for Context-free Languages

So we have proven the following proposition:

Pumping lemma (version 1)

If language L is context-free then
there exist constants p and g such that
for every word z € L such that |z| > p
there exist words u, v, w, x, y such that
z = uvwxy, |vx| > 1, |vwx| < g, and
for each i > 0 it holds that uv/wx’y € L.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 11/25

Pumping Lemma for Context-free Languages

We can note that if the constants p and g exist then the given condition
also holds for any bigger values.

So intead of two values p and g we can consider just one value

n = max{p, q}, and to simplify the formulation of the pumping lemma
a little bit:

Pumping lemma (version 2)

If language L is context-free then
there exists a number n € N such that
for every word z € L such that |z| > n
there exist words u, v, w, x, y such that
z = uvwxy, |vx| > 1, |[vwx| < n, and
and for each i > 0 it holds that uv/wx’y € L.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 12 /25

Pumping Lemma for Context-free Languages

Deciding whether the given proposition holds can be viewed as a game
played by two players:

@ Player | chooses n € N.
@ Player Il chooses a word z € L such that |z| > n.

© Player | chooses words u, v, w, x,y € ¥* such that z = uvwxy,
lvx| > 1, and |vwx| < n.

@ Player Il chooses i € N.

@ If uv'wx'y € L then Player | wins, otherwise Player Il wins.

If L is context-free then Player | has a winning strategy. (So if Player Il
has a winning strategy, then L is not context-free.)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 13 /25

Pumping Lemma for Context-free Languages

Example: Language L = {a"b"c" | n > 0}.

Player | chooses n € N.
Player Il chooses word a"b"c”.

Player | chooses words u, v, w, x,y € £* such that z = uvwxy,
lvx| > 1, |vwx| < n.

Player Il chooses i = 0.

Player Il wins because the word z/ = uwy does not belong to the
language L: words v and x necessarily contain at most two from
symbols a, b, c. Moreover, at least one of words v and x is nonempty.
So it holds in z’ that at least one of values |Z/|,, |Z'|p and |Z/|. is
strictly smaller than n, and at least one of them is equal to n.

So the language L is not context-free.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 14 /25

Closure Properties of the Class of Context-Free Languages

@ We have already seen that the class of context-free languages is closed
with respect to the union, concatenation, and iteration, i.e., it
holds for all context-free languages L; and L; that also languages

L1 ULy Ly-L> LI

are context-free.

@ It is not hard to see that the class of context-free languages is also
closed for example with respect to the reverse and to the
intersection with a regular language, i.e., if language L; is
context-free and language L, is regular, then also languages

LR LN Ly

are context-free.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 15/25

Closure Properties of the Class of Context-Free Languages

@ However, context-free languages are not closed with respect to the
intersection:

Consider languages
Ly = {a"b"ck | n, k >0} Ly = {akb"c" | k,n >0}
These languages are context-free because

L1 = ﬁ(gl) and L2 = E(gg)

O1: G :
S — DC Sy — AE
D — ¢ | aDb A—elaA
C—elcC E — ¢ | bEc

It is obvious that
Linly, = {a"b"c" | n>0}

We have already seen that this language is not context-free.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 16 /25

Closure Properties of the Class of Context-Free Languages

o |t follows from the previous that context-free languages are not closed
with respect to the complement:

If context-free languages would be closed with respect to the
complement, they would be also closed with respect to the
intersection because

LiNnLy, = (EU[S)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 17 /25

Closure Properties of the Class of Context-Free Languages

An example of a language, which is context-free, but whose complement is
not context-free:

the complement of the language {a"b"c" | n > 0}
This complement is context-free since it can be represented as the union
of three context-free languages:
@ [y — the complement of the regular language a*b*c*
o Lr={a"b"cP | m,n,p>0, m# n}
o L3={a"b"cP | m,n,p>0,n+#p}

For example, the language L, is generated by the following grammar:
S — ADC | DBC

A—alaA
B — b| bA
C—elcC
D — e | aDb

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 18 /25

Deterministic Context-Free Languages

Definition
A language L is a deterministic context-free language if it is accepted
by a deterministic pushdown automaton.

Remark: In the above definition, we can consider both automata
accepting by an accepting state and automata accepting by an empty
stack where a special endmarker - is added at the end of a word on its
input tape.

(We have already seen that both these types of automata can be easily
transformed into each other.)

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 19/25

Deterministic Context-Free Languages

The class of deterministic context-free languages is closed with respect to
the complement.
But it is not closed with respect to the intersection:
o Languages
Ly = {a"b"ck | n, k > 0} Ly = {akb"c" | k,n > 0}
are deterministic context-free languages.
Their intersection is the language
L={a"b"c" | n> 0}

that is not even context-free (so obviously, it is not deterministic
context-free).

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 20/25

Deterministic Context-Free Languages

o It immediately follows from the previous discussion that deterministic
context-free languages are not closed with respect to the union:

If context-free languages would be closed with respect to the union,
they would be also closed with respect to the intersection, since

Linly = (L1ULy)

@ However, deterministic context-free languages are closed with respect
to both the intersection and the union with a regular language.

l.e., if language L; is deterministic context-free and language Ly is
regular then also languages

LiNLy LUl

deterministic context-free.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 21/25

Deterministic Context-Free Languages

Example: The following two languages are deterministic context-free
(and so they are also context-free):

o Ly ={a"b"cP | m,n,p >0, m# n}
o L ={a"b"cP | myn,p >0, n+#p}

Their union is the language
L3 ={a"b"cP | m,n,p>0,(m#n)V(n#p)}

It is obvious that language L3 is context-free.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 22 /25

Deterministic Context-Free Languages

But language L3 is not deterministic context-free:

@ Let us assume that L3 would be deterministic context-free.

@ Then also the language Ls = L3 U La, is the complement of the
language represented by regular expression a*b*c*, would be also
deterministic context-free.

@ However, this would mean that also the complent of the language Ls
is deterministic context-free. But this is not possible, since this
complement is the language

{a"b"c" | n > 0}

which is not even context-free.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 23 /25

Deterministic Context-Free Languages

Deterministic context-free languages are also not closed with respect to
the reverse.

Example: It is not difficult to see that the followin language L over the
alphabet ¥ = {a, b, ¢, d, e} is deterministic context-free:

L = {da"b"ck|nk>0} U {eakb"c" | n,k >0}

It can be shown that the reverse of this language, i.e., the language
LR = {ckb"a"d | n,k >0} U {c"b"a*e|nk >0}

is not deterministic context-free.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 24 /25

Nondeterministic and Deterministic Pushdown Automata

Additional remarks concerning nondeterministic and deterministic
pushdown automata:

@ For every nondeterministic pushdown automaton it is possible to
construct an equivalent nondeterministic pushdown automaton with
one state of the control unit.

This is not the case for deterministic pushdown automata.

@ For every nondeterministic pushdown automaton it is possible to
contruct an equivalent nondeterministic pushdown automaton
without e-transitions.

This is not the case for deterministic pushdown automata.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 5, 2021 25 /25

