Example: We would like to describe a language of arithmetic expressions, containing expressions such as:

175 (9+15) (((10-4)*((1+34)+2))/(3+(-37)))

For simplicity we assume that:

- Expressions are fully parenthesized.
- The only arithmetic operations are "+", "-", "*", "/" and unary "-".
- Values of operands are natural numbers written in decimal a number is represented as a non-empty sequence of digits.

Alphabet: $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, *, /, (,)\}$

Example (cont.): A description by an inductive definition:

- Digit is any of characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
- Number is a non-empty sequence of digits, i.e.:
 - If α is a digit then α is a number.
 - If α is a digit and β is a number then also $\alpha\beta$ is a number.
- **Expression** is a sequence of symbols constructed according to the following rules:
 - If α is a number then α is an expression.
 - If α is an expression then also (- α) is an expression.
 - If α and β are expressions then also $(\alpha + \beta)$ is an expression.
 - If α and β are expressions then also $(\alpha \beta)$ is an expression.
 - If α and β are expressions then also ($\alpha * \beta$) is an expression.
 - If α and β are expressions then also (α/β) is an expression.

Example (cont.): The same information that was described by the previous inductive definition can be represented by a **context-free** grammar:

New auxiliary symbols, called **nonterminals**, are introduced:

- D stands for an arbitrary digit
- C stands for an arbitrary number
- *E* stands for an arbitrary expression

$egin{array}{ccc} D ightarrow 0 \ D ightarrow 1 \ D ightarrow 2 \ D ightarrow 3 \ D ightarrow 3 \ D ightarrow 4 \end{array}$	$D \rightarrow 5$ $D \rightarrow 6$ $D \rightarrow 7$ $D \rightarrow 8$ $D \rightarrow 9$	$egin{array}{cl} C & o D \ C & o DC \end{array}$	$E \rightarrow C$ $E \rightarrow (-E)$ $E \rightarrow (E+E)$ $E \rightarrow (E-E)$ $E \rightarrow (E*E)$
D ightarrow 4	D ightarrow 9		$E \rightarrow (E/E)$

Example (cont.): Written in a more succinct way:

$$D \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$$

$$C \to D \mid DC$$

$$E \to C \mid (-E) \mid (E+E) \mid (E-E) \mid (E*E) \mid (E/E)$$

Example: A language where words are (possibly empty) sequences of expressions described in the previous example, where individual expressions are separated by commas (the alphabet must be extended with symbol ","):

```
S \to T \mid \varepsilon

T \to E \mid E, T

D \to 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9

C \to D \mid DC

E \to C \mid (-E) \mid (E+E) \mid (E-E) \mid (E*E) \mid (E/E)
```

Example: Statements of some programming language (a fragment of a grammar):

$$\begin{split} S &\rightarrow E; \mid T \mid \text{if } (E) \ S \mid \text{if } (E) \ S \text{ else } S \\ \mid \text{ while } (E) \ S \mid \text{do } S \text{ while } (E); \mid \text{for } (F;F;F) \ S \\ \mid \text{ return } F; \\ T &\rightarrow \{ \ U \ \} \\ U &\rightarrow \varepsilon \mid SU \\ F &\rightarrow \varepsilon \mid E \\ E &\rightarrow \qquad \dots \end{split}$$

Remark:

- S statement
- T block of statements
- U sequence of statements
- E expression
- F optional expression that can be omitted

Z. Sawa (TU Ostrava)

Theoretical Computer Science

Formally, a context-free grammar is a tuple

 $\mathcal{G} = (\Pi, \Sigma, S, P)$

where:

- Π is a finite set of **nonterminal symbols** (nonterminals)
- Σ is a finite set of **terminal symbols** (terminals), where $\Pi \cap \Sigma = \emptyset$
- $S \in \Pi$ is an **initial nonterminal**
- $P \subseteq \Pi \times (\Pi \cup \Sigma)^*$ is a finite set of rewrite rules

Remarks:

- We will use uppercase letters *A*, *B*, *C*, ... to denote nonterminal symbols.
- We will use lowercase letters *a*, *b*, *c*, ... or digits 0, 1, 2, ... to denote terminal symbols.
- We will use lowercase Greek letters α, β, γ, ... do denote strings from (Π ∪ Σ)*.
- We will use the following notation for rules instead of (A, α)

$A \rightarrow \alpha$

- A left-hand side of the rule
- $\alpha\,$ right-hand side of the rule

Example: Grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ where

- $\Pi = \{A, B, C\}$
- $\Sigma = \{a, b\}$
- S = A
- P contains rules

 $A \rightarrow aBBb$ $A \rightarrow AaA$ $B \rightarrow \varepsilon$ $B \rightarrow bCA$ $C \rightarrow AB$ $C \rightarrow a$ $C \rightarrow b$

Remark: If we have more rules with the same left-hand side, as for example

 $A \rightarrow \alpha_1 \qquad A \rightarrow \alpha_2 \qquad A \rightarrow \alpha_3$

we can write them in a more succinct way as

 $A \rightarrow \alpha_1 \mid \alpha_2 \mid \alpha_3$

For example, the rules of the grammar from the previous slide can be written as

 $\begin{array}{l} A \rightarrow aBBb \mid AaA \\ B \rightarrow \varepsilon \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows:

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: A

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $\begin{array}{l} \underline{A} \rightarrow aBBb \mid AaA \\ B \rightarrow \varepsilon \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: *A*

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $\begin{array}{l} \underline{A} \rightarrow \underline{aBBb} \mid AaA \\ B \rightarrow \varepsilon \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}$

For example, the word *abbabb* can be in grammar G generated as follows: <u>A</u> \Rightarrow <u>aBBb</u>

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $A \rightarrow aBBb \mid AaA$ $\underline{B} \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar G generated as follows: $A \Rightarrow a\underline{B}Bb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $A \rightarrow aBBb \mid AaA$ $\underline{B} \rightarrow \varepsilon \mid \underline{bCA}$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar G generated as follows: $A \Rightarrow a\underline{B}Bb \Rightarrow a\underline{bCA}Bb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar G generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $\begin{array}{l} \underline{A} \rightarrow aBBb \mid AaA \\ B \rightarrow \varepsilon \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}$

For example, the word *abbabb* can be in grammar G generated as follows: $A \Rightarrow aBBb \Rightarrow abC\underline{A}Bb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules

 $\begin{array}{l} \underline{A} \rightarrow \underline{aBBb} \mid AaA \\ B \rightarrow \varepsilon \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}$

For example, the word *abbabb* can be in grammar G generated as follows: $A \Rightarrow aBBb \Rightarrow abC\underline{A}Bb \Rightarrow abC\underline{aBBb}Bb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar G generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $A \rightarrow aBBb \mid AaA$ $\underline{B} \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar G generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaB\underline{B}bBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $A \rightarrow aBBb \mid AaA$ $\underline{B} \rightarrow \underline{\varepsilon} \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaB\underline{B}bBb \Rightarrow abCaBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $\underline{C} \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow ab\underline{C}aBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $\underline{C} \rightarrow AB \mid a \mid \underline{b}$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow ab\underline{C}aBbBb \Rightarrow ab\underline{b}aBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $A \rightarrow aBBb \mid AaA$ $\underline{B} \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBb\underline{B}b$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $A \rightarrow aBBb \mid AaA$ $\underline{\underline{B}} \rightarrow \underline{\underline{\varepsilon}} \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $A \rightarrow aBBb \mid AaA$ $\underline{B} \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $A \rightarrow aBBb \mid AaA$ $\underline{\underline{B}} \rightarrow \underline{\underline{\varepsilon}} \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbBb \Rightarrow abbabb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}$, $\Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word *abbabb* can be in grammar \mathcal{G} generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbb \Rightarrow abbaBbb \Rightarrow abbabb$

On strings from $(\Pi \cup \Sigma)^*$ we define relation $\Rightarrow \subseteq (\Pi \cup \Sigma)^* \times (\Pi \cup \Sigma)^*$ such that

 $\alpha \Rightarrow \alpha'$

iff $\alpha = \beta_1 A \beta_2$ and $\alpha' = \beta_1 \gamma \beta_2$ for some $\beta_1, \beta_2, \gamma \in (\Pi \cup \Sigma)^*$ and $A \in \Pi$ where $(A \to \gamma) \in P$.

Example: If $(B \rightarrow bCA) \in P$ then

 $aCBbA \Rightarrow aCbCAbA$

Remark: Informally, $\alpha \Rightarrow \alpha'$ means that it is possible to derive α' from α by one step where an occurrence of some nonterminal A in α is replaced with the right-hand side of some rule $A \rightarrow \gamma$ with A on the left-hand side.

On strings from $(\Pi \cup \Sigma)^*$ we define relation $\Rightarrow \subseteq (\Pi \cup \Sigma)^* \times (\Pi \cup \Sigma)^*$ such that

 $\alpha \Rightarrow \alpha'$

iff $\alpha = \beta_1 A \beta_2$ and $\alpha' = \beta_1 \gamma \beta_2$ for some $\beta_1, \beta_2, \gamma \in (\Pi \cup \Sigma)^*$ and $A \in \Pi$ where $(A \to \gamma) \in P$.

Example: If $(B \rightarrow bCA) \in P$ then

 $aC\underline{B}bA \Rightarrow aC\underline{bCA}bA$

Remark: Informally, $\alpha \Rightarrow \alpha'$ means that it is possible to derive α' from α by one step where an occurrence of some nonterminal A in α is replaced with the right-hand side of some rule $A \rightarrow \gamma$ with A on the left-hand side.

Context-Free Grammars

A derivation of length *n* is a sequence $\beta_0, \beta_1, \beta_2, \cdots, \beta_n$, where $\beta_i \in (\Pi \cup \Sigma)^*$, and where $\beta_{i-1} \Rightarrow \beta_i$ for all $1 \le i \le n$, which can be written more succinctly as

$$\beta_0 \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-1} \Rightarrow \beta_n$$

The fact that for given $\alpha, \alpha' \in (\Pi \cup \Sigma)^*$ and $n \in \mathbb{N}$ there exists some derivation $\beta_0 \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-1} \Rightarrow \beta_n$, where $\alpha = \beta_0$ and $\alpha' = \beta_n$, is denoted

 $\alpha \Rightarrow^{n} \alpha'$

The fact that $\alpha \Rightarrow^n \alpha'$ for some $n \ge 0$, is denoted

$$\alpha \Rightarrow^* \alpha'$$

Remark: Relation \Rightarrow^* is the reflexive and transitive closure of relation \Rightarrow (i.e., the smallest reflexive and transitive relation containing relation \Rightarrow).

Z. Sawa (TU Ostrava)

Sentential forms are those $\alpha \in (\Pi \cup \Sigma)^*$, for which

 $S \Rightarrow^* \alpha$

where S is the initial nonterminal.

A language $\mathcal{L}(\mathcal{G})$ generated by a grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ is the set of all words over alphabet Σ that can be derived by some derivation from the initial nonterminal S using rules from P, i.e.,

$$\mathcal{L}(\mathcal{G}) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$$

Definition

A language *L* is **context-free** if there exists some context-free grammar \mathcal{G} such that $L = \mathcal{L}(\mathcal{G})$.

Example: We want to construct a grammar generating the language

 $L = \{a^n b^n \mid n \ge 0\}$

Example: We want to construct a grammar generating the language

 $L = \{a^n b^n \mid n \ge 0\}$

Grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ where $\Pi = \{S\}$, $\Sigma = \{a, b\}$, and P contains

 $S \rightarrow \varepsilon \mid aSb$

Example: We want to construct a grammar generating the language

 $L = \{a^n b^n \mid n \ge 0\}$

Grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ where $\Pi = \{S\}$, $\Sigma = \{a, b\}$, and P contains

 $S \rightarrow \varepsilon \mid aSb$

$$S \Rightarrow \varepsilon$$

$$S \Rightarrow aSb \Rightarrow ab$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaabbb$$

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaaSbbb \Rightarrow aaaaSbbbb \Rightarrow aaaabbbb$$

...

Example: We want to construct a grammar generating the language consisting of all palindroms over the alphabet $\{a, b\}$, i.e.,

$$L = \{ w \in \{a, b\}^* \mid w = w^R \}$$

Remark: w^R denotes the **reverse** of a word w, i.e., the word w written backwards.

Example: We want to construct a grammar generating the language consisting of all palindroms over the alphabet $\{a, b\}$, i.e.,

$$L = \{ w \in \{a, b\}^* \mid w = w^R \}$$

Remark: w^R denotes the **reverse** of a word w, i.e., the word w written backwards.

Solution:

 $S \rightarrow \varepsilon \mid a \mid b \mid aSa \mid bSb$

Example: We want to construct a grammar generating the language consisting of all palindroms over the alphabet $\{a, b\}$, i.e.,

$$L = \{ w \in \{a, b\}^* \mid w = w^R \}$$

Remark: w^R denotes the **reverse** of a word w, i.e., the word w written backwards.

Solution:

 $S \rightarrow \varepsilon \mid a \mid b \mid aSa \mid bSb$

 $S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaSaba \Rightarrow abaaaba$

Example: We want to construct a grammar generating the language L consisting of all correctly parenthesised sequences of symbols '(' and ')'.

For example $(()())(()) \in L$ but $()) \notin L$.

Example: We want to construct a grammar generating the language L consisting of all correctly parenthesised sequences of symbols '(' and ')'.

For example $(()())(()) \in L$ but $()) \notin L$.

Solution:

 $S \rightarrow \varepsilon \mid (S) \mid SS$

Example: We want to construct a grammar generating the language L consisting of all correctly parenthesised sequences of symbols '(' and ')'.

For example $(()())(()) \in L$ but $()) \notin L$.

Solution:

 $S \rightarrow \varepsilon \mid (S) \mid SS$

 $\begin{array}{l} S \Rightarrow SS \Rightarrow (S)S \Rightarrow (S)(S) \Rightarrow (SS)(S) \Rightarrow ((S)S)(S) \Rightarrow \\ (()S)(S) \Rightarrow (()(S))(S) \Rightarrow (()())(S) \Rightarrow (()())(S)) \Rightarrow \\ (()())(()) \end{array}$

Example: We want to construct a grammar generating the language L consisting of all correctly constructed arithmetic experessions where operands are always of the form 'a' and where symbols + and * can be used as operators.

For example $(a + a) * a + (a * a) \in L$.

Example: We want to construct a grammar generating the language L consisting of all correctly constructed arithmetic experessions where operands are always of the form 'a' and where symbols + and * can be used as operators.

For example $(a + a) * a + (a * a) \in L$.

Solution:

$$E \rightarrow a \mid E + E \mid E * E \mid (E)$$

Example: We want to construct a grammar generating the language L consisting of all correctly constructed arithmetic experessions where operands are always of the form 'a' and where symbols + and * can be used as operators.

For example $(a + a) * a + (a * a) \in L$.

Solution:

$$E \rightarrow a \mid E + E \mid E * E \mid (E)$$

$$E \Rightarrow E + E \Rightarrow E * E + E \Rightarrow (E) * E + E \Rightarrow (E + E) * E + E \Rightarrow$$
$$(a+E) * E + E \Rightarrow (a+a) * E + E \Rightarrow (a+a) * a + E \Rightarrow (a+a) * a + (E) \Rightarrow$$
$$(a+a) * a + (E * E) \Rightarrow (a+a) * a + (a * E) \Rightarrow (a+a) * a + (a * a)$$

```
\begin{array}{l} A \rightarrow aBBb \mid AaA \\ B \rightarrow \varepsilon \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}
```

Α

```
\begin{array}{l} A \rightarrow aBBb \mid AaA \\ B \rightarrow \varepsilon \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}
```

Α

<u>A</u>

 $\begin{array}{l} \underline{A} \rightarrow aBBb \mid AaA \\ B \rightarrow \varepsilon \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}$

Α

$\begin{array}{l} \underline{A} \rightarrow \underline{aBBb} \mid AaA \\ B \rightarrow \varepsilon \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}$

$\underline{A} \Rightarrow \underline{aBBb}$

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

 $A \Rightarrow aBBb$

$A \rightarrow aBBb \mid AaA$ $\underline{B} \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

 $A \Rightarrow a \underline{B}Bb$

 $A \rightarrow aBBb \mid AaA$ $\underline{B} \rightarrow \varepsilon \mid \underline{bCA}$ $C \rightarrow AB \mid a \mid b$

$A \Rightarrow a\underline{B}Bb \Rightarrow a\underline{bCA}Bb$

 $A \rightarrow aBBb \mid AaA$ $B \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

$A \Rightarrow aBBb \Rightarrow abCABb$

21 / 55

 $\begin{array}{l} \underline{A} \rightarrow aBBb \mid AaA \\ B \rightarrow \varepsilon \mid bCA \\ C \rightarrow AB \mid a \mid b \end{array}$

$A \Rightarrow aBBb \Rightarrow abC\underline{A}Bb$

$A \Rightarrow aBBb \Rightarrow abC\underline{A}Bb \Rightarrow abC\underline{aBBb}Bb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb$

21 / 55

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaB\underline{B}bBb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaB\underline{B}bBb \Rightarrow abCaBbBb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb \Rightarrow abCaBbBb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBbBb \Rightarrow abCaBbBb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBb\underline{B}b$

 $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBb\underline{B}b \Rightarrow abbaBbb$

 $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbb$

 $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBb \Rightarrow abbaBb \Rightarrow abbabb$

 $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbBb \Rightarrow abbaBbb \Rightarrow abbabb$

For each derivation there is some derivation tree:

- Nodes of the tree are labelled with terminals and nonterminals.
- The root of the tree is labelled with the initial nonterminal.
- The leafs of the tree are labelled with terminals or with symbols ε .
- The remaining nodes of the tree are labelled with nonterminals.
- If a node is labelled with some nonterminal A then its children are labelled with the symbols from the right-hand side of some rewriting rule A → α.

$E \rightarrow a \mid E + E \mid E * E \mid (E)$

A **left derivation** is a derivation where in every step we always replace the leftmost nonterminal.

 $\underline{E} \Rightarrow \underline{E} + E \Rightarrow \underline{E} * E + E \Rightarrow a * \underline{E} + E \Rightarrow a * a + \underline{E} \Rightarrow a * a + a$

A **right derivation** is a derivation where in every step we always replace the rightmost nonterminal.

 $\underline{E} \Rightarrow E + \underline{E} \Rightarrow \underline{E} + a \Rightarrow E * \underline{E} + a \Rightarrow \underline{E} * a + a \Rightarrow a * a + a$

A derivation need not be left or right:

 $\underline{E} \Rightarrow \underline{E} + E \Rightarrow E * \underline{E} + E \Rightarrow E * a + \underline{E} \Rightarrow \underline{E} * a + a \Rightarrow a * a + a$

- There can be several different derivations corresponding to one derivation tree.
- For every derivation tree, there is exactly one left and exactly one right derivation corresponding to the tree.

Grammars \mathcal{G}_1 and \mathcal{G}_2 are **equivalent** if they generate the same language, i.e., if $\mathcal{L}(\mathcal{G}_1) = \mathcal{L}(\mathcal{G}_2)$.

Remark: The problem of equivalence of context-free grammars is algorithmically undecidable. It can be shown that it is not possible to construct an algorithm that would decide for any pair of context-free grammars if they are equivalent or not.

Even the problem to decide if a grammar generates the language Σ^{\ast} is algorithmically undecidable.

Ambiguous Grammars

A grammar \mathcal{G} is **ambiguous** if there is a word $w \in \mathcal{L}(\mathcal{G})$ that has two different derivation trees, resp. two different left or two different right derivations.

Example:

 $E \Rightarrow E + E \Rightarrow E * E + E \Rightarrow a * E + E \Rightarrow a * a + E \Rightarrow a * a + a$ $E \Rightarrow E * E \Rightarrow E * E + E \Rightarrow a * E + E \Rightarrow a * a + E \Rightarrow a * a + a$

Sometimes it is possible to replace an ambiguous grammar with a grammar generating the same language but which is not ambiguous.

Example: A grammar

```
E \rightarrow E + E \mid E * E \mid (E) \mid a
```

can be replaced with the equivalent grammar

 $E \rightarrow T \mid T + E$ $T \rightarrow F \mid F * T$ $F \rightarrow a \mid (E)$

Remark: If there is no unambiguous grammar equivalent to a given ambiguous grammar, we say it is **inherently ambiguous**.

The class of context-free languages is closed with respect to:

- concatenation
- union
- iteration

The class of context-free languages is not closed with respect to:

- complement
- intersection

Context-Free Languages

We have two grammars $\mathcal{G}_1 = (\Pi_1, \Sigma, S_1, P_1)$ and $\mathcal{G}_2 = (\Pi_2, \Sigma, S_2, P_2)$, and can assume that $\Pi_1 \cap \Pi_2 = \emptyset$ and $S \notin \Pi_1 \cup \Pi_2$.

• Grammar \mathcal{G} such that $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}_1) \cdot \mathcal{L}(\mathcal{G}_2)$:

 $\mathcal{G} = (\Pi_1 \cup \Pi_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1S_2\})$

• Grammar \mathcal{G} such that $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}_1) \cup \mathcal{L}(\mathcal{G}_2)$:

 $\mathcal{G} = (\Pi_1 \cup \Pi_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\})$

• Grammar \mathcal{G} such that $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}_1)^*$:

 $\mathcal{G} = (\Pi_1 \cup \{S\}, \Sigma, S, P_1 \cup \{S \rightarrow \varepsilon, S \rightarrow S_1S\})$

Example:

 $S \rightarrow A \mid C$

Z. Sawa (TU Ostrava)

 $S \rightarrow A \mid C$ $A \rightarrow aB \mid aC \mid bA$ $B \rightarrow aD \mid bE$ $C \rightarrow bD$ $D \rightarrow bC \mid bE \mid A$ $E \rightarrow bE$

$$S \rightarrow A \mid C$$

$$A \rightarrow aB \mid aC \mid bA$$

$$B \rightarrow aD \mid bE$$

$$C \rightarrow bD$$

$$D \rightarrow bC \mid bE \mid A$$

$$E \rightarrow bE$$

$$A \rightarrow \varepsilon$$

$$E \rightarrow \varepsilon$$

Example:

Alternative construction:

Example:

Alternative construction:

$$S \rightarrow A \mid E$$

Example:

Alternative construction:

 $S \rightarrow A \mid E$ $A \rightarrow Ab \mid D$ $B \rightarrow Aa$ $C \rightarrow Aa \mid Db$ $D \rightarrow Ba \mid Cb$ $E \rightarrow Bb \mid Db \mid Eb$

Example:

Alternative construction:

$S \rightarrow A \mid E$
$A ightarrow Ab \mid D$
B ightarrow Aa
$C ightarrow Aa \mid Db$
$D ightarrow Ba \mid Cb$
$E \rightarrow Bb \mid Db \mid Eb$
A ightarrow arepsilon
C ightarrow arepsilon

Regular grammars

Definition

A grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ is **right regular** if all rules in P are of the following forms (where $A, B \in \Pi, a \in \Sigma$):

- $A \rightarrow B$
- $A \rightarrow aB$
- $A \rightarrow \varepsilon$

Definition

A grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ is **left regular** if all rules in P are of the following forms (kde $A, B \in \Pi, a \in \Sigma$):

- $A \rightarrow B$
- $A \rightarrow Ba$
- $A \rightarrow \varepsilon$

Definition

A grammar \mathcal{G} is **regular** if it right regular or left regular.

Remark: Sometimes a slightly more general definition of right (resp. left) regular grammars is given, allowing all rules of the following forms:

- $A \rightarrow wB$ (resp. $A \rightarrow Bw$)
- $A \rightarrow w$

where $A, B \in \Pi$, $w \in \Sigma^*$.

Such rules can be easily "decomposed" into rules of the form in the previous definition.

Example: Rule $A \rightarrow abbB$ can be replaced with rules

 $A \rightarrow aZ_1 \qquad Z_1 \rightarrow bZ_2 \qquad Z_2 \rightarrow bB$

where Z_1 , Z_2 are new nonterminals, not used anywhere else in the grammar.

Z. Sawa (TU Ostrava)

Proposition

For every regular language L there is a left regular grammar \mathcal{G} such that $\mathcal{L}(\mathcal{G}) = L$ and a right regular grammar \mathcal{G}' such that $\mathcal{L}(\mathcal{G}') = L$.

Proposition

For every regular grammar \mathcal{G} there is a finite automaton \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{G}).$

Definition

A context-free grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ is **reduced** if for every $A \in \Pi$:

- there are some $u, v \in \Sigma^*$ such that $S \Rightarrow^* uAv$, and
- there is some $w \in \Sigma^*$ such that $A \Rightarrow^* w$.

Remark: Obviously, if $S \Rightarrow^* uAv$ and $A \Rightarrow^* w$ where $u, v, w \in \Sigma^*$, then $S \Rightarrow^* uwv$, and so A is used in some derivation of a word from Σ^* .

On the other hand, if A is used in some derivation $S \Rightarrow^* z$ of a word $z \in \Sigma^*$, then z can be divided into parts u, v, w such that z = uwvand $S \Rightarrow^* uAv$ and $A \Rightarrow^* w$. Obviously, every $A \in \Pi$ with the property that

- there are no $u, v \in \Sigma^*$ such that $S \Rightarrow^* uAv$, or
- there is no $w \in \Sigma^*$ such that $A \Rightarrow^* w$,

can be safely removed from the grammar (together with all rules where it occurs) without affecting the generated language.

An algorithm that for a given CFG \mathcal{G} contructs an equivalent reduced grammar:

Construct the set T of all nonterminals that can generate a terminal word:

$$\mathcal{T} = \{ A \in \Pi \mid (\exists w \in \Sigma^*) (A \Rightarrow^* w) \}$$

- Remove from *G* all nonterminals from the set Π *T* together with all rules where they occur.
 Denote the rusulting grammar *G*' = (Π', Σ, *S*, *P*').
- Sonstruct the set D of all nonterminals that can be "reached" from the initial nonterminal S:

 $\mathcal{D} = \{ A \in \Pi' \mid (\exists \alpha, \beta \in (\Pi' \cup \Sigma)^*) (S \Rightarrow^* \alpha A \beta) \}$

Remove from G' all nonterminals from the set Π' – D together with all rules where they occur.
 The rusulting grammar G" is the result of the whole algorithm.

```
\begin{array}{l} S \rightarrow AC \mid B \\ A \rightarrow aC \mid AbA \\ B \rightarrow Ba \mid BbA \mid DB \\ C \rightarrow aa \mid aBC \\ D \rightarrow aA \mid \varepsilon \end{array}
```

$$\mathcal{T}_0 = \{C, D\}$$

$$S \rightarrow AC \mid B$$

$$A \rightarrow aC \mid AbA$$

$$B \rightarrow Ba \mid BbA \mid DB$$

$$C \rightarrow aa \mid aBC$$

$$D \rightarrow aA \mid \varepsilon$$

$$\mathcal{T}_0 = \{C, D\}$$
$$\mathcal{T}_1 = \{C, D, A\}$$

$$S \rightarrow AC \mid B$$

$$A \rightarrow aC \mid AbA$$

$$B \rightarrow Ba \mid BbA \mid DB$$

$$C \rightarrow aa \mid aBC$$

$$D \rightarrow aA \mid \varepsilon$$

$$\begin{aligned} \mathcal{T}_0 &= \{ C, D \} \\ \mathcal{T}_1 &= \{ C, D, A \} \\ \mathcal{T}_2 &= \{ C, D, A, S \} \end{aligned}$$

$$S \rightarrow AC \mid B$$

$$A \rightarrow aC \mid AbA$$

$$B \rightarrow Ba \mid BbA \mid DB$$

$$C \rightarrow aa \mid aBC$$

$$D \rightarrow aA \mid \varepsilon$$

Example:

$$\begin{aligned} \mathcal{T}_0 &= \{ C, D \} \\ \mathcal{T}_1 &= \{ C, D, A \} \\ \mathcal{T}_2 &= \{ C, D, A, S \} \end{aligned}$$

 $S \rightarrow AC \mid B$ $A \rightarrow aC \mid AbA$ $B \rightarrow Ba \mid BbA \mid DB$ $C \rightarrow aa \mid aBC$ $D \rightarrow aA \mid \varepsilon$

$$\mathcal{T} = \{C, D, A, S\}$$

- $S \rightarrow AC \mid B$ $A \rightarrow aC \mid AbA$ $B \rightarrow Ba \mid BbA \mid DB$ $C \rightarrow aa \mid aBC$ $D \rightarrow aA \mid \varepsilon$
- $\mathcal{T}_0 = \{C, D\}$ $\mathcal{T}_1 = \{C, D, A\}$ $\mathcal{T}_2 = \{C, D, A, S\}$ $\mathcal{T} = \{C, D, A, S\}$ $S \rightarrow AC$ $A \rightarrow aC \mid AbA$ $C \rightarrow aa$ $D \rightarrow aA \mid \varepsilon$

Example:

 $S \rightarrow AC \mid B$ $A \rightarrow aC \mid AbA$ $B \rightarrow Ba \mid BbA \mid DB$ $C \rightarrow aa \mid aBC$ $D \rightarrow aA \mid \varepsilon$

$$\mathcal{T}_{0} = \{C, D\} \\ \mathcal{T}_{1} = \{C, D, A\} \\ \mathcal{T}_{2} = \{C, D, A, S\} \\ \mathcal{T} = \{C, D, A, S\}$$

$$S \rightarrow AC$$

 $A \rightarrow aC \mid AbA$
 $C \rightarrow aa$
 $D \rightarrow aA \mid \varepsilon$

 $D_0 = \{S\}$

Example:

 $\begin{array}{l} S \rightarrow AC \mid B \\ A \rightarrow aC \mid AbA \\ B \rightarrow Ba \mid BbA \mid DB \\ C \rightarrow aa \mid aBC \\ D \rightarrow aA \mid \varepsilon \end{array}$

$$\mathcal{T}_{0} = \{C, D\} \\ \mathcal{T}_{1} = \{C, D, A\} \\ \mathcal{T}_{2} = \{C, D, A, S\}$$

$$\mathcal{T} = \{C, D, A, S\}$$

$$\mathcal{D}_0 = \{S\}$$
$$\mathcal{D}_1 = \{S, A, C\}$$

S
ightarrow AC $A
ightarrow aC \mid AbA$ C
ightarrow aa $D
ightarrow aA \mid \varepsilon$

Example:

 $S \rightarrow AC \mid B$ $A \rightarrow aC \mid AbA$ $B \rightarrow Ba \mid BbA \mid DB$ $C \rightarrow aa \mid aBC$ $D \rightarrow aA \mid \varepsilon$

$$\mathcal{T}_{0} = \{C, D\} \\ \mathcal{T}_{1} = \{C, D, A\} \\ \mathcal{T}_{2} = \{C, D, A, S\}$$

 $\mathcal{T} = \{C, D, A, S\}$

S
ightarrow AC $A
ightarrow aC \mid AbA$ C
ightarrow aa $D
ightarrow aA \mid \varepsilon$ $\mathcal{D}_0 = \{S\}$ $\mathcal{D}_1 = \{S, A, C\}$ $\mathcal{D} = \{S, A, C\}$

Example:

 $S \rightarrow AC \mid B$ $A \rightarrow aC \mid AbA$ $B \rightarrow Ba \mid BbA \mid DB$ $C \rightarrow aa \mid aBC$ $D \rightarrow aA \mid \varepsilon$

$$\mathcal{T}_{0} = \{C, D\}$$
$$\mathcal{T}_{1} = \{C, D, A\}$$
$$\mathcal{T}_{2} = \{C, D, A, S\}$$
$$\mathcal{T} = \{C, D, A, S\}$$
$$S \rightarrow AC$$
$$A \rightarrow aC \mid AbA$$
$$C \rightarrow aa$$
$$D \rightarrow aA \mid \varepsilon$$

 $\mathcal{D}_0 = \{S\}$ $\mathcal{D}_1 = \{S, A, C\}$ $\mathcal{D} = \{S, A, C\}$

> $S \rightarrow AC$ $A \rightarrow aC \mid AbA$ $C \rightarrow aa$

Let us assume we have a context-free grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$.

We can easily construct algorithms for the following problems dealing with some properties of context-free grammar \mathcal{G} :

- To find out for given $\alpha \in (\Pi \cup \Sigma)^*$ whether $\alpha \Rightarrow^* \varepsilon$.
- To find, for given α ∈ (Π ∪ Σ)*, the set *first*(α), where
 first(α) = { a ∈ Σ | α ⇒* aβ for some β ∈ (Π ∪ Σ)* }
- To find, for given α ∈ (Π ∪ Σ)*, the set *last*(α), where
 last(α) = { a ∈ Σ | α ⇒* βa for some β ∈ (Π ∪ Σ)* }

Some Properties of Context-free Grammars

- To find, for given nonterminal A ∈ Π, the set follow(A), where follow(A) = { a ∈ Σ | S ⇒* β₁A a β₂ for some β₁, β₂ ∈ (Π ∪ Σ)* }
- To find all nonterminals A ∈ Π, for which grammar G contains the left recursion, i.e., those for which

 $A \Rightarrow^+ A\alpha$ for some $\alpha \in (\Pi \cup \Sigma)^*$

• To find all nonterminals $A \in \Pi$, for which grammar \mathcal{G} contains the right recursion, i.e., those for which

 $A \Rightarrow^+ \alpha A$ for some $\alpha \in (\Pi \cup \Sigma)^*$

Remark: Notation $\alpha \Rightarrow^+ \beta$, where $\alpha, \beta \in (\Pi \cup \Sigma)^*$, denotes that α can be rewritten to β (i.e., $\alpha \Rightarrow^* \beta$) by a derivation with a nonzero number of steps.

To be able to use a given context-free grammar \mathcal{G} for a straightforward implementation of **recursive descent**, it must have some particular properties:

- It must not contain left recursion.
- For each nonterminal *A* ∈ Π and all rules with *A* on the left-hand side, i.e.,

 $A \rightarrow \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n$

the sets $first(\alpha_1)$, $first(\alpha_2)$, ..., $first(\alpha_n)$ must be pairwise disjoint.

For every nonterminal A ∈ Π and all rules A → α₁ | α₂ | ··· | α_n there can be at most one right-hand side α_i such that α_i ⇒* ε. If there is such right-hand side (and so A ⇒* ε), the sets first(α₁), first(α₂), ..., first(α_n) must be disjoint with the set follow(A).

Rules of the form $A \rightarrow \varepsilon$ are called **epsilon-rules** (ε -rules).

Proposition

For every context-free grammar \mathcal{G} there is a context-free grammar \mathcal{G}' without ε -rules such that $\mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G}) - \{\varepsilon\}$.

Proof: Construct the set \mathcal{E} of all nonterminals that can be rewritten to ε , i.e.,

 $\mathcal{E} = \{ A \in \Pi \mid A \Rightarrow^* \varepsilon \}$

Remove all ε -rules and replace every other rule $A \to \alpha$ with a set of rules obtained by all possible rules of the form $A \to \alpha'$ where α' is obtained from α by possible ommitting of (some) occurrences of nonterminals from \mathcal{E} .

```
S \rightarrow ASA \mid aBC \mid bA \rightarrow BD \mid aABB \rightarrow bB \mid \varepsilonC \rightarrow AaA \mid bD \rightarrow AD \mid BBB \mid a
```

$$\mathcal{E}_0 = \{B\}$$

$$S \rightarrow ASA \mid aBC \mid b$$

$$A \rightarrow BD \mid aAB$$

$$B \rightarrow bB \mid \varepsilon$$

$$C \rightarrow AaA \mid b$$

$$D \rightarrow AD \mid BBB \mid a$$

$$\begin{aligned} \mathcal{E}_0 &= \{B\} \\ \mathcal{E}_1 &= \{B, D\} \end{aligned}$$

$$S \rightarrow ASA \mid aBC \mid b$$

$$A \rightarrow BD \mid aAB$$

$$B \rightarrow bB \mid \varepsilon$$

$$C \rightarrow AaA \mid b$$

$$D \rightarrow AD \mid BBB \mid a$$

$$\mathcal{E}_0 = \{B\}$$

$$\mathcal{E}_1 = \{B, D\}$$

$$\mathcal{E}_2 = \{B, D, A\}$$

$$S \rightarrow ASA \mid aBC \mid b$$

$$A \rightarrow BD \mid aAB$$

$$B \rightarrow bB \mid \varepsilon$$

$$C \rightarrow AaA \mid b$$

$$D \rightarrow AD \mid BBB \mid a$$

$$S \rightarrow ASA \mid aBC \mid b$$

$$A \rightarrow BD \mid aAB$$

$$B \rightarrow bB \mid \varepsilon$$

$$C \rightarrow AaA \mid b$$

$$D \rightarrow AD \mid BBB \mid a$$

$$\mathcal{E}_0 = \{B\}$$

$$\mathcal{E}_1 = \{B, D\}$$

$$\mathcal{E}_2 = \{B, D, A\}$$

$$\mathcal{E} = \{B, D, A\}$$

Example:

```
S \rightarrow ASA \mid aBC \mid b
A \rightarrow BD \mid aAB
B \rightarrow bB \mid \varepsilon
C \rightarrow AaA \mid b
D \rightarrow AD \mid BBB \mid a
```

$$\mathcal{E}_{0} = \{B\}$$

$$\mathcal{E}_{1} = \{B, D\}$$

$$\mathcal{E}_{2} = \{B, D, A\}$$

$$\mathcal{E} = \{B, D, A\}$$

$$S \rightarrow ASA \mid SA \mid AS \mid S \mid aBC \mid aC \mid b$$

$$A \rightarrow BD \mid B \mid D \mid aAB \mid aB \mid aA \mid a$$

$$B \rightarrow bB \mid b$$

$$C \rightarrow AaA \mid aA \mid Aa \mid a \mid b$$

$$D \rightarrow AD \mid D \mid A \mid BBB \mid BB \mid B \mid a$$

6

For every context-free grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ there is a context-free grammar $\mathcal{G}' = (\Pi', \Sigma, S', P')$ such that $\mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G})$ and either:

- \mathcal{G}' does not contain ε -rules, or
- the only ε -rule in \mathcal{G}' is the rule $S' \to \varepsilon$ and S' does not occur on the right-hand side of any rule in \mathcal{G}' .

Rules of the form $A \rightarrow B$ where $A, B \in \Pi$ are called **unit rules**.

Proposition

For every context-free grammar \mathcal{G} there is a context-free grammar \mathcal{G}' without ε -rules and without unit rules such that $\mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G}) - \{\varepsilon\}$.

Proof: Assume $\mathcal{G} = (\Pi, \Sigma, S, P)$ does not contain ε -rules.

For each $A \in \Pi$ compute the set \mathcal{N}_A of all nonterminals that can be obtained from A by using only unit rules, i.e.,

 $\mathcal{N}_A = \{ B \in \Pi \mid A \Rightarrow^* B \}$

Construct CFG $\mathcal{G}' = (\Pi, \Sigma, S, P')$ where P' consist of rules of the form $A \to \beta$ where $A \in \Pi$, β is not a single nonterminal, and $(B \to \beta) \in P$ for some $B \in \mathcal{N}_A$.

Example:

 $S \rightarrow AB \mid C$ $A \rightarrow a \mid bA$ $B \rightarrow C \mid b$ $C \rightarrow D \mid AA \mid AaA$ $D \rightarrow B \mid ABb$

$$\mathcal{N}_S^0 = \{S\}$$

$$S \rightarrow AB \mid C$$

$$A \rightarrow a \mid bA$$

$$B \rightarrow C \mid b$$

$$C \rightarrow D \mid AA \mid AaA$$

$$D \rightarrow B \mid ABb$$

$$\begin{array}{l} \mathcal{N}_S^0 = \{S\} \\ \mathcal{N}_S^1 = \{S, C\} \end{array}$$

$$S \rightarrow AB \mid C$$

$$A \rightarrow a \mid bA$$

$$B \rightarrow C \mid b$$

$$C \rightarrow D \mid AA \mid AaA$$

$$D \rightarrow B \mid ABb$$

$$\begin{array}{l} \mathcal{N}_{S}^{0} = \{S\} \\ \mathcal{N}_{S}^{1} = \{S, C\} \\ \mathcal{N}_{S}^{2} = \{S, C, D\} \end{array}$$

$$S \rightarrow AB \mid C$$

$$A \rightarrow a \mid bA$$

$$B \rightarrow C \mid b$$

$$C \rightarrow D \mid AA \mid AaA$$

$$D \rightarrow B \mid ABb$$

$$\begin{array}{l} \mathcal{N}_{S}^{0} = \{S\} \\ \mathcal{N}_{S}^{1} = \{S, C\} \\ \mathcal{N}_{S}^{2} = \{S, C, D\} \\ \mathcal{N}_{S}^{3} = \{S, C, D, B\} \end{array}$$

$$S \rightarrow AB \mid C$$

$$A \rightarrow a \mid bA$$

$$B \rightarrow C \mid b$$

$$C \rightarrow D \mid AA \mid AaA$$

$$D \rightarrow B \mid ABb$$

$$\mathcal{N}_{S}^{0} = \{S\} \\ \mathcal{N}_{S}^{1} = \{S, C\} \\ \mathcal{N}_{S}^{2} = \{S, C, D\} \\ \mathcal{N}_{S}^{3} = \{S, C, D, B\} \\ \mathcal{N}_{A}^{0} = \{A\}$$

$$S \rightarrow AB \mid C$$

$$A \rightarrow a \mid bA$$

$$B \rightarrow C \mid b$$

$$C \rightarrow D \mid AA \mid AaA$$

$$D \rightarrow B \mid ABb$$

Example:

S A B C D

$$\mathcal{N}_{S}^{0} = \{S\}$$

$$\mathcal{N}_{S}^{1} = \{S, C\}$$

$$\mathcal{N}_{S}^{2} = \{S, C, D\}$$

$$\mathcal{N}_{S}^{3} = \{S, C, D, B\}$$

$$\mathcal{N}_{A}^{0} = \{A\}$$

$$\mathcal{N}_{A}^{0} = \{A\}$$

$$\mathcal{N}_{B}^{0} = \{B\}$$

$$\rightarrow C \mid b$$

$$\rightarrow D \mid AA \mid AaA$$

$$\rightarrow B \mid ABb$$

$$\mathcal{N}_{S}^{0} = \{S\}$$

$$\mathcal{N}_{S}^{1} = \{S, C\}$$

$$\mathcal{N}_{S}^{2} = \{S, C, D\}$$

$$\mathcal{N}_{S}^{3} = \{S, C, D, B\}$$

$$\mathcal{N}_{A}^{0} = \{A\}$$

$$\mathcal{N}_{A}^{0} = \{A\}$$

$$\mathcal{N}_{B}^{0} = \{B\}$$

$$\mathcal{N}_{B}^{1} = \{B, C\}$$

$$\mathcal{C} \rightarrow D \mid AA \mid AaA$$

$$\mathcal{D} \rightarrow B \mid ABb$$

$$\mathcal{N}_{S}^{0} = \{S\}$$

$$\mathcal{N}_{S}^{1} = \{S, C\}$$

$$\mathcal{N}_{S}^{2} = \{S, C, D\}$$

$$\mathcal{N}_{S}^{3} = \{S, C, D, B\}$$

$$\mathcal{N}_{A}^{0} = \{A\}$$

$$\mathcal{N}_{A}^{0} = \{A\}$$

$$\mathcal{N}_{B}^{0} = \{B\}$$

$$\mathcal{N}_{B}^{0} = \{B, C\}$$

$$\mathcal{N}_{B}^{0} = \{B, C, D\}$$

$$\mathcal{N}_{S}^{0} = \{S\}$$

$$\mathcal{N}_{S}^{1} = \{S, C\}$$

$$\mathcal{N}_{S}^{2} = \{S, C, D\}$$

$$\mathcal{N}_{S}^{3} = \{S, C, D, B\}$$

$$\mathcal{N}_{A}^{0} = \{A\}$$

$$\mathcal{N}_{A}^{0} = \{A\}$$

$$\mathcal{N}_{B}^{0} = \{B\}$$

$$\mathcal{N}_{B}^{0} = \{B, C\}$$

$$\mathcal{N}_{B}^{0} = \{B, C\}$$

$$\mathcal{N}_{B}^{2} = \{B, C, D\}$$

$$\mathcal{N}_{B}^{2} = \{B, C, D\}$$

$$\mathcal{N}_{B}^{2} = \{B, C, D\}$$

$$\mathcal{N}_{B}^{2} = \{C\}$$

$$\mathcal{N}_{S}^{0} = \{S\}$$

$$\mathcal{N}_{S}^{1} = \{S, C\}$$

$$\mathcal{N}_{S}^{2} = \{S, C, D\}$$

$$\mathcal{N}_{S}^{0} = \{S, C, D\}$$

$$\mathcal{N}_{S}^{0} = \{S, C, D, B\}$$

$$\mathcal{N}_{S}^{0} = \{A\}$$

$$\mathcal{N}_{A}^{0} = \{A\}$$

$$\mathcal{N}_{B}^{0} = \{B\}$$

$$\mathcal{N}_{B}^{0} = \{B, C\}$$

$$\mathcal{N}_{B}^{0} = \{B, C\}$$

$$\mathcal{N}_{B}^{0} = \{B, C, D\}$$

$$\mathcal{N}_{C}^{0} = \{C\}$$

$$\mathcal{N}_{C}^{0} = \{C, D\}$$

$$\mathcal{N}_{S}^{0} = \{S\}$$

$$\mathcal{N}_{S}^{1} = \{S, C\}$$

$$\mathcal{N}_{S}^{2} = \{S, C, D\}$$

$$\mathcal{N}_{S}^{0} = \{S, C, D, B\}$$

$$\mathcal{N}_{S}^{0} = \{A\}$$

$$\mathcal{N}_{A}^{0} = \{A\}$$

$$\mathcal{N}_{B}^{0} = \{B\}$$

$$\mathcal{N}_{B}^{1} = \{B, C\}$$

$$\mathcal{N}_{B}^{2} = \{B, C, D\}$$

$$\mathcal{N}_{O}^{0} = \{C\}$$

$$\mathcal{N}_{C}^{0} = \{C, D\}$$

$$\mathcal{N}_{C}^{2} = \{C, D, B\}$$

Example:

$$\mathcal{N}_{S}^{0} = \{S\}$$

$$\mathcal{N}_{S}^{0} = \{S, C\}$$

$$\mathcal{N}_{S}^{2} = \{S, C, D\}$$

$$\mathcal{N}_{S}^{3} = \{S, C, D, B\}$$

$$\mathcal{N}_{A}^{0} = \{A\}$$

$$\mathcal{N}_{A}^{0} = \{A\}$$

$$\mathcal{N}_{B}^{0} = \{B\}$$

$$\mathcal{N}_{B}^{0} = \{B, C\}$$

$$\mathcal{N}_{C}^{0} = \{C\}$$

$$\mathcal{N}_{C}^{1} = \{C, D\}$$

$$\mathcal{N}_{C}^{2} = \{C, D, B\}$$

 $\mathcal{N}_D^0 = \{D\}$

$$\mathcal{N}_{S}^{0} = \{S\}$$

$$\mathcal{N}_{S}^{1} = \{S, C\}$$

$$\mathcal{N}_{S}^{2} = \{S, C, D\}$$

$$\mathcal{N}_{S}^{0} = \{S, C, D\}$$

$$\mathcal{N}_{S}^{0} = \{S, C, D, B\}$$

$$\mathcal{N}_{A}^{0} = \{A\}$$

$$\mathcal{N}_{A}^{0} = \{A\}$$

$$\mathcal{N}_{B}^{0} = \{B\}$$

$$\mathcal{N}_{B}^{1} = \{B, C\}$$

$$\mathcal{N}_{B}^{2} = \{B, C, D\}$$

$$\mathcal{N}_{C}^{0} = \{C\}$$

$$\mathcal{N}_{C}^{0} = \{C, D\}$$

$$\mathcal{N}_{C}^{2} = \{C, D, B\}$$

$$\mathcal{N}_D^0 = \{D\}$$
$$\mathcal{N}_D^1 = \{D, B\}$$

Example:

$$\begin{split} \mathcal{N}_{S}^{0} &= \{S\}\\ \mathcal{N}_{S}^{1} &= \{S, C\}\\ \mathcal{N}_{S}^{2} &= \{S, C, D\}\\ \mathcal{N}_{S}^{3} &= \{S, C, D, B\}\\ \mathcal{N}_{S}^{0} &= \{S, C, D, B\}\\ \mathcal{N}_{S}^{0} &= \{A\}\\ \mathcal{N}_{B}^{0} &= \{B\}\\ \mathcal{N}_{B}^{0} &= \{B\}\\ \mathcal{N}_{B}^{0} &= \{B, C\}\\ \mathcal{N}_{C}^{0} &= \{C\}\\ \mathcal{N}_{C}^{0} &= \{C, D\}\\ \mathcal{N}_{C}^{0} &= \{C, D\}\\ \mathcal{N}_{C}^{0} &= \{C, D\}\\ \mathcal{N}_{D}^{0} &= \{D\}\\ \mathcal{N}_{D}^{0} &= \{D, B\}\\ \mathcal{N}_{D}^{0} &= \{D, B, C\} \end{split}$$

}

$$\begin{array}{l} \mathcal{N}_{S}^{0} = \{S\} \\ \mathcal{N}_{S}^{1} = \{S, C\} \\ \mathcal{N}_{S}^{2} = \{S, C, D\} \\ \mathcal{N}_{S}^{3} = \{S, C, D, B\} \\ \mathcal{N}_{S}^{3} = \{S, C, D, B\} \\ \mathcal{N}_{S}^{0} = \{S, C, D, B\} \\ \mathcal{N}_{S}^{0} = \{S, C, D, B\} \\ \mathcal{N}_{A} = \{A\} \\ \mathcal{N}_{B} = \{B, C, D\} \\ \mathcal{N}_{C} = \{C, D, B\} \\ \mathcal{N}_{D} = \{B\} \\ \mathcal{N}_{D} = \{B, C\} \\ \mathcal{N}_{B}^{0} = \{B, C\} \\ \mathcal{N}_{B}^{2} = \{B, C, D\} \\ \mathcal{N}_{B}^{2} = \{B, C, D\} \\ \mathcal{N}_{C}^{2} = \{C, D\} \\ \mathcal{N}_{C}^{2} = \{C, D, B\} \\ \mathcal{N}_{D}^{0} = \{D\} \\ \mathcal{N}_{D}^{0} = \{D, B\} \\ \mathcal{N}_{D}^{2} = \{D, B, C\} \end{array}$$

Example:

 $\mathcal{N}_D^2 = \{D, B, C\}$

b

Definition

A context-free grammar is in **Chomsky normal form** if every rule is of on of the following forms:

- $A \rightarrow BC$
- $A \rightarrow a$

where a is any terminal and A, B, and C are any nonterminals.

In addition we permit the rule $S \to \varepsilon$, where S the initial nonterminal. In that case, nonterminal S cannot occur on the right-hand side of any rule.

Proposition

For every context-free grammar \mathcal{G} there is an equivalent context-free grammar \mathcal{G}' in Chomsky normal form.

Proof: Perform the following transformations on \mathcal{G} :

- Obscompose each rule A → α where |α| ≥ 3 into a sequence of rules where each right-hand size has length 2.
- Press Remove e-rules.
- 8 Remove unit rules.
- So For each terminal *a* occurring on the right-hand size of some rule A → α where |α| = 2 introduce a new nonterminal N_a, replace occurrences of *a* on such right-hand sides with N_a, and add N_a → a as a new rule.

Chomsky Normal Form

Example:

 $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$ $B \rightarrow b \mid \varepsilon$

Example:

 $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$ $B \rightarrow b \mid \varepsilon$

Step 1:

 $S \rightarrow AZ \mid aB$ $Z \rightarrow SA$ $A \rightarrow B \mid S$ $B \rightarrow b \mid \varepsilon$

Example:

Step 2: $\mathcal{E} = \{B, A\}$

 $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$ $B \rightarrow b \mid \varepsilon$

Step 1:

 $S \rightarrow AZ \mid aB$ $Z \rightarrow SA$ $A \rightarrow B \mid S$ $B \rightarrow b \mid \varepsilon$

Example:

Step 2:

$$\mathcal{E} = \{B, A\}$$

$$S_0 \rightarrow S$$

$$S \rightarrow AZ \mid Z \mid aB \mid a$$

$$Z \rightarrow SA \mid S$$

$$A \rightarrow B \mid S$$

$$B \rightarrow b$$

Step 1:

 $S \rightarrow AZ \mid aB$ $Z \rightarrow SA$ $A \rightarrow B \mid S$ $B \rightarrow b \mid \varepsilon$

 $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$ $B \rightarrow b \mid \varepsilon$

Example:

Step 2:
$\mathcal{E} = \{B, A\}$
$\begin{array}{l} S_0 \rightarrow S \\ S \rightarrow AZ \mid Z \mid aB \mid a \\ Z \rightarrow SA \mid S \\ A \rightarrow B \mid S \\ B \rightarrow b \end{array}$

Step 1:

 $S \rightarrow AZ \mid aB$ $Z \rightarrow SA$ $A \rightarrow B \mid S$ $B \rightarrow b \mid \varepsilon$

 $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$ $B \rightarrow b \mid \varepsilon$

Step 3:

$$\begin{array}{l} \mathcal{N}_{S_0} = \{S_0, S, Z\} \\ \mathcal{N}_S = \{S, Z\} \\ \mathcal{N}_Z = \{Z, S\} \\ \mathcal{N}_A = \{A, B, S, Z\} \\ \mathcal{N}_B = \{B\} \end{array}$$

Example:

$S \rightarrow$	AS	6A	aВ
$A \rightarrow$	В	5	
$B \rightarrow$	b	ε	

Step 2: $\mathcal{E} = \{B, A\}$ $S_0 \rightarrow S$ $Z \rightarrow SA \mid S$ $A \rightarrow B \mid S$ $B \rightarrow b$

 $S_0 \rightarrow AZ \mid aB \mid a \mid SA$ $S \rightarrow AZ \mid aB \mid a \mid SA$ $Z \rightarrow SA \mid AZ \mid aB \mid a$ $S \rightarrow AZ \mid Z \mid aB \mid a$ $A \rightarrow b \mid AZ \mid aB \mid a \mid SA$ $B \rightarrow b$

Step 1:

 $S \rightarrow AZ \mid aB$ $Z \rightarrow SA$ $A \rightarrow B \mid S$ $B \rightarrow b \mid \varepsilon$

Step 3:

$$\begin{array}{l} \mathcal{N}_{S_0} = \{S_0, S, Z\} \\ \mathcal{N}_S = \{S, Z\} \\ \mathcal{N}_Z = \{Z, S\} \\ \mathcal{N}_A = \{A, B, S, Z\} \\ \mathcal{N}_B = \{B\} \end{array}$$

Example:

$\rightarrow ASA \mid$		
В	S	
b	ε	
	В	ASA B S b ε

Step 2: $\mathcal{E} = \{B, A\}$ $S_0 \rightarrow S$ $Z \rightarrow SA \mid S$ $A \rightarrow B \mid S$ $B \rightarrow b$

 $S_0 \rightarrow AZ \mid aB \mid a \mid SA$ $S \rightarrow AZ \mid aB \mid a \mid SA$ $Z \rightarrow SA \mid AZ \mid aB \mid a$ $S \rightarrow AZ \mid Z \mid aB \mid a$ $A \rightarrow b \mid AZ \mid aB \mid a \mid SA$ $B \rightarrow b$

Step 1:

 $S \rightarrow AZ \mid aB$ $Z \rightarrow SA$ $A \rightarrow B \mid S$ $B \rightarrow b \mid \varepsilon$

Step 3: $\mathcal{N}_{S_0} = \{S_0, S, Z\}$ $\mathcal{N}_{S} = \{S, Z\}$ $\mathcal{N}_{Z} = \{Z, S\}$ $\mathcal{N}_A = \{A, B, S, Z\}$

 $\mathcal{N}_{B} = \{B\}$

Step 4:

 $S_0 \rightarrow AZ \mid YB \mid a \mid SA$ $S \rightarrow AZ \mid YB \mid a \mid SA$ $Z \rightarrow SA \mid AZ \mid YB \mid a$ $A \rightarrow b \mid AZ \mid YB \mid a \mid SA$ $B \rightarrow b$ $Y \rightarrow a$

Grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ in Chomsky normal form has some properties that allow to determine whether $w \in \Sigma^*$ belongs to the language generated by grammar \mathcal{G} (i.e., if $w \in \mathcal{L}(\mathcal{G})$):

- Let us assume that $w \in \mathcal{L}(\mathcal{G})$ (and so $S \Rightarrow^* w$)and that |w| = n, where $n \ge 1$. Then for (every) derivation $S \Rightarrow^* w$ holds:
 - The rules of the form $A \rightarrow a$ (i.e., a nonterminal is rewritten to exactly one terminal) are used in exactly *n* steps of the derivation.
 - The rules of the form $A \rightarrow BC$ (i.e., a nonterminal is rewritten to a pair of nonterminals) are used in exactly n-1 steps of the derivation.

So every derivation $S \Rightarrow^* w$, where |w| = n, has 2n - 1 steps, where *n* of these steps are of the form $A \rightarrow a$ and n - 1 of the form $A \rightarrow BC$.

To find out whether $S \Rightarrow^* w$, it is sufficient to try by brute force all possible derivations of length 2n - 1.

Such algorithm has exponential time complexity with respect to the length of w.

Such systematic trying of all possibilities can be implemented by using so called **dynamic programming** in a way that is much more efficient than a straightforward algorithm that generates all derivations of the given length.

Cocke-Younger-Kasami algorithm, with time complexity $O(n^3)$, is based on this idea. (Assuming a fixed grammar \mathcal{G} .)

The question if $S \Rightarrow^* w$ is a special case of the question if

 $A \Rightarrow^* w$,

where $A \in \Pi$ is an arbitrary nonterminal and $w \in \Sigma^*$ is an arbitrary word consisting of terminals.

It is obvious that:

- If |w| = 1: Then $A \Rightarrow^* w$ iff there is a rule $A \rightarrow b$ in P where w = b.
- If |w| > 1: Then A ⇒* w iff there is a rule A → BC in P where for some words u and v such that w = uv, |u| ≥ 1 and |v| ≥ 1, it holds that B ⇒* u and C ⇒* v.

Cocke-Younger-Kasami Algorithm

Let us assume that a word $w \in \Sigma^*$ with |w| = n where $n \ge 1$ and

 $w = a_1 a_2 \cdots a_n$.

Instead of solving the original question whether $S \Rightarrow^* w$, we will solve the following more general problem for all nonempty subwords v of the word w:

• To find the set of all nonterminals A from the set Π such that $A \Rightarrow^* v$.

Let us denote the set of all nonterminals generating subword v of length i and starting on position j as $\mathcal{F}[i][j]$, i.e., for each $A \in \Pi$ it holds that

$$A \in \mathcal{F}[i][j] \qquad \Longleftrightarrow \qquad A \, \Rightarrow^* \, a_j a_{j+1} \, \dots \, a_{j+(i-1)}$$

To find out whether $S \Rightarrow^* w$, is therefore the same problem as to find out whether $S \in \mathcal{F}[n][1]$.

- The algorithm computes values \$\mathcal{F}[i][j]\$ at first for subwords of length 1 (i.e., \$i = 1\$), then for subwords of length 2 (i.e., \$i = 2\$), then for subwords of length 3, length 4, etc.
- Values *F*[*i*][*j*] are stored in a twodimensional array *F*, where 1 ≤ *i* ≤ *n* a 1 ≤ *j* ≤ *n* − *i* + 1, where the elements of this array are subsets of nonterminals from the set Π.
- In the computation of the value $\mathcal{F}[i][j]$ the previously computed values $\mathcal{F}[i'][j']$, where i' < i, are used.
- Let us assume that at the beginning all elements of array *F* are initialized to Ø.

