Example: We would like to describe a language of arithmetic expressions, containing expressions such as:

 175 $(9+15)$ $((10-4)*(1+34)+2)/(3+(-37))$

For simplicity we assume that:

- Expressions are fully parenthesized.
- The only arithmetic operations are "+", "-", "*", "/"and unary "-".
- Values of operands are natural numbers written in decimal a number is represented as a non-empty sequence of digits.

Alphabet: $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, *, /, (,)\}$

Example (cont.): A description by an inductive definition:

- **Digit** is any of characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
- **Number** is a non-empty sequence of digits, i.e.:
	- If α is a digit then α is a number.
	- **If** α is a digit and β is a number then also $\alpha\beta$ is a number.
- **Expression** is a sequence of symbols constructed according to the following rules:
	- If α is a number then α is an expression.
	- If α is an expression then also (- α) is an expression.
	- If α and β are expressions then also $(\alpha+\beta)$ is an expression.
	- If α and β are expressions then also $(\alpha-\beta)$ is an expression.
	- If α and β are expressions then also $(\alpha \ast \beta)$ is an expression.
	- If α and β are expressions then also (α/β) is an expression.

Example (cont.): The same information that was described by the previous inductive definition can be represented by a **context-free** grammar:

New auxiliary symbols, called **nonterminals**, are introduced:

- \bullet D stands for an arbitrary digit
- \bullet \mathcal{C} stands for an arbitrary number
- \bullet E stands for an arbitrary expression

Example (cont.): Written in a more succinct way:

 $D \rightarrow 0$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 $C \rightarrow D \mid DC$ $E \to C$ | (-E) | (E+E) | (E-E) | (E*E) | (E/E)

Example: A language where words are (possibly empty) sequences of expressions described in the previous example, where individual expressions are separated by commas (the alphabet must be extended with symbol ","):

```
S \rightarrow T | \varepsilonT \rightarrow E \perp E, T
D \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
C \rightarrow D \mid DCE \to C | (-E) | (E+E) | (E-E) | (E*E) | (E/E)
```
Example: Statements of some programming language (a fragment of a grammar):

 $S \rightarrow E$; | T | if (E) S | if (E) S else S | while (E) S | do S while (E) ; | for $(F; F; F)$ S | return F ; $T \rightarrow \{ U \}$ $U \rightarrow \varepsilon$ | SU $F \rightarrow \varepsilon \mid E$ $F \rightarrow \quad \quad \ldots$

Remark:

- \bullet S statement
- \bullet τ block of statements
- \bullet U sequence of statements
- \bullet E expression
- \bullet \overline{F} optional expression that can be omitted

Formally, a **context-free grammar** is a tuple

 $G = (\Pi, \Sigma, S, P)$

where:

- \bullet \Box is a finite set of **nonterminal symbols** (**nonterminals**)
- $\bullet \Sigma$ is a finite set of **terminal symbols (terminals)**, where $\Pi \cap \Sigma = \emptyset$
- $\bullet S \in \Pi$ is an initial nonterminal
- $P \subseteq \Pi \times (\Pi \cup \Sigma)^*$ is a finite set of rewrite rules

Remarks:

- \bullet We will use uppercase letters A, B, C, ... to denote nonterminal symbols.
- We will use lowercase letters a, b, c, \ldots or digits 0, 1, 2, \ldots to denote terminal symbols.
- We will use lowercase Greek letters α , β , γ , ... do denote strings from $(\Pi \cup \Sigma)^*$.
- We will use the following notation for rules instead of (A, α)

$A \rightarrow \alpha$

- A left-hand side of the rule
- α right-hand side of the rule

Example: Grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ where

- $\bullet \ \Pi = \{A, B, C\}$
- $\bullet \Sigma = \{a, b\}$
- $S = A$
- \bullet P contains rules

 $A \rightarrow ABBb$ $A \rightarrow A$ a A $B \rightarrow \varepsilon$ $B \rightarrow bCA$ $C \rightarrow AB$ $C \rightarrow a$ $C \rightarrow b$

Remark: If we have more rules with the same left-hand side, as for example

 $A \rightarrow \alpha_1$ $A \rightarrow \alpha_2$ $A \rightarrow \alpha_3$

we can write them in a more succinct way as

 $A \rightarrow \alpha_1 \mid \alpha_2 \mid \alpha_3$

For example, the rules of the grammar from the previous slide can be written as

> $A \rightarrow aBBb \mid AaA$ $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows:

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: A

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows:

A

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $A \rightarrow aBBb \mid AaA$ $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $A \rightarrow aBBb \mid AaA$ $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $A \rightarrow aBBb \mid AaA$ $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCABBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBB$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb \Rightarrow abcABb \Rightarrow abcaBBbBB \Rightarrow abcaBBbBB \Rightarrow abbaBBbBB$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb \Rightarrow abcABb \Rightarrow abcABBBbBb \Rightarrow abcABBBbBb \Rightarrow abbaBBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbbb \Rightarrow abbaBbBb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $A \rightarrow aBBb \mid AaA$ $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBBbBb \Rightarrow abbaBbBb \Rightarrow bbaBb$ abbaBbb

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb \Rightarrow abcABb \Rightarrow abcABBBbBb \Rightarrow abcABBBb \Rightarrow abCABbBBb \Rightarrow b\bar{b}$ abbaBbb

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb \Rightarrow abcABb \Rightarrow abcABBBbBb \Rightarrow abcABBBb \Rightarrow abCABbBBb \Rightarrow b\bar{b}$ abbaBbb

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules

 $A \rightarrow aBBb \mid AaA$ $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBBbBb \Rightarrow abbaBbBb \Rightarrow bbaBb$ $abbaBbb \Rightarrow abbabb$

Grammars are used for generating words.

Example: $\mathcal{G} = (\Pi, \Sigma, A, P)$ where $\Pi = \{A, B, C\}, \Sigma = \{a, b\}$, and P contains rules $A \rightarrow aBBb \mid AaA$

 $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

For example, the word abbabb can be in grammar $\mathcal G$ generated as follows: $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBBbBb \Rightarrow abbaBbBb \Rightarrow bbaBb$ $abbaBbb \Rightarrow abbabb$

On strings from $(\Pi \cup \Sigma)^*$ we define relation $\Rightarrow \subseteq (\Pi \cup \Sigma)^* \times (\Pi \cup \Sigma)^*$ such that

 $\alpha \Rightarrow \alpha'$

iff $\alpha=\beta_1 A \beta_2$ and $\alpha'=\beta_1 \gamma \beta_2$ for some $\beta_1,\beta_2,\gamma\in(\Pi\cup\Sigma)^*$ and $A\in\Pi$ where $(A \rightarrow \gamma) \in P$.

Example: If $(B \to bCA) \in P$ then

$aCBbA \Rightarrow aCbCAbA$

Remark: Informally, $\alpha \Rightarrow \alpha'$ means that it is possible to derive α' from α by one step where an occurrence of some nonterminal A in α is replaced with the right-hand side of some rule $A \rightarrow \gamma$ with A on the left-hand side.

On strings from $(\Pi \cup \Sigma)^*$ we define relation $\Rightarrow \subseteq (\Pi \cup \Sigma)^* \times (\Pi \cup \Sigma)^*$ such that

 $\alpha \Rightarrow \alpha'$

iff $\alpha=\beta_1 A \beta_2$ and $\alpha'=\beta_1 \gamma \beta_2$ for some $\beta_1,\beta_2,\gamma\in(\Pi\cup\Sigma)^*$ and $A\in\Pi$ where $(A \rightarrow \gamma) \in P$.

Example: If $(B \to bCA) \in P$ then

 $aCBbA \Rightarrow aCbCAbA$

Remark: Informally, $\alpha \Rightarrow \alpha'$ means that it is possible to derive α' from α by one step where an occurrence of some nonterminal A in α is replaced with the right-hand side of some rule $A \rightarrow \gamma$ with A on the left-hand side.
Context-Free Grammars

A **derivation** of length *n* is a sequence β_0 , β_1 , β_2 , \cdots , β_n , where $\beta_i \in (\Pi \cup \Sigma)^*$, and where $\beta_{i-1} \Rightarrow \beta_i$ for all $1 \leq i \leq n$, which can be written more succinctly as

$$
\beta_0 \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-1} \Rightarrow \beta_n
$$

The fact that for given $\alpha, \alpha' \in (\Pi \cup \Sigma)^*$ and $n \in \mathbb{N}$ there exists some derivation $\beta_0 \Rightarrow \beta_1 \Rightarrow \beta_2 \Rightarrow \ldots \Rightarrow \beta_{n-1} \Rightarrow \beta_n$, where $\alpha = \beta_0$ and $\alpha' = \beta_n$, is denoted

 $\alpha \Rightarrow^n \alpha'$

The fact that $\alpha \Rightarrow^n \alpha'$ for some $n \geq 0$, is denoted

$$
\alpha \Rightarrow^* \alpha'
$$

Remark: Relation \Rightarrow^* is the reflexive and transitive closure of relation \Rightarrow (i.e., the smallest reflexive and transitive relation containing relation \Rightarrow).

Sentential forms are those $\alpha \in (\Pi \cup \Sigma)^*$, for which

 $S \Rightarrow^* \alpha$

where S is the initial nonterminal.

A language $\mathcal{L}(\mathcal{G})$ generated by a grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ is the set of all words over alphabet Σ that can be derived by some derivation from the initial nonterminal S using rules from P , i.e.,

$$
\mathcal{L}(\mathcal{G}) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}
$$

Definition

A language L is **context-free** if there exists some context-free grammar \mathcal{G} such that $L = \mathcal{L}(\mathcal{G})$.

Example: We want to construct a grammar generating the language

 $L = \{a^n b^n \mid n \ge 0\}$

Example: We want to construct a grammar generating the language

 $L = \{a^n b^n \mid n \ge 0\}$

Grammar $G = (\Pi, \Sigma, S, P)$ where $\Pi = \{S\}, \Sigma = \{a, b\}$, and P contains

 $S \rightarrow \varepsilon$ | aSb

Example: We want to construct a grammar generating the language

 $L = \{a^n b^n \mid n \ge 0\}$

Grammar $G = (\Pi, \Sigma, S, P)$ where $\Pi = \{S\}, \Sigma = \{a, b\}$, and P contains

 $S \rightarrow \varepsilon$ | aSb

$$
S \Rightarrow \varepsilon
$$

\n
$$
S \Rightarrow aSb \Rightarrow ab
$$

\n
$$
S \Rightarrow aSb \Rightarrow aSbb \Rightarrow aabb
$$

\n
$$
S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaSbbb \Rightarrow aaabbb
$$

\n
$$
S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aaSbbb \Rightarrow aaaaSbbbb \Rightarrow aaaabbbb
$$

\n...

Example: We want to construct a grammar generating the language consisting of all palindroms over the alphabet $\{a, b\}$, i.e.,

$$
L = \{w \in \{a, b\}^* \mid w = w^R\}
$$

Remark: w^R denotes the reverse of a word w , i.e., the word w written backwards.

Example: We want to construct a grammar generating the language consisting of all palindroms over the alphabet $\{a, b\}$, i.e.,

$$
L = \{w \in \{a, b\}^* \mid w = w^R\}
$$

Remark: w^R denotes the reverse of a word w , i.e., the word w written backwards.

Solution:

 $S \rightarrow \varepsilon$ | a | b | aSa | bSb

Example: We want to construct a grammar generating the language consisting of all palindroms over the alphabet $\{a, b\}$, i.e.,

$$
L = \{w \in \{a, b\}^* \mid w = w^R\}
$$

Remark: w^R denotes the reverse of a word w , i.e., the word w written backwards.

Solution:

 $S \rightarrow \varepsilon$ | a | b | aSa | bSb

 $S \Rightarrow aSa \Rightarrow abSba \Rightarrow abaSaba \Rightarrow abaaaba$

Example: We want to construct a grammar generating the language L consisting of all correctly parenthesised sequences of symbols '(' and ')'.

For example $(()())(()) \in L$ but $(()) \notin L$.

Example: We want to construct a grammar generating the language L consisting of all correctly parenthesised sequences of symbols '(' and ')'.

For example $((\))(\))(() \in L$ but $(\)$ $(\)$ $\notin L$.

Solution:

 $S \rightarrow \varepsilon$ | (S) | SS

Example: We want to construct a grammar generating the language L consisting of all correctly parenthesised sequences of symbols '(' and ')'.

For example $((\))(\))(() \in L$ but $(\)$ $(\)$ $\notin L$.

Solution:

 $S \rightarrow \varepsilon$ | (S) | SS

 $S \Rightarrow SS \Rightarrow (S)S \Rightarrow (S)(S) \Rightarrow (SS)(S) \Rightarrow ((S)S)(S) \Rightarrow$ $((S)(S) \Rightarrow ((S)(S))(S) \Rightarrow ((S)(S) \Rightarrow ((S)(S)) \Rightarrow ((S)(S)) \Rightarrow ((S)(S))$ $(()())(()$

Example: We want to construct a grammar generating the language L consisting of all correctly constructed arithmetic experessions where operands are always of the form 'a' and where symbols $+$ and $*$ can be used as operators.

For example $(a + a) * a + (a * a) \in L$.

Example: We want to construct a grammar generating the language L consisting of all correctly constructed arithmetic experessions where operands are always of the form 'a' and where symbols $+$ and $*$ can be used as operators.

For example $(a + a) * a + (a * a) \in L$.

Solution:

 $E \rightarrow a \mid E + E \mid E * E \mid (E)$

Example: We want to construct a grammar generating the language L consisting of all correctly constructed arithmetic experessions where operands are always of the form 'a' and where symbols $+$ and $*$ can be used as operators.

For example $(a + a) * a + (a * a) \in L$.

Solution:

$$
E \rightarrow a \mid E + E \mid E * E \mid (E)
$$

$$
E \Rightarrow E + E \Rightarrow E * E + E \Rightarrow (E) * E + E \Rightarrow (E + E) * E + E \Rightarrow
$$

(a + E) * E + E \Rightarrow (a + a) * E + E \Rightarrow (a + a) * a + E \Rightarrow (a + a) * a + (E) \Rightarrow
(a + a) * a + (E * E) \Rightarrow (a + a) * a + (a * E) \Rightarrow (a + a) * a + (a * a)

```
A \rightarrow aBBb \mid AaAB \to \varepsilon \mid bCAC \rightarrow AB \mid a \mid b
```
A

```
A \rightarrow aBBb \mid AaAB \to \varepsilon \mid bCAC \rightarrow AB \mid a \mid b
```
A

 \underline{A}

$\underline{A} \rightarrow aBBb \mid AaA$ $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

A

$\underline{A} \rightarrow \underline{aBBb}$ | AaA $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

$A \Rightarrow aBBb$

 $A \rightarrow aBBb \mid AaA$ $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

 $A \Rightarrow aBBb$

 $A \rightarrow aBBb \mid AaA$ $\underline{B} \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

 $A \Rightarrow a\underline{B}Bb$

 $A \rightarrow aBBb \mid AaA$ $\underline{B} \rightarrow \varepsilon \mid \underline{bCA}$ $C \rightarrow AB \mid a \mid b$

$A \Rightarrow aBBB \Rightarrow a bCABB$

 $A \rightarrow aBBb \mid AaA$ $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

$A \Rightarrow aBBb \Rightarrow abCABb$

 $\underline{A} \rightarrow aBBb \mid AaA$ $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

$A \Rightarrow aBBb \Rightarrow abCABb$

 $\underline{A} \rightarrow \underline{aBBb}$ | AaA $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb$

 $A \rightarrow aBBb \mid AaA$ $B \to \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCABBbBb$

 $A \rightarrow aBBb \mid AaA$ $\underline{B} \rightarrow \varepsilon \mid bCA$ $C \rightarrow AB \mid a \mid b$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBB$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbbb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCABBBb \Rightarrow abCABBBb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbBb \Rightarrow abbaBbBb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCABBBb \Rightarrow abCABbBBb \Rightarrow abbaBbbb$

$A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBBbBb \Rightarrow abbaBbBb$

 $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCaBBbBb \Rightarrow abCaBbbbb \Rightarrow abbaBb \Rightarrow$ abbaBbb

 $A \Rightarrow aBBb \Rightarrow a bCABb \Rightarrow a bC aBBbBb \Rightarrow a bC aB bBb \Rightarrow a bbaB bBb \Rightarrow a bC a C b C a C b C b C b C b C c$ abbaBbb

 $A \Rightarrow aBBb \Rightarrow a bCABb \Rightarrow a bC aBBbBb \Rightarrow a bC aB bBb \Rightarrow a bbaB bBb \Rightarrow a bC a C b C a C b C b C b C b C c$ abbaBbb

 $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCABBBb \Rightarrow abCABBBb \Rightarrow abbaBbb \Rightarrow$ $abbaBbb \Rightarrow abbabb$

 $A \Rightarrow aBBb \Rightarrow abCABb \Rightarrow abCABBBb \Rightarrow abCABBBb \Rightarrow abbaBbb \Rightarrow$ $abbaBbb \Rightarrow abbabb$

For each derivation there is some derivation tree:

- Nodes of the tree are labelled with terminals and nonterminals.
- The root of the tree is labelled with the initial nonterminal.
- The leafs of the tree are labelled with terminals or with symbols ε .
- The remaining nodes of the tree are labelled with nonterminals.
- If a node is labelled with some nonterminal A then its children are labelled with the symbols from the right-hand side of some rewriting rule $A \rightarrow \alpha$

$E \rightarrow a \mid E + E \mid E * E \mid (E)$

A **left derivation** is a derivation where in every step we always replace the leftmost nonterminal.

$E \Rightarrow E + E \Rightarrow E * E + E \Rightarrow a * E + E \Rightarrow a * a + E \Rightarrow a * a + a$

A right derivation is a derivation where in every step we always replace the rightmost nonterminal.

 $E \Rightarrow E + E \Rightarrow E + a \Rightarrow E * E + a \Rightarrow E * a + a \Rightarrow a * a + a$

A derivation need not be left or right:

 $E \Rightarrow E + E \Rightarrow E * E + E \Rightarrow E * a + E \Rightarrow E * a + a \Rightarrow a * a + a$

- There can be several different derivations corresponding to one derivation tree.
- For every derivation tree, there is exactly one left and exactly one right derivation corresponding to the tree.

Grammars G_1 and G_2 are **equivalent** if they generate the same language, i.e., if $\mathcal{L}(\mathcal{G}_1) = \mathcal{L}(\mathcal{G}_2)$.

Remark: The problem of equivalence of context-free grammars is algorithmically undecidable. It can be shown that it is not possible to construct an algorithm that would decide for any pair of context-free grammars if they are equivalent or not.

Even the problem to decide if a grammar generates the language Σ^* is algorithmically undecidable.

Ambiguous Grammars

A grammar G is **ambiguous** if there is a word $w \in \mathcal{L}(\mathcal{G})$ that has two different derivation trees, resp. two different left or two different right derivations.

Example:

 $E \Rightarrow E + E \Rightarrow E * E + E \Rightarrow a * E + E \Rightarrow a * a + E \Rightarrow a * a + a$ $E \Rightarrow E * E \Rightarrow E * E + E \Rightarrow a * E + E \Rightarrow a * a + E \Rightarrow a * a + a$

Sometimes it is possible to replace an ambiguous grammar with a grammar generating the same language but which is not ambiguous.

Example: A grammar

```
E \rightarrow E + E \mid E * E \mid (E) \mid a
```
can be replaced with the equivalent grammar

 $E \rightarrow T | T + E$ $T \rightarrow F \mid F * T$ $F \rightarrow a \mid (E)$

Remark: If there is no unambiguous grammar equivalent to a given ambiguous grammar, we say it is *inherently ambiguous*.

The class of context-free languages is closed with respect to:

- **e** concatenation
- union
- **o** iteration

The class of context-free languages is not closed with respect to:

- **o** complement
- **o** intersection

Context-Free Languages

We have two grammars $G_1 = (\Pi_1, \Sigma, S_1, P_1)$ and $G_2 = (\Pi_2, \Sigma, S_2, P_2)$, and can assume that $\Pi_1 \cap \Pi_2 = \emptyset$ and $S \notin \Pi_1 \cup \Pi_2$.

• Grammar G such that $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}_1) \cdot \mathcal{L}(\mathcal{G}_2)$:

 $G = (\Pi_1 \cup \Pi_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1S_2\})$

Grammar G such that $\mathcal{L}(\mathcal{G}) = \mathcal{L}(\mathcal{G}_1) \cup \mathcal{L}(\mathcal{G}_2)$:

 $G = (\Pi_1 \cup \Pi_2 \cup \{S\}, \Sigma, S, P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\})$

Grammar $\mathcal G$ such that $\mathcal L(\mathcal G)=\mathcal L(\mathcal G_1)^*$:

 $G = (\Pi_1 \cup \{S\}, \Sigma, S, P_1 \cup \{S \rightarrow \varepsilon, S \rightarrow S_1S\})$

Example:

 $S \rightarrow A \mid C$

 $S \rightarrow A \mid C$ $A \rightarrow aB \mid aC \mid bA$ $B \rightarrow aD \mid bE$ $C \rightarrow bD$ $D \rightarrow bC \mid bE \mid A$ $F \rightarrow hF$

 $S \rightarrow A \mid C$ $A \rightarrow aB \mid aC \mid bA$ $B \rightarrow aD \mid bE$ $C \rightarrow hD$ $D \rightarrow bC \mid bE \mid A$ $F \rightarrow hF$ $A \rightarrow \varepsilon$ $E \rightarrow \varepsilon$

Example:

Alternative construction:

Example:

\overline{A} \rightarrow \overline{B} C $\qquad \qquad \overbrace{D}$ E a b a b a b ε b b b

Alternative construction:

$$
S \to A \mid E
$$

Example:

Alternative construction:

 $S \rightarrow A \mid E$ $A \rightarrow Ab \mid D$ $B \rightarrow Aa$ $C \rightarrow Aa \mid Db$ $D \rightarrow Ba \mid Cb$ $E \rightarrow Bb | Db | Eb$

Example:

Alternative construction:

 $S \rightarrow A \mid E$ $A \rightarrow Ab \mid D$ $B \rightarrow Aa$ $C \rightarrow Aa \mid Db$ $D \rightarrow Ba \mid Cb$ $E \rightarrow Bb | Db | Eb$ $A \rightarrow \varepsilon$ $C \rightarrow \varepsilon$

Regular grammars

Definition

A grammar $G = (\Pi, \Sigma, S, P)$ is **right regular** if all rules in P are of the following forms (where $A, B \in \Pi$, $a \in \Sigma$):

- \bullet $A \rightarrow B$
- \bullet A \rightarrow aB
- \bullet $A \rightarrow \epsilon$

Definition

A grammar $G = (\Pi, \Sigma, S, P)$ is **left regular** if all rules in P are of the following forms (kde $A, B \in \Pi$, $a \in \Sigma$):

- \bullet $A \rightarrow B$
- \bullet A \rightarrow Ba
- \bullet $A \rightarrow \epsilon$

Regular grammars

Definition

A grammar G is regular if it right regular or left regular.

Remark: Sometimes a slightly more general definition of right (resp. left) regular grammars is given, allowing all rules of the following forms:

- \bullet A \rightarrow wB (resp. A \rightarrow Bw)
- \bullet $A \rightarrow w$

where $A, B \in \Pi$, $w \in \Sigma^*$.

Such rules can be easily "decomposed" into rules of the form in the previous definition.

Example: Rule $A \rightarrow abbB$ can be replaced with rules

 $A \rightarrow aZ_1$ $Z_1 \rightarrow bZ_2$ $Z_2 \rightarrow bB$

where Z_1 , Z_2 are new nonterminals, not used anywhere else in the grammar.

Proposition

For every regular language L there is a left regular grammar G such that $\mathcal{L}(\mathcal{G}) = L$ and a right regular grammar \mathcal{G}' such that $\mathcal{L}(\mathcal{G}') = L$.

Proposition

For every regular grammar G there is a finite automaton A such that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{G}).$

Definition

A context-free grammar $G = (\Pi, \Sigma, S, P)$ is **reduced** if for every $A \in \Pi$:

- there are some $u, v \in \Sigma^*$ such that $S \Rightarrow^* uAv$, and
- there is some $w \in \Sigma^*$ such that $A \Rightarrow^* w$.

Remark: Obviously, if $S \Rightarrow^* uAv$ and $A \Rightarrow^* w$ where $u, v, w \in \Sigma^*$, then $S \Rightarrow^* \textit{uwv}$, and so A is used in some derivation of a word from Σ^* .

On the other hand, if A is used in some derivation $S \Rightarrow^* z$ of a word $z \in \Sigma^*$, then z can be divided into parts u, v, w such that $z = u w v$ and $S \Rightarrow^* uAv$ and $A \Rightarrow^* w$.

Obviously, every $A \in \Pi$ with the property that

- there are no $u, v \in \Sigma^*$ such that $S \Rightarrow^* uAv$, or
- there is no $w \in \Sigma^*$ such that $A \Rightarrow^* w$,

can be safely removed from the grammar (together with all rules where it occurs) without affecting the generated language.

An algorithm that for a given CFG G contructs an equivalent reduced grammar:

O Construct the set T of all nonterminals that can generate a terminal word:

$$
\mathcal{T} = \{ A \in \Pi \mid (\exists w \in \Sigma^*)(A \Rightarrow^* w) \}
$$

- **2** Remove from G all nonterminals from the set $\Pi \mathcal{T}$ together with all rules where they occur. Denote the rusulting grammar $G' = (\Pi', \Sigma, S, P')$.
- \bullet Construct the set D of all nonterminals that can be "reached" from the initial nonterminal S :

 $\mathcal{D} = \{ A \in \Pi' \mid (\exists \alpha, \beta \in (\Pi' \cup \Sigma)^*)(S \Rightarrow^* \alpha A \beta) \}$

 \bullet Remove from \mathcal{G}' all nonterminals from the set $\Pi'-\mathcal{D}$ together with all rules where they occur. The rusulting grammar \mathcal{G}'' is the result of the whole algorithm.

Z. Sawa (TU Ostrava) [Theoretical Computer Science](#page-0-0) Computer December 1, 2021 37/55

```
S \rightarrow AC \mid BA \rightarrow aC \mid AbAB \rightarrow Ba \mid BbA \mid DBC \rightarrow aa \mid aBCD \rightarrow aA \mid \varepsilon
```

$$
\mathcal{T}_0 = \{C, D\}
$$

$$
S \rightarrow AC \mid B
$$

\n
$$
A \rightarrow aC \mid AbA
$$

\n
$$
B \rightarrow Ba \mid BbA \mid DB
$$

\n
$$
C \rightarrow aa \mid aBC
$$

\n
$$
D \rightarrow aA \mid \varepsilon
$$

```
\mathcal{T}_0 = \{C, D\}\mathcal{T}_1 = \{C, D, A\}
```

$$
S \rightarrow AC \mid B
$$

\n
$$
A \rightarrow aC \mid AbA
$$

\n
$$
B \rightarrow Ba \mid BbA \mid DB
$$

\n
$$
C \rightarrow aa \mid aBC
$$

\n
$$
D \rightarrow aA \mid \varepsilon
$$

```
\mathcal{T}_0 = \{C, D\}\mathcal{T}_1 = \{C, D, A\}\mathcal{T}_2 = \{C, D, A, S\}
```

```
S \rightarrow AC \mid BA \rightarrow aC \mid AbAB \rightarrow Ba \mid BbA \mid DBC \rightarrow aa \mid aBCD \rightarrow aA \mid \varepsilon
```

```
S \rightarrow AC \mid BA \rightarrow aC \mid AbAB \rightarrow Ba \mid BbA \mid DBC \rightarrow aa \mid aBCD \rightarrow aA \mid \varepsilon
```

$$
\tau_0 = \{C, D\} \n\tau_1 = \{C, D, A\} \n\tau_2 = \{C, D, A, S\}
$$

$$
\mathcal{T} = \{\mathcal{C}, \mathit{D}, \mathit{A}, \mathit{S}\}
$$

```
S \rightarrow AC \mid BA \rightarrow aC \mid AbAB \rightarrow Ba \mid BbA \mid DBC \rightarrow aa \mid aBCD \rightarrow aA \mid \varepsilon
```

$$
\mathcal{T}_0 = \{C, D\}
$$
\n
$$
\mathcal{T}_1 = \{C, D, A\}
$$
\n
$$
\mathcal{T}_2 = \{C, D, A, S\}
$$
\n
$$
\mathcal{T} = \{C, D, A, S\}
$$
\n
$$
S \rightarrow AC
$$
\n
$$
A \rightarrow aC \mid AbA
$$
\n
$$
C \rightarrow aa
$$
\n
$$
D \rightarrow aA \mid \varepsilon
$$
Example:

 $S \rightarrow AC \mid B$ $A \rightarrow aC \mid AbA$ $B \rightarrow Ba \mid BbA \mid DB$ $C \rightarrow aa \mid aBC$ $D \rightarrow aA \mid \varepsilon$

$$
\begin{array}{l}\nT_0 = \{C, D\} \\
T_1 = \{C, D, A\} \\
T_2 = \{C, D, A, S\}\n\end{array}
$$

$$
\mathcal{T} = \{\mathcal{C}, \mathit{D}, \mathit{A}, \mathit{S}\}
$$

$$
S \rightarrow AC
$$

$$
A \rightarrow aC \mid AbA
$$

$$
C \rightarrow aa
$$

$$
D \rightarrow aA \mid \varepsilon
$$

 $D_0 = \{S\}$

Example:

 $S \rightarrow AC \mid B$ $A \rightarrow aC \mid AbA$ $B \rightarrow Ba \mid BbA \mid DB$ $C \rightarrow aa \mid aBC$ $D \rightarrow aA \mid \varepsilon$

$$
\tau_0 = \{C, D\} \n\tau_1 = \{C, D, A\} \n\tau_2 = \{C, D, A, S\}
$$

$$
\mathcal{T} = \{\mathcal{C}, \mathit{D}, \mathit{A}, \mathit{S}\}
$$

 $D_0 = \{S\}$ $\mathcal{D}_1 = \{S, A, C\}$

 $S \rightarrow AC$ $A \rightarrow aC \mid AbA$ $C \rightarrow aa$ $D \rightarrow aA \mid \varepsilon$

Example:

 $S \rightarrow AC \mid B$ $A \rightarrow aC \mid AbA$ $B \rightarrow Ba \mid BbA \mid DB$ $C \rightarrow aa \mid aBC$ $D \to aA \mid \varepsilon$

$$
\tau_0 = \{C, D\} \n\tau_1 = \{C, D, A\} \n\tau_2 = \{C, D, A, S\}
$$

 $\mathcal{T} = \{C, D, A, S\}$

 $S \rightarrow AC$ $A \rightarrow aC \mid AbA$ $C \rightarrow aa$ $D \to aA \mid \varepsilon$

 $D_0 = \{S\}$ $D_1 = \{S, A, C\}$ $\mathcal{D} = \{S, A, C\}$

Example:

 $S \rightarrow AC \mid B$ $A \rightarrow aC \mid AbA$ $B \rightarrow Ba \mid BbA \mid DB$ $C \rightarrow aa \mid aBC$ $D \rightarrow aA \mid \varepsilon$

$$
\mathcal{T}_0 = \{C, D\}
$$

\n
$$
\mathcal{T}_1 = \{C, D, A\}
$$

\n
$$
\mathcal{T}_2 = \{C, D, A, S\}
$$

\n
$$
\mathcal{T} = \{C, D, A, S\}
$$

\n
$$
S \rightarrow AC
$$

\n
$$
A \rightarrow aC \mid AbA
$$

\n
$$
C \rightarrow aa
$$

\n
$$
D \rightarrow aA \mid \varepsilon
$$

 $D_0 = \{S\}$ $\mathcal{D}_1 = \{S, A, C\}$ $\mathcal{D} = \{S, A, C\}$

> $S \rightarrow AC$ $A \rightarrow aC \mid AbA$ $C \rightarrow aa$

Let us assume we have a context-free grammar $G = (\Pi, \Sigma, S, P)$.

We can easily construct algorithms for the following problems dealing with some properties of context-free grammar \mathcal{G} :

- To find out for given $\alpha \in (\Pi \cup \Sigma)^*$ whether $\alpha \Rightarrow^* \varepsilon$.
- To find, for given $\alpha \in (\Pi \cup \Sigma)^*$, the set $\mathit{first}(\alpha)$, where first(α) = { $a \in \Sigma \mid \alpha \Rightarrow^* a\beta$ for some $\beta \in (\Pi \cup \Sigma)^*$ }
- To find, for given $\alpha \in (\Pi \cup \Sigma)^*$, the set $\mathit{last}(\alpha)$, where $\mathsf{last}(\alpha) = \{ a \in \Sigma \mid \alpha \Rightarrow^* \beta a \text{ for some } \beta \in (\Pi \cup \Sigma)^* \}$

Some Properties of Context-free Grammars

- To find, for given nonterminal $A \in \Pi$, the set follow(A), where $follow(A) = \{ a \in \Sigma \mid S \Rightarrow^* \beta_1 A \land \beta_2 \text{ for some } \beta_1, \beta_2 \in (\Pi \cup \Sigma)^* \}$
- To find all nonterminals $A \in \Pi$, for which grammar G contains the left recursion, i.e., those for which

 $A \Rightarrow^+ A\alpha$ for some $\alpha \in (\Pi \cup \Sigma)^*$

• To find all nonterminals $A \in \Pi$, for which grammar G contains the right recursion, i.e., those for which

 $A \Rightarrow^+ \alpha A$ for some $\alpha \in (\Pi \cup \Sigma)^*$

Remark: Notation $\alpha \Rightarrow^+ \beta$, where $\alpha, \beta \in (\Pi \cup \Sigma)^*$, denotes that α can be rewritten to β (i.e., $\alpha \Rightarrow^* \beta$) by a derivation with a nonzero number of steps.

To be able to use a given context-free grammar $\mathcal G$ for a straightforward implementation of **recursive descent**, it must have some particular properties:

- **It must not contain left recursion.**
- For each nonterminal $A \in \Pi$ and all rules with A on the left-hand side, i.e.,

 $A \rightarrow \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n$

the sets first(α_1), first(α_2), ..., first(α_n) must be pairwise disjoint.

• For every nonterminal $A \in \Pi$ and all rules $A \to \alpha_1 \mid \alpha_2 \mid \cdots \mid \alpha_n$ there can be at most one right-hand side α_i such that $\alpha_i \Rightarrow^* \varepsilon$. If there is such right-hand side (and so $A \Rightarrow^* \varepsilon$), the sets $\textit{first}(\alpha_1)$, first(α_2), ..., first(α_n) must be disjoint with the set follow(A).

Rules of the form $A \rightarrow \varepsilon$ are called **epsilon-rules** (ε -rules).

Proposition

For every context-free grammar $\mathcal G$ there is a context-free grammar $\mathcal G'$ without ε -rules such that $\mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G}) - \{\varepsilon\}.$

Proof: Construct the set \mathcal{E} of all nonterminals that can be rewritten to ϵ , i.e.,

 $\mathcal{E} = \{ A \in \Pi \mid A \Rightarrow^* \varepsilon \}$

Remove all ε -rules and replace every other rule $A \to \alpha$ with a set of rules obtained by all possible rules of the form $A\to\alpha'$ where α' is obtained from α by possible ommitting of (some) occurrences of nonterminals from \mathcal{E} .

```
S \rightarrow ASA \mid aBC \mid bA \rightarrow BD \mid aABB \to bB \mid \varepsilonC \rightarrow AaA \mid bD \rightarrow AD \mid BBB \mid a
```

$$
\mathcal{E}_0 = \{B\}
$$

$$
S \rightarrow ASA \mid aBC \mid b
$$

\n
$$
A \rightarrow BD \mid aAB
$$

\n
$$
B \rightarrow bB \mid \varepsilon
$$

\n
$$
C \rightarrow AaA \mid b
$$

\n
$$
D \rightarrow AD \mid BBB \mid a
$$

$$
\mathcal{E}_0 = \{B\}
$$

$$
\mathcal{E}_1 = \{B, D\}
$$

$$
S \rightarrow ASA \mid aBC \mid b
$$

\n
$$
A \rightarrow BD \mid aAB
$$

\n
$$
B \rightarrow bB \mid \varepsilon
$$

\n
$$
C \rightarrow AaA \mid b
$$

\n
$$
D \rightarrow AD \mid BBB \mid a
$$

$$
\mathcal{E}_0 = \{B\}
$$

\n
$$
\mathcal{E}_1 = \{B, D\}
$$

\n
$$
\mathcal{E}_2 = \{B, D, A\}
$$

$$
S \rightarrow ASA \mid aBC \mid b
$$

\n
$$
A \rightarrow BD \mid aAB
$$

\n
$$
B \rightarrow bB \mid \varepsilon
$$

\n
$$
C \rightarrow AaA \mid b
$$

\n
$$
D \rightarrow AD \mid BBB \mid a
$$

$$
S \rightarrow ASA \mid aBC \mid b
$$

\n
$$
A \rightarrow BD \mid aAB
$$

\n
$$
B \rightarrow bB \mid \varepsilon
$$

\n
$$
C \rightarrow AaA \mid b
$$

\n
$$
D \rightarrow AD \mid BBB \mid a
$$

$$
\mathcal{E}_0 = \{B\}
$$

\n
$$
\mathcal{E}_1 = \{B, D\}
$$

\n
$$
\mathcal{E}_2 = \{B, D, A\}
$$

\n
$$
\mathcal{E} = \{B, D, A\}
$$

```
S \rightarrow ASA \mid aBC \mid bA \rightarrow BD \mid aABB \to bB \mid \varepsilonC \rightarrow AaA \mid bD \rightarrow AD \mid BBB \mid a
```

$$
\mathcal{E}_0 = \{B\} \n\mathcal{E}_1 = \{B, D\} \n\mathcal{E}_2 = \{B, D, A\} \n\mathcal{E} = \{B, D, A\} \n\mathcal{S} \rightarrow ASA \mid SA \mid AS \mid S \mid aBC \mid aC \mid b \nA \rightarrow BD \mid B \mid D \mid aAB \mid aB \mid aA \mid a \nB \rightarrow bB \mid b \nC \rightarrow AaA \mid aA \mid Aa \mid a \mid b \nD \rightarrow AD \mid D \mid A \mid BBB \mid BB \mid B \mid a
$$

For every context-free grammar $G = (\Pi, \Sigma, S, P)$ there is a context-free grammar $\mathcal{G}'=(\Pi',\Sigma,S',P')$ such that $\mathcal{L}(\mathcal{G}')=\mathcal{L}(\mathcal{G})$ and either:

- \mathcal{G}' does not contain ε -rules, or
- the only ε -rule in \mathcal{G}' is the rule $\mathcal{S}'\to\varepsilon$ and \mathcal{S}' does not occur on the right-hand side of any rule in \mathcal{G}' .

Rules of the form $A \to B$ where $A, B \in \Pi$ are called **unit rules**.

Proposition

For every context-free grammar $\mathcal G$ there is a context-free grammar $\mathcal G'$ without ε -rules and without unit rules such that $\mathcal{L}(\mathcal{G}') = \mathcal{L}(\mathcal{G}) - \{\varepsilon\}.$

Proof: Assume $\mathcal{G} = (\Pi, \Sigma, S, P)$ does not contain ε -rules.

For each $A \in \Pi$ compute the set \mathcal{N}_A of all nonterminals that can be obtained from \overline{A} by using only unit rules, i.e.,

 $\mathcal{N}_A = \{ B \in \Pi \mid A \Rightarrow^* B \}$

Construct CFG $\mathcal{G}' = (\Pi, \Sigma, S, P')$ where P' consist of rules of the form $A \to \beta$ where $A \in \Pi$, β is not a single nonterminal, and $(B \to \beta) \in P$ for some $B \in \mathcal{N}_A$.

Example:

 $S \rightarrow AB \mid C$ $A \rightarrow a \mid bA$ $B \rightarrow C \mid b$ $C \rightarrow D \mid AA \mid AaA$ $D \rightarrow B \mid A B b$

Example:

$$
\mathcal{N}_S^0 = \{S\}
$$

 $S \rightarrow AB \mid C$ $A \rightarrow a \mid bA$ $B \rightarrow C \mid b$ $C \rightarrow D \mid AA \mid AaA$ $D \rightarrow B \mid A B b$

$$
\begin{array}{c} \mathcal{N}^0_S = \{S\} \\ \mathcal{N}^1_S = \{S,C\} \end{array}
$$

$$
S \rightarrow AB \mid C
$$

\n
$$
A \rightarrow a \mid bA
$$

\n
$$
B \rightarrow C \mid b
$$

\n
$$
C \rightarrow D \mid AA \mid AaA
$$

\n
$$
D \rightarrow B \mid ABb
$$

$$
\begin{array}{l} \mathcal{N}_S^0 = \{S\} \\ \mathcal{N}_S^1 = \{S, C\} \\ \mathcal{N}_S^2 = \{S, C, D\} \end{array}
$$

$$
S \rightarrow AB \mid C
$$

\n
$$
A \rightarrow a \mid bA
$$

\n
$$
B \rightarrow C \mid b
$$

\n
$$
C \rightarrow D \mid AA \mid AaA
$$

\n
$$
D \rightarrow B \mid ABb
$$

$$
\begin{array}{l} N_S^0 = \{S\} \\ N_S^1 = \{S, C\} \\ N_S^2 = \{S, C, D\} \\ N_S^2 = \{S, C, D, B\} \end{array}
$$

$$
S \rightarrow AB \mid C
$$

\n
$$
A \rightarrow a \mid bA
$$

\n
$$
B \rightarrow C \mid b
$$

\n
$$
C \rightarrow D \mid AA \mid AaA
$$

\n
$$
D \rightarrow B \mid ABb
$$

$$
\begin{array}{l}\n\mathcal{N}_S^0 = \{S\} \\
\mathcal{N}_S^1 = \{S, C\} \\
\mathcal{N}_S^2 = \{S, C, D\} \\
\mathcal{N}_S^3 = \{S, C, D, B\} \\
\mathcal{N}_A^0 = \{A\}\n\end{array}
$$

$$
S \rightarrow AB \mid C
$$

\n
$$
A \rightarrow a \mid bA
$$

\n
$$
B \rightarrow C \mid b
$$

\n
$$
C \rightarrow D \mid AA \mid AaA
$$

\n
$$
D \rightarrow B \mid ABb
$$

$$
\begin{aligned}\n\mathcal{N}_S^0 &= \{S\} \\
\mathcal{N}_S^1 &= \{S, C\} \\
\mathcal{N}_S^2 &= \{S, C, D\} \\
\mathcal{N}_S^3 &= \{S, C, D, B\} \\
\mathcal{N}_S^3 &= \{S, C, D, B\} \\
\mathcal{N}_A^0 &= \{A\} \\
\mathcal{S} &\rightarrow \mathcal{A}\mathcal{B} \mid \mathcal{C} \\
\mathcal{A} &\rightarrow \mathcal{a} \mid \mathcal{b}\mathcal{A} \\
\mathcal{B} &\rightarrow \mathcal{C} \mid \mathcal{b} \\
\mathcal{C} &\rightarrow \mathcal{D} \mid \mathcal{A}\mathcal{A} \mid \mathcal{A}\mathcal{a}\mathcal{A} \\
\mathcal{D} &\rightarrow \mathcal{B} \mid \mathcal{A}\mathcal{B}\mathcal{b}\n\end{aligned}
$$

$$
\begin{aligned}\n\mathcal{N}_S^0 &= \{S\} \\
\mathcal{N}_S^1 &= \{S, C\} \\
\mathcal{N}_S^2 &= \{S, C, D\} \\
\mathcal{N}_S^3 &= \{S, C, D, B\} \\
\mathcal{N}_S^3 &= \{S, C, D, B\} \\
\mathcal{N}_A^0 &= \{A\} \\
\mathcal{S} &\rightarrow \mathcal{A}\mathcal{B} \mid \mathcal{C} \\
\mathcal{A} &\rightarrow \mathcal{a} \mid \mathcal{b}\mathcal{A} \\
\mathcal{B} &\rightarrow \mathcal{C} \mid \mathcal{b} \\
\mathcal{C} &\rightarrow \mathcal{D} \mid \mathcal{A}\mathcal{A} \mid \mathcal{A}\mathcal{a}\mathcal{A} \\
\mathcal{D} &\rightarrow \mathcal{B} \mid \mathcal{A}\mathcal{B}\mathcal{b}\n\end{aligned}
$$

$$
\begin{aligned}\n\mathcal{N}_S^0 &= \{S\} \\
\mathcal{N}_S^1 &= \{S, C\} \\
\mathcal{N}_S^2 &= \{S, C, D\} \\
\mathcal{N}_S^3 &= \{S, C, D, B\} \\
\mathcal{N}_S^3 &= \{S, C, D, B\} \\
\mathcal{N}_A^0 &= \{A\} \\
\mathcal{S} &\rightarrow \mathcal{A}\mathcal{B} \mid \mathcal{C} \\
\mathcal{A} &\rightarrow \mathcal{a} \mid \mathcal{b}\mathcal{A} \\
\mathcal{B} &\rightarrow \mathcal{C} \mid \mathcal{b} \\
\mathcal{C} &\rightarrow \mathcal{D} \mid \mathcal{A}\mathcal{A} \mid \mathcal{A}\mathcal{A} \mathcal{A} \\
\mathcal{D} &\rightarrow \mathcal{B} \mid \mathcal{A}\mathcal{B}\mathcal{b}\n\end{aligned}
$$

$$
\begin{aligned}\n\mathcal{N}_S^0 &= \{S\} \\
\mathcal{N}_S^1 &= \{S, C\} \\
\mathcal{N}_S^2 &= \{S, C, D\} \\
\mathcal{N}_S^2 &= \{S, C, D, B\} \\
\mathcal{N}_S^3 &= \{S, C, D, B\} \\
\mathcal{N}_A^0 &= \{A\} \\
\mathcal{S} &\rightarrow \mathcal{A}\mathcal{B} \mid \mathcal{C} \\
\mathcal{A} &\rightarrow \mathbf{a} \mid \mathbf{b}\mathcal{A} \\
\mathcal{B} &\rightarrow \mathcal{C} \mid \mathbf{b} \\
\mathcal{C} &\rightarrow \mathcal{D} \mid \mathcal{A}\mathcal{A} \mid \mathcal{A}\mathbf{a}\mathcal{A} \\
\mathcal{D} &\rightarrow \mathcal{B} \mid \mathcal{A}\mathcal{B}\mathbf{b} \\
\mathcal{N}_C^0 &= \{C\}\n\end{aligned}
$$

$$
N_{S}^{0} = \{S\}
$$
\n
$$
N_{S}^{1} = \{S, C\}
$$
\n
$$
N_{S}^{2} = \{S, C, D\}
$$
\n
$$
N_{S}^{2} = \{S, C, D\}
$$
\n
$$
N_{S}^{3} = \{S, C, D, B\}
$$
\n
$$
N_{S}^{0} = \{A\}
$$
\n
$$
S \rightarrow AB \mid C
$$
\n
$$
A \rightarrow a \mid bA
$$
\n
$$
N_{B}^{0} = \{B\}
$$
\n
$$
N_{B}^{1} = \{B, C\}
$$
\n
$$
B \rightarrow C \mid b
$$
\n
$$
N_{B}^{2} = \{B, C\}
$$
\n
$$
C \rightarrow D \mid AA \mid A a A
$$
\n
$$
N_{C}^{0} = \{C\}
$$
\n
$$
N_{C}^{1} = \{C, D\}
$$

$$
N_{S}^{0} = \{S\}
$$
\n
$$
N_{S}^{1} = \{S, C\}
$$
\n
$$
N_{S}^{2} = \{S, C, D\}
$$
\n
$$
N_{S}^{2} = \{S, C, D, B\}
$$
\n
$$
N_{S}^{3} = \{S, C, D, B\}
$$
\n
$$
N_{S}^{3} = \{S, C, D, B\}
$$
\n
$$
N_{S}^{0} = \{A\}
$$
\n
$$
N_{A}^{0} = \{B\}
$$
\n
$$
N_{B}^{1} = \{B, C\}
$$
\n
$$
B \rightarrow C \mid b \qquad N_{B}^{2} = \{B, C, D\}
$$
\n
$$
C \rightarrow D \mid AA \mid A \neq A \qquad N_{C}^{0} = \{C\}
$$
\n
$$
N_{C}^{1} = \{C, D\}
$$
\n
$$
N_{C}^{2} = \{C, D, B\}
$$

$$
N_{S}^{0} = \{S\}
$$
\n
$$
N_{S}^{1} = \{S, C\}
$$
\n
$$
N_{S}^{2} = \{S, C, D\}
$$
\n
$$
N_{S}^{2} = \{S, C, D, B\}
$$
\n
$$
N_{S}^{3} = \{S, C, D, B\}
$$
\n
$$
N_{S}^{3} = \{S, C, D, B\}
$$
\n
$$
N_{A}^{0} = \{A\}
$$
\n
$$
S \rightarrow AB \mid C
$$
\n
$$
A \rightarrow a \mid bA
$$
\n
$$
N_{B}^{0} = \{B\}
$$
\n
$$
S \rightarrow C \mid b
$$
\n
$$
N_{B}^{1} = \{B, C\}
$$
\n
$$
S \rightarrow C \mid b
$$
\n
$$
N_{B}^{2} = \{B, C, D\}
$$
\n
$$
S \rightarrow C \mid b
$$
\n
$$
N_{B}^{2} = \{B, C, D\}
$$
\n
$$
S \rightarrow C \mid b
$$
\n
$$
N_{B}^{2} = \{C, D\}
$$
\n
$$
N_{C}^{1} = \{C, D\}
$$
\n
$$
N_{C}^{2} = \{C, D, B\}
$$
\n
$$
N_{D}^{0} = \{D\}
$$

$$
N_{S}^{0} = \{S\}
$$
\n
$$
N_{S}^{1} = \{S, C\}
$$
\n
$$
N_{S}^{2} = \{S, C, D\}
$$
\n
$$
N_{S}^{3} = \{S, C, D, B\}
$$
\n
$$
N_{S}^{3} = \{S, C, D, B\}
$$
\n
$$
N_{A}^{3} = \{A\}
$$
\n
$$
S \rightarrow AB \mid C
$$
\n
$$
A \rightarrow a \mid bA
$$
\n
$$
N_{B}^{0} = \{B\}
$$
\n
$$
B \rightarrow C \mid b
$$
\n
$$
N_{B}^{1} = \{B, C\}
$$
\n
$$
C \rightarrow D \mid AA \mid AaA
$$
\n
$$
N_{C}^{2} = \{B, C, D\}
$$
\n
$$
C \rightarrow D \mid ABb
$$
\n
$$
N_{C}^{0} = \{C\}
$$
\n
$$
N_{C}^{1} = \{C, D\}
$$
\n
$$
N_{C}^{2} = \{C, D, B\}
$$
\n
$$
N_{D}^{0} = \{D\}
$$
\n
$$
N_{D}^{1} = \{D, B\}
$$

$$
N_{S}^{0} = \{S\}
$$
\n
$$
N_{S}^{1} = \{S, C\}
$$
\n
$$
N_{S}^{2} = \{S, C, D\}
$$
\n
$$
N_{S}^{2} = \{S, C, D\}
$$
\n
$$
N_{S}^{3} = \{S, C, D, B\}
$$
\n
$$
N_{A}^{3} = \{A\}
$$
\n
$$
S \rightarrow AB \mid C
$$
\n
$$
A \rightarrow a \mid bA
$$
\n
$$
N_{B}^{0} = \{B\}
$$
\n
$$
B \rightarrow C \mid b
$$
\n
$$
N_{B}^{1} = \{B, C\}
$$
\n
$$
S \rightarrow D \mid AA \mid AaA
$$
\n
$$
N_{B}^{2} = \{B, C, D\}
$$
\n
$$
S \rightarrow D \mid AB \mid ABA
$$
\n
$$
N_{C}^{2} = \{C, D\}
$$
\n
$$
N_{C}^{1} = \{C, D\}
$$
\n
$$
N_{C}^{2} = \{C, D, B\}
$$
\n
$$
N_{D}^{0} = \{D\}
$$
\n
$$
N_{D}^{1} = \{D, B\}
$$
\n
$$
N_{D}^{2} = \{D, B, C\}
$$

$$
N_{S}^{0} = \{S\}
$$

\n
$$
N_{S}^{1} = \{S, C\}
$$

\n
$$
N_{S}^{2} = \{S, C, D\}
$$

\n
$$
N_{S}^{2} = \{S, C, D, B\}
$$

\n
$$
N_{S}^{2} = \{S, C, D, B\}
$$

\n
$$
N_{A} = \{A\}
$$

\n
$$
N_{B} = \{B, C, D\}
$$

\n
$$
S \rightarrow AB \mid C
$$

\n
$$
A \rightarrow a \mid bA
$$

\n
$$
N_{B}^{0} = \{B\}
$$

\n
$$
N_{C} = \{C, D, B\}
$$

\n
$$
B \rightarrow C \mid b
$$

\n
$$
N_{B}^{1} = \{B, C\}
$$

\n
$$
N_{B}^{2} = \{B, C\}
$$

\n
$$
N_{B}^{2} = \{B, C, D\}
$$

\n
$$
N_{C}^{2} = \{C, D\}
$$

\n
$$
N_{C}^{2} = \{C, D\}
$$

\n
$$
N_{C}^{2} = \{C, D, B\}
$$

\n
$$
N_{C}^{0} = \{D\}
$$

\n
$$
N_{D}^{1} = \{D, B\}
$$

\n
$$
N_{D}^{0} = \{D\}
$$

\n
$$
N_{D}^{1} = \{D, B\}
$$

\n
$$
N_{D}^{2} = \{D, B, C\}
$$

$$
N_{S}^{0} = \{S\}
$$

\n
$$
N_{S}^{1} = \{S, C\}
$$

\n
$$
N_{S}^{2} = \{S, C, D\}
$$

\n
$$
N_{S}^{2} = \{S, C, D, B\}
$$

\n
$$
N_{S}^{3} = \{S, C, D, B\}
$$

\n
$$
N_{A} = \{A\}
$$

\n
$$
N_{B} = \{B, C, D\}
$$

\n
$$
S \rightarrow AB \mid C
$$

\n
$$
N_{A}^{0} = \{A\}
$$

\n
$$
N_{B}^{0} = \{B\}
$$

\n
$$
N_{C} = \{C, D, B\}
$$

\n
$$
S \rightarrow AB \mid AB
$$

\n
$$
N_{B}^{1} = \{B, C\}
$$

\n
$$
S \rightarrow AB \mid AA \mid AaA \mid ABb \mid b
$$

\n
$$
D \rightarrow B \mid ABb
$$

\n
$$
N_{C}^{0} = \{C\}
$$

\n
$$
N_{C}^{1} = \{C, D\}
$$

\n
$$
N_{C}^{2} = \{C, D\}
$$

\n
$$
N_{C}^{3} = \{B, C, D\}
$$

\n
$$
S \rightarrow AB \mid AA \mid AaA \mid ABb \mid b
$$

\n
$$
B \rightarrow b \mid AA \mid AaA \mid ABB \mid b
$$

\n
$$
D \rightarrow ABB \mid b \mid AA \mid ABA \mid ABB \mid b
$$

\n
$$
N_{C}^{0} = \{C, D, B\}
$$

\n
$$
N_{D}^{0} = \{D\}
$$

\n
$$
N_{D}^{1} = \{D, B\}
$$

\n
$$
N_{D}^{2} = \{D, B, C\}
$$

Definition

A context-free grammar is in **Chomsky normal form** if every rule is of on of the following forms:

- \bullet $A \rightarrow BC$
- \bullet $A \rightarrow a$

where a is any terminal and A , B , and C are any nonterminals.

In addition we permit the rule $S \to \varepsilon$, where S the initial nonterminal. In that case, nonterminal S cannot occur on the right-hand side of any rule.

Proposition

For every context-free grammar G there is an equivalent context-free grammar \mathcal{G}' in Chomsky normal form.

Proof: Perform the following transformations on \mathcal{G} :

- **1** Decompose each rule $A \to \alpha$ where $|\alpha| > 3$ into a sequence of rules where each right-hand size has length 2.
- Remove ε -rules.
- Remove unit rules.
- **4** For each terminal a occurring on the right-hand size of some rule $A \rightarrow \alpha$ where $|\alpha| = 2$ introduce a new nonterminal N_a , replace occurrences of a on such right-hand sides with N_a , and add $N_a \rightarrow a$ as a new rule.

Chomsky Normal Form

Example:

 $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$ $B \to b \mid \varepsilon$
Example:

 $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$ $B \to b \mid \varepsilon$

Step 1:

 $S \rightarrow AZ \mid aB$ $Z \rightarrow SA$ $A \rightarrow B \mid S$ $B \to b \mid \varepsilon$

Example:

Step 2: $\mathcal{E} = \{B, A\}$

 $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$ $B \to b \mid \varepsilon$

Step 1:

 $S \rightarrow AZ \mid aB$ $Z \rightarrow SA$ $A \rightarrow B \mid S$ $B \to b \mid \varepsilon$

Example:

Step 1:

 $S \rightarrow AZ \mid aB$ $Z \rightarrow SA$ $A \rightarrow B \mid S$ $B \to b \mid \varepsilon$

 $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$ $B \to b \mid \varepsilon$

Example:

Step 1:

 $S \rightarrow AZ \mid aB$ $Z \rightarrow SA$ $A \rightarrow B \mid S$ $B \to b \mid \varepsilon$

 $S \rightarrow ASA \mid aB$ $A \rightarrow B \mid S$ $B \to b \mid \varepsilon$

Step 3:

$$
\begin{array}{l} N_{S_0} = \{S_0, S, Z\} \\ N_S = \{S, Z\} \\ N_Z = \{Z, S\} \\ N_A = \{A, B, S, Z\} \\ N_B = \{B\} \end{array}
$$

Example:

Step 2:
\n
$$
\mathcal{E} = \{B, A\}
$$
\n
$$
S_0 \rightarrow S
$$
\n
$$
S \rightarrow AZ \mid Z \mid aB \mid a
$$
\n
$$
Z \rightarrow SA \mid S
$$
\n
$$
A \rightarrow B \mid S
$$
\n
$$
B \rightarrow b
$$

 $S_0 \rightarrow AZ \mid aB \mid a \mid SA$ $S \rightarrow AZ \mid aB \mid a \mid SA$ $Z \rightarrow SA \mid AZ \mid aB \mid a$ $A \rightarrow b \mid AZ \mid aB \mid a \mid SA$ $B \rightarrow b$

Step 1:

 $S \rightarrow AZ \mid aB$ $Z \rightarrow SA$ $A \rightarrow B \mid S$ $B \to b \mid \varepsilon$

Step 3:

$$
\begin{array}{l}\nN_{S_0} = \{S_0, S, Z\} \\
N_S = \{S, Z\} \\
N_Z = \{Z, S\} \\
N_A = \{A, B, S, Z\} \\
N_B = \{B\}\n\end{array}
$$

Example:

Step 2: $\mathcal{E} = \{B, A\}$ $S_0 \rightarrow S$ $S \rightarrow AZ \mid Z \mid aB \mid a$ $Z \rightarrow SA \mid S$ $A \rightarrow B \mid S$ $B \rightarrow b$

 $S_0 \rightarrow AZ \mid aB \mid a \mid SA$ $S \rightarrow AZ \mid aB \mid a \mid SA$ $Z \rightarrow SA \mid AZ \mid aB \mid a$ $A \rightarrow b \mid AZ \mid aB \mid a \mid SA$ $B \rightarrow b$

Step 1:

 $S \rightarrow AZ \mid aB$ $Z \rightarrow SA$ $A \rightarrow B \mid S$ $B \to b \mid \varepsilon$

Step 3: $\mathcal{N}_{S_0} = \{S_0, S, Z\}$ $\mathcal{N}_{S} = \{S, Z\}$ $\mathcal{N}_z = \{Z, S\}$ $\mathcal{N}_A = \{A, B, S, Z\}$ $\mathcal{N}_B = \{B\}$

Step 4:

 $S_0 \rightarrow AZ \mid YB \mid a \mid SA$ $S \rightarrow AZ \mid YB \mid a \mid SA$ $Z \rightarrow SA \mid AZ \mid YB \mid a$ $A \rightarrow b \mid AZ \mid YB \mid a \mid SA$ $B \to b$ $Y \rightarrow a$

Grammar $\mathcal{G} = (\Pi, \Sigma, S, P)$ in Chomsky normal form has some properties that allow to determine whether $w \in \Sigma^*$ belongs to the language generated by grammar G (i.e., if $w \in \mathcal{L}(\mathcal{G})$):

- Let us assume that $w \in \mathcal{L}(\mathcal{G})$ (and so $S \Rightarrow^* w$)and that $|w| = n$, where $n \geq 1$. Then for (every) derivation $S \Rightarrow^* w$ holds:
	- The rules of the form $A \rightarrow a$ (i.e., a nonterminal is rewritten to exactly one terminal) are used in exactly n steps of the derivation.
	- The rules of the form $A \rightarrow BC$ (i.e., a nonterminal is rewritten to a pair of nonterminals) are used in exactly $n - 1$ steps of the derivation.

So every derivation $S \Rightarrow^* w$, where $|w| = n$, has $2n - 1$ steps, where *n* of these steps are of the form $A \rightarrow a$ and $n-1$ of the form $A \rightarrow BC$.

To find out whether $S \Rightarrow^* w$, it is sufficient to try by brute force all possible derivations of length $2n - 1$.

Such algorithm has exponential time complexity with respect to the length of w.

Such systematic trying of all possibilities can be implemented by using so called **dynamic programming** in a way that is much more efficient than a straightforward algorithm that generates all derivations of the given length.

Cocke-Younger-Kasami algorithm, with time complexity $O(n^3)$, is based on this idea. (Assuming a fixed grammar \mathcal{G} .)

The question if $S \Rightarrow^* w$ is a special case of the question if

 $A \Rightarrow^* W$.

where $A\in \Pi$ is an arbitrary nonterminal and $w\in \Sigma^*$ is an arbitrary word consisting of terminals.

It is obvious that:

- If $|w| = 1$: Then $A \Rightarrow^* w$ iff there is a rule $A \to b$ in P where $w = b$.
- If $|w| > 1$: Then $A \Rightarrow^* w$ iff there is a rule $A \to BC$ in P where for some words u and v such that $w = uv$, $|u| \ge 1$ and $|v| \ge 1$, it holds that $B \Rightarrow^* u$ and $C \Rightarrow^* v$.

Cocke-Younger-Kasami Algorithm

Let us assume that a word $w \in \Sigma^*$ with $|w| = n$ where $n \geq 1$ and

 $W = a_1 a_2 \cdots a_n$.

Instead of solving the original question whether $S \Rightarrow^* w$, we will solve the following more general problem for all nonempty subwords v of the word w :

 \bullet To find the set of all nonterminals A from the set Π such that $A \Rightarrow^* V$.

Let us denote the set of all nonterminals generating subword ν of length i and starting on position j as $\mathcal{F}[i][j]$, i.e., for each $A \in \Pi$ it holds that

$$
A \in \mathcal{F}[i][j] \qquad \Longleftrightarrow \qquad A \Rightarrow^* a_j a_{j+1} \ldots a_{j+(i-1)}
$$

To find out whether $S \Rightarrow^* w$, is therefore the same problem as to find out whether $S \in \mathcal{F}[n][1]$.

- The algorithm computes values $\mathcal{F}[i][j]$ at first for subwords of length 1 (i.e., $i = 1$), then for subwords of length 2 (i.e., $i = 2$), then for subwords of length 3, length 4, etc.
- Values $\mathcal{F}[i][j]$ are stored in a twodimensional array \mathcal{F} , where $1 \leq i \leq n$ a $1 \leq j \leq n - i + 1$, where the elements of this array are subsets of nonterminals from the set Π.
- In the computation of the value $\mathcal{F}[i][j]$ the previously computed values $\mathcal{F}[i'][j']$, where $i' < i$, are used.
- Let us assume that at the beginning all elements of array $\mathcal F$ are initialized to ∅.

