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Context-Free Grammars

Example: We would like to describe a language of arithmetic expressions,
containing expressions such as:

175 (9+15) (((10-4)*((1+34)+2))/(3+(-37)))

For simplicity we assume that:

Expressions are fully parenthesized.

The only arithmetic operations are “+”, “-”, “*”, “/”and unary “-”.

Values of operands are natural numbers written in decimal —
a number is represented as a non-empty sequence of digits.

Alphabet: Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, -, *, /, (, )}
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Context-Free Grammars

Example (cont.): A description by an inductive definition:

Digit is any of characters 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Number is a non-empty sequence of digits, i.e.:

If α is a digit then α is a number.

If α is a digit and β is a number then also αβ is a number.

Expression is a sequence of symbols constructed according to the
following rules:

If α is a number then α is an expression.
If α is an expression then also (-α) is an expression.
If α and β are expressions then also (α+β) is an expression.
If α and β are expressions then also (α-β) is an expression.
If α and β are expressions then also (α*β) is an expression.
If α and β are expressions then also (α/β) is an expression.
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Context-Free Grammars

Example (cont.): The same information that was described by the
previous inductive definition can be represented by a context-free
grammar:

New auxiliary symbols, called nonterminals, are introduced:

D — stands for an arbitrary digit

C — stands for an arbitrary number

E — stands for an arbitrary expression

D → 0

D → 1

D → 2

D → 3

D → 4

D → 5

D → 6

D → 7

D → 8

D → 9

C → D

C → DC

E → C

E → (-E)

E → (E+E)

E → (E-E)

E → (E*E)

E → (E/E)
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Context-Free Grammars

Example (cont.): Written in a more succinct way:

D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
C → D | DC
E → C | (-E) | (E+E) | (E-E) | (E*E) | (E/E)
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Context-Free Grammars

Example: A language where words are (possibly empty) sequences of
expressions described in the previous example, where individual expressions
are separated by commas (the alphabet must be extended with
symbol “,”):

S → T | ε
T → E | E,T
D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
C → D | DC
E → C | (-E) | (E+E) | (E-E) | (E*E) | (E/E)
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Context-Free Grammars

Example: Statements of some programming language (a fragment of
a grammar):

S → E; | T | if (E) S | if (E) S else S

| while (E) S | do S while (E); | for (F; F; F) S

| return F;

T → { U }
U → ε | SU
F → ε | E
E → . . .

Remark:

S — statement

T — block of statements

U — sequence of statements

E — expression

F — optional expression that can be omitted
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Context-Free Grammars

Formally, a context-free grammar is a tuple

G = (Π,Σ, S ,P)

where:

Π is a finite set of nonterminal symbols (nonterminals)

Σ is a finite set of terminal symbols (terminals),
where Π ∩ Σ = ∅

S ∈ Π is an initial nonterminal

P ⊆ Π× (Π ∪ Σ)∗ is a finite set of rewrite rules
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Context-Free Grammars

Remarks:

We will use uppercase letters A, B , C , . . . to denote nonterminal
symbols.

We will use lowercase letters a, b, c , . . . or digits 0, 1, 2, . . . to
denote terminal symbols.

We will use lowercase Greek letters α, β, γ, . . . do denote strings
from (Π ∪ Σ)∗.

We will use the following notation for rules instead of (A, α)

A → α

A – left-hand side of the rule
α – right-hand side of the rule
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Context-Free Grammars

Example: Grammar G = (Π,Σ, S ,P) where

Π = {A,B ,C}

Σ = {a, b}

S = A

P contains rules
A → aBBb

A → AaA

B → ε

B → bCA

C → AB

C → a

C → b
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Context-Free Grammars

Remark: If we have more rules with the same left-hand side, as for
example

A → α1 A → α2 A → α3

we can write them in a more succinct way as

A → α1 | α2 | α3

For example, the rules of the grammar from the previous slide can be
written as

A → aBBb | AaA
B → ε | bCA
C → AB | a | b
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Context-Free Grammars

Grammars are used for generating words.

Example: G = (Π,Σ,A,P) where Π = {A,B ,C}, Σ = {a, b}, and P

contains rules
A → aBBb | AaA
B → ε | bCA
C → AB | a | b

For example, the word abbabb can be in grammar G generated as follows:
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Context-Free Grammars

On strings from (Π∪Σ)∗ we define relation ⇒⊆ (Π∪Σ)∗ × (Π∪Σ)∗ such
that

α ⇒ α′

iff α = β1Aβ2 and α′ = β1γβ2 for some β1, β2, γ ∈ (Π ∪ Σ)∗ and A ∈ Π
where (A → γ) ∈ P .

Example: If (B → bCA) ∈ P then

aCBbA ⇒ aCbCAbA

Remark: Informally, α ⇒ α′ means that it is possible to derive α′ from α

by one step where an occurrence of some nonterminal A in α is replaced
with the right-hand side of some rule A → γ with A on the left-hand side.
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Context-Free Grammars

A derivation of length n is a sequence β0, β1, β2, · · · , βn, where
βi ∈ (Π ∪ Σ)∗, and where βi−1 ⇒ βi for all 1 ≤ i ≤ n, which can be
written more succinctly as

β0 ⇒ β1 ⇒ β2 ⇒ . . . ⇒ βn−1 ⇒ βn

The fact that for given α, α′ ∈ (Π ∪ Σ)∗ and n ∈ N there exists some
derivation β0 ⇒ β1 ⇒ β2 ⇒ . . . ⇒ βn−1 ⇒ βn, where α = β0 and
α′ = βn, is denoted

α ⇒n α′

The fact that α ⇒n α′ for some n ≥ 0, is denoted

α ⇒∗ α′

Remark: Relation ⇒∗ is the reflexive and transitive closure of relation ⇒
(i.e., the smallest reflexive and transitive relation containing relation ⇒).
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Context-Free Grammars

Sentential forms are those α ∈ (Π ∪ Σ)∗, for which

S ⇒∗ α

where S is the initial nonterminal.
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Context-Free Grammars

A language L(G) generated by a grammar G = (Π,Σ, S ,P) is the set of
all words over alphabet Σ that can be derived by some derivation from the
initial nonterminal S using rules from P , i.e.,

L(G) = {w ∈ Σ∗ | S ⇒∗ w}

Definition

A language L is context-free if there exists some context-free grammar G
such that L = L(G).
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Context-Free Grammars

Example: We want to construct a grammar generating the language

L = {anbn | n ≥ 0}

Z. Sawa (TU Ostrava) Theoretical Computer Science December 1, 2021 17 / 55



Context-Free Grammars

Example: We want to construct a grammar generating the language

L = {anbn | n ≥ 0}

Grammar G = (Π,Σ, S ,P) where Π = {S}, Σ = {a, b}, and P contains

S → ε | aSb

Z. Sawa (TU Ostrava) Theoretical Computer Science December 1, 2021 17 / 55



Context-Free Grammars

Example: We want to construct a grammar generating the language

L = {anbn | n ≥ 0}
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S ⇒ ε

S ⇒ aSb ⇒ ab

S ⇒ aSb ⇒ aaSbb ⇒ aabb

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaaaSbbbb ⇒ aaaabbbb

· · ·
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Context-Free Grammars

Example: We want to construct a grammar generating the language
consisting of all palindroms over the alphabet {a, b}, i.e.,

L = {w ∈ {a, b}∗ | w = wR}

Remark: wR denotes the reverse of a word w , i.e., the word w written
backwards.
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Context-Free Grammars

Example: We want to construct a grammar generating the language L

consisting of all correctly parenthesised sequences of symbols ‘(’ and ‘)’.

For example (()())(()) ∈ L but )()) 6∈ L.
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Context-Free Grammars

Example: We want to construct a grammar generating the language L

consisting of all correctly constructed arithmetic experessions where
operands are always of the form ‘a’ and where symbols + and ∗ can be
used as operators.

For example (a+ a) ∗ a+ (a ∗ a) ∈ L.
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Derivation Tree

A → aBBb | AaA
B → ε | bCA
C → AB | a | b
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Derivation Tree

For each derivation there is some derivation tree:

Nodes of the tree are labelled with terminals and nonterminals.

The root of the tree is labelled with the initial nonterminal.

The leafs of the tree are labelled with terminals or with symbols ε.

The remaining nodes of the tree are labelled with nonterminals.

If a node is labelled with some nonterminal A then its children are
labelled with the symbols from the right-hand side of some rewriting
rule A → α.
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Left and Right Derivation

E → a | E + E | E ∗ E | (E )

A left derivation is a derivation where in every step we always replace the
leftmost nonterminal.

E ⇒ E + E ⇒ E ∗ E + E ⇒ a ∗ E + E ⇒ a ∗ a+ E ⇒ a ∗ a+ a

A right derivation is a derivation where in every step we always replace
the rightmost nonterminal.

E ⇒ E + E ⇒ E + a ⇒ E ∗ E + a ⇒ E ∗ a+ a ⇒ a ∗ a+ a

A derivation need not be left or right:

E ⇒ E + E ⇒ E ∗ E + E ⇒ E ∗ a+ E ⇒ E ∗ a+ a ⇒ a ∗ a+ a
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Left and Right Derivation

There can be several different derivations corresponding to one
derivation tree.

For every derivation tree, there is exactly one left and exactly one
right derivation corresponding to the tree.
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Equvalence of Grammars

Grammars G1 and G2 are equivalent if they generate the same language,
i.e., if L(G1) = L(G2).

Remark: The problem of equivalence of context-free grammars is
algorithmically undecidable. It can be shown that it is not possible to
construct an algorithm that would decide for any pair of context-free
grammars if they are equivalent or not.

Even the problem to decide if a grammar generates the language Σ∗ is
algorithmically undecidable.
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Ambiguous Grammars

A grammar G is ambiguous if there is a word w ∈ L(G) that has two
different derivation trees, resp. two different left or two different right
derivations.

Example:
E ⇒ E + E ⇒ E ∗ E + E ⇒ a ∗ E + E ⇒ a ∗ a+ E ⇒ a ∗ a+ a

E ⇒ E ∗ E ⇒ E ∗ E + E ⇒ a ∗ E + E ⇒ a ∗ a+ E ⇒ a ∗ a+ a

E

E

E

a

∗ E

a

+ E

a

E

E

a

∗ E

E

a

+ E

a
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Ambiguous Grammars

Sometimes it is possible to replace an ambiguous grammar with a
grammar generating the same language but which is not ambiguous.

Example: A grammar

E → E + E | E ∗ E | (E ) | a

can be replaced with the equivalent grammar

E → T | T + E

T → F | F ∗ T
F → a | (E )

Remark: If there is no unambiguous grammar equivalent to a given
ambiguous grammar, we say it is inherently ambiguous.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 1, 2021 27 / 55



Context-Free Languages

The class of context-free languages is closed with respect to:

concatenation

union

iteration

The class of context-free languages is not closed with respect to:

complement

intersection
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Context-Free Languages

We have two grammars G1 = (Π1,Σ, S1,P1) and G2 = (Π2,Σ, S2,P2), and
can assume that Π1 ∩ Π2 = ∅ and S 6∈ Π1 ∪ Π2.

Grammar G such that L(G) = L(G1) · L(G2):

G = (Π1 ∪ Π2 ∪ {S}, Σ, S , P1 ∪ P2 ∪ {S → S1S2})

Grammar G such that L(G) = L(G1) ∪ L(G2):

G = (Π1 ∪ Π2 ∪ {S}, Σ, S , P1 ∪ P2 ∪ {S → S1, S → S2})

Grammar G such that L(G) = L(G1)
∗:

G = (Π1 ∪ {S}, Σ, S , P1 ∪ {S → ε, S → S1S})
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A Context-Free Grammar for a Regular Expression

Example: The construction of a context-free grammar for regular
expression ((a + b) · b)∗:

∗

·

+ b

a b
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A Context-Free Grammar for a Finite Automaton
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Regular grammars

Definition

A grammar G = (Π,Σ, S ,P) is right regular if all rules in P are of the
following forms (where A,B ∈ Π, a ∈ Σ):

A → B

A → aB

A → ε

Definition

A grammar G = (Π,Σ, S ,P) is left regular if all rules in P are of the
following forms (kde A,B ∈ Π, a ∈ Σ):

A → B

A → Ba

A → ε
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Regular grammars

Definition

A grammar G is regular if it right regular or left regular.

Remark: Sometimes a slightly more general definition of right (resp. left)
regular grammars is given, allowing all rules of the following forms:

A → wB (resp. A → Bw)

A → w

where A,B ∈ Π, w ∈ Σ∗.

Such rules can be easily “decomposed” into rules of the form in the
previous definition.

Example: Rule A → abbB can be replaced with rules

A → aZ1 Z1 → bZ2 Z2 → bB

where Z1, Z2 are new nonterminals, not used anywhere else in the
grammar.
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Regular grammars

Proposition

For every regular language L there is a left regular grammar G such that
L(G) = L and a right regular grammar G′ such that L(G′) = L.

Proposition

For every regular grammar G there is a finite automaton A such that
L(A) = L(G).
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Reduction of a Context-Free Grammar

Definition

A context-free grammar G = (Π,Σ, S ,P) is reduced if for every A ∈ Π:

there are some u, v ∈ Σ∗ such that S ⇒∗ uAv , and

there is some w ∈ Σ∗ such that A ⇒∗ w .

Remark: Obviously, if S ⇒∗ uAv and A ⇒∗ w where u, v ,w ∈ Σ∗, then
S ⇒∗ uwv , and so A is used in some derivation of a word from Σ∗.

On the other hand, if A is used in some derivation S ⇒∗ z of
a word z ∈ Σ∗, then z can be divided into parts u, v ,w such that z = uwv

and S ⇒∗ uAv and A ⇒∗ w .
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Reduction of a Context-Free Grammar

Obviously, every A ∈ Π with the property that

there are no u, v ∈ Σ∗ such that S ⇒∗ uAv , or

there is no w ∈ Σ∗ such that A ⇒∗ w ,

can be safely removed from the grammar (together with all rules where it
occurs) without affecting the generated language.
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Reduction of a Context-Free Grammar

An algorithm that for a given CFG G contructs an equivalent reduced
grammar:

1 Construct the set T of all nonterminals that can generate a terminal
word:

T = {A ∈ Π | (∃w ∈ Σ∗)(A ⇒∗ w) }

2 Remove from G all nonterminals from the set Π− T together with all
rules where they occur.
Denote the rusulting grammar G′ = (Π′,Σ, S ,P ′).

3 Construct the set D of all nonterminals that can be “reached” from
the initial nonterminal S :

D = {A ∈ Π′ | (∃α, β ∈ (Π′ ∪ Σ)∗)(S ⇒∗ αAβ) }

4 Remove from G′ all nonterminals from the set Π′ −D together with
all rules where they occur.
The rusulting grammar G′′ is the result of the whole algorithm.
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Reduction of a Context-Free Grammar

Example:

S → AC | B
A → aC | AbA
B → Ba | BbA | DB
C → aa | aBC
D → aA | ε
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Some Properties of Context-free Grammars

Let us assume we have a context-free grammar G = (Π,Σ, S ,P).

We can easily construct algorithms for the following problems dealing with
some properties of context-free grammar G:

To find out for given α ∈ (Π ∪ Σ)∗ whether α ⇒∗ ε.

To find, for given α ∈ (Π ∪ Σ)∗, the set first(α), where

first(α) = { a ∈ Σ | α ⇒∗ aβ for some β ∈ (Π ∪ Σ)∗ }

To find, for given α ∈ (Π ∪ Σ)∗, the set last(α), where

last(α) = { a ∈ Σ | α ⇒∗ βa for some β ∈ (Π ∪ Σ)∗ }
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Some Properties of Context-free Grammars

To find, for given nonterminal A ∈ Π, the set follow(A), where

follow(A) = { a ∈ Σ | S ⇒∗ β1Aa β2 for some β1, β2 ∈ (Π ∪ Σ)∗ }

To find all nonterminals A ∈ Π, for which grammar G contains the
left recursion, i.e., those for which

A ⇒+ Aα for some α ∈ (Π ∪ Σ)∗

To find all nonterminals A ∈ Π, for which grammar G contains the
right recursion, i.e., those for which

A ⇒+ αA for some α ∈ (Π ∪ Σ)∗

Remark: Notation α ⇒+ β, where α, β ∈ (Π ∪ Σ)∗, denotes that α can
be rewritten to β (i.e., α ⇒∗ β) by a derivation with a nonzero number of
steps.
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Some Properties of Context-free Grammars

To be able to use a given context-free grammar G for a straightforward
implementation of recursive descent, it must have some particular
properties:

It must not contain left recursion.

For each nonterminal A ∈ Π and all rules with A on the left-hand
side, i.e.,

A → α1 | α2 | · · · | αn

the sets first(α1), first(α2), . . . , first(αn) must be pairwise disjoint.

For every nonterminal A ∈ Π and all rules A → α1 | α2 | · · · | αn

there can be at most one right-hand side αi such that αi ⇒
∗ ε.

If there is such right-hand side (and so A ⇒∗ ε), the sets first(α1),
first(α2), . . . , first(αn) must be disjoint with the set follow(A).
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Removing Epsilon-rules

Rules of the form A → ε are called epsilon-rules (ε-rules).

Proposition

For every context-free grammar G there is a context-free grammar G′

without ε-rules such that L(G′) = L(G)− {ε}.

Proof: Construct the set E of all nonterminals that can be rewritten to ε,
i.e.,

E = {A ∈ Π | A ⇒∗ ε }

Remove all ε-rules and replace every other rule A → α with a set of rules
obtained by all possible rules of the form A → α′ where α′ is obtained from
α by possible ommitting of (some) occurrences of nonterminals from E .
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Removing Epsilon-rules

Example:

S → ASA | aBC | b
A → BD | aAB
B → bB | ε
C → AaA | b
D → AD | BBB | a
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Removing Epsilon-rules

Example:

S → ASA | aBC | b
A → BD | aAB
B → bB | ε
C → AaA | b
D → AD | BBB | a

E0 = {B}
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Removing Epsilon-rules
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S → ASA | aBC | b
A → BD | aAB
B → bB | ε
C → AaA | b
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E0 = {B}
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Removing Epsilon-rules

Example:

S → ASA | aBC | b
A → BD | aAB
B → bB | ε
C → AaA | b
D → AD | BBB | a

E0 = {B}
E1 = {B ,D}
E2 = {B ,D,A}

E = {B ,D,A}

S → ASA | SA | AS | S | aBC | aC | b
A → BD | B | D | aAB | aB | aA | a
B → bB | b
C → AaA | aA | Aa | a | b
D → AD | D | A | BBB | BB | B | a
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Removing Epsilon-rules

For every context-free grammar G = (Π,Σ, S ,P) there is a context-free
grammar G′ = (Π′,Σ, S ′,P ′) such that L(G′) = L(G) and either:

G′ does not contain ε-rules, or

the only ε-rule in G′ is the rule S ′ → ε and S ′ does not occur on the
right-hand side of any rule in G′.
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Removing Unit-rules

Rules of the form A → B where A,B ∈ Π are called unit rules.

Proposition

For every context-free grammar G there is a context-free grammar G′

without ε-rules and without unit rules such that L(G′) = L(G)− {ε}.

Proof: Assume G = (Π,Σ, S ,P) does not contain ε-rules.

For each A ∈ Π compute the set NA of all nonterminals that can be
obtained from A by using only unit rules, i.e.,

NA = {B ∈ Π | A ⇒∗ B }

Construct CFG G′ = (Π,Σ, S ,P ′) where P ′ consist of rules of the form
A → β where A ∈ Π, β is not a single nonterminal, and (B → β) ∈ P for
some B ∈ NA.
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Removing Unit-rules

Example:

S → AB | C
A → a | bA
B → C | b
C → D | AA | AaA
D → B | ABb
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Removing Unit-rules

Example:

S → AB | C
A → a | bA
B → C | b
C → D | AA | AaA
D → B | ABb

N 0
S = {S}

Z. Sawa (TU Ostrava) Theoretical Computer Science December 1, 2021 46 / 55



Removing Unit-rules

Example:
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N 0
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Removing Unit-rules

Example:

S → AB | C
A → a | bA
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C → D | AA | AaA
D → B | ABb
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S → AB | AA | AaA | ABb | b
A → a | bA
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D → ABb | b | AA | AaA
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Chomsky Normal Form

Definition

A context-free grammar is in Chomsky normal form if every rule is of on
of the following forms:

A → BC

A → a

where a is any terminal and A, B ,and C are any nonterminals.

In addition we permit the rule S → ε, where S the initial nonterminal. In
that case, nonterminal S cannot occur on the right-hand side of any rule.
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Chomsky Normal Form

Proposition

For every context-free grammar G there is an equivalent context-free
grammar G′ in Chomsky normal form.

Proof: Perform the following transformations on G:

1 Decompose each rule A → α where |α| ≥ 3 into a sequence of rules
where each right-hand size has length 2.

2 Remove ε-rules.

3 Remove unit rules.

4 For each terminal a occurring on the right-hand size of some rule
A → α where |α| = 2 introduce a new nonterminal Na, replace
occurrences of a on such right-hand sides with Na, and add Na → a

as a new rule.
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Chomsky Normal Form

Example:

S → ASA | aB
A → B | S
B → b | ε
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Chomsky Normal Form

Example:

S → ASA | aB
A → B | S
B → b | ε

Step 1:

S → AZ | aB
Z → SA

A → B | S
B → b | ε
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Chomsky Normal Form

Example:

S → ASA | aB
A → B | S
B → b | ε

Step 1:

S → AZ | aB
Z → SA

A → B | S
B → b | ε

Step 2:

E = {B ,A}
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Chomsky Normal Form

Example:

S → ASA | aB
A → B | S
B → b | ε

Step 1:

S → AZ | aB
Z → SA

A → B | S
B → b | ε

Step 2:

E = {B ,A}

S0 → S

S → AZ | Z | aB | a
Z → SA | S
A → B | S
B → b
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Chomsky Normal Form

Example:

S → ASA | aB
A → B | S
B → b | ε

Step 1:

S → AZ | aB
Z → SA

A → B | S
B → b | ε

Step 2:

E = {B ,A}

S0 → S

S → AZ | Z | aB | a
Z → SA | S
A → B | S
B → b

Step 3:

NS0
= {S0, S ,Z}

NS = {S ,Z}
NZ = {Z , S}
NA = {A,B , S ,Z}
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Chomsky Normal Form

Example:

S → ASA | aB
A → B | S
B → b | ε

Step 1:

S → AZ | aB
Z → SA

A → B | S
B → b | ε

Step 2:

E = {B ,A}

S0 → S

S → AZ | Z | aB | a
Z → SA | S
A → B | S
B → b

Step 3:

NS0
= {S0, S ,Z}

NS = {S ,Z}
NZ = {Z , S}
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NB = {B}
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B → b
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Chomsky Normal Form

Example:

S → ASA | aB
A → B | S
B → b | ε

Step 1:

S → AZ | aB
Z → SA

A → B | S
B → b | ε

Step 2:

E = {B ,A}

S0 → S

S → AZ | Z | aB | a
Z → SA | S
A → B | S
B → b

Step 3:

NS0
= {S0, S ,Z}

NS = {S ,Z}
NZ = {Z , S}
NA = {A,B , S ,Z}
NB = {B}

S0 → AZ | aB | a | SA
S → AZ | aB | a | SA
Z → SA | AZ | aB | a
A → b | AZ | aB | a | SA
B → b

Step 4:

S0 → AZ | YB | a | SA
S → AZ | YB | a | SA
Z → SA | AZ | YB | a
A → b | AZ | YB | a | SA
B → b

Y → a
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Chomsky Normal Form

Grammar G = (Π,Σ, S ,P) in Chomsky normal form has some properties
that allow to determine whether w ∈ Σ∗ belongs to the language
generated by grammar G (i.e., if w ∈ L(G)):

Let us assume that w ∈ L(G) (and so S ⇒∗ w)and that |w | = n,
where n ≥ 1. Then for (every) derivation S ⇒∗ w holds:

The rules of the form A → a (i.e., a nonterminal is rewritten to
exactly one terminal) are used in exactly n steps of the derivation.

The rules of the form A → BC (i.e., a nonterminal is rewritten to
a pair of nonterminals) are used in exactly n− 1 steps of the derivation.

So every derivation S ⇒∗ w , where |w | = n, has 2n − 1 steps, where n of
these steps are of the form A → a and n − 1 of the form A → BC .
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Chomsky Normal Form

To find out whether S ⇒∗ w , it is sufficient to try by brute force all
possible derivations of length 2n − 1.

Such algorithm has exponential time complexity with respect to the length
of w .

Such systematic trying of all possibilities can be implemented by using so
called dynamic programming in a way that is much more efficient than
a straightforward algorithm that generates all derivations of the given
length.

Cocke-Younger-Kasami algorithm, with time complexity O(n3), is based
on this idea. (Assuming a fixed grammar G.)
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Cocke-Younger-Kasami Algorithm

The question if S ⇒∗ w is a special case of the question if

A ⇒∗ w ,

where A ∈ Π is an arbitrary nonterminal and w ∈ Σ∗ is an arbitrary word
consisting of terminals.

It is obvious that:

If |w | = 1: Then A ⇒∗ w iff there is a rule A → b in P where
w = b.

If |w | > 1: Then A ⇒∗ w iff there is a rule A → BC in P where for
some words u and v such that w = uv , |u| ≥ 1 and |v | ≥ 1, it holds
that B ⇒∗ u and C ⇒∗ v .
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Cocke-Younger-Kasami Algorithm

Let us assume that a word w ∈ Σ∗ with |w | = n where n ≥ 1 and

w = a1a2 · · · an .

Instead of solving the original question whether S ⇒∗ w , we will solve the
following more general problem for all nonempty subwords v of the word w :

To find the set of all nonterminals A from the set Π such that
A ⇒∗ v .

Let us denote the set of all nonterminals generating subword v of length i

and starting on position j as F [i ][j ], i.e., for each A ∈ Π it holds that

A ∈ F [i ][j ] ⇐⇒ A ⇒∗ ajaj+1 . . . aj+(i−1)

To find out whether S ⇒∗ w , is therefore the same problem as to find out
whether S ∈ F [n][1].
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Cocke-Younger-Kasami Algorithm

The algorithm computes values F [i ][j ] at first for subwords of
length 1 (i.e., i = 1), then for subwords of length 2 (i.e., i = 2), then
for subwords of length 3, length 4, etc.

Values F [i ][j ] are stored in a twodimensional array F , where
1 ≤ i ≤ n a 1 ≤ j ≤ n − i + 1, where the elements of this array are
subsets of nonterminals from the set Π.

In the computation of the value F [i ][j ] the previously computed
values F [i ′][j ′], where i ′ < i , are used.

Let us assume that at the beginning all elements of array F are
initialized to ∅.
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Cocke-Younger-Kasami Algorithm

for j := 1 to n do
for each (A → b) ∈ P do

if b = aj then
add A to F [1][j ]

for i := 2 to n do
for j := 1 to n − i + 1 do

for k := 1 to i − 1 do
for each (A → BC ) ∈ P do

if B ∈ F [k][j ] and C ∈ F [i − k][j + k] then
add A to F [i ][j ]
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