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Regular Expressions

Regular expressions describing languages over an alphabet Σ:

∅, ε, a (where a ∈ Σ) are regular expressions:

∅ . . . denotes the empty language
ε . . . denotes the language {ε}
a . . . denotes the language {a}

If α, β are regular expressions then also (α+ β), (α · β), (α∗) are
regular expressions:

(α+ β) . . . denotes the union of languages denoted α and β
(α · β) . . . denotes the concatenation of languages denoted α

and β
(α∗) . . . denotes the iteration of a language denoted α

There are no other regular expressions except those defined in the two
points mentioned above.
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Regular Expressions

Example: alphabet Σ = {0, 1}

According to the definition, 0 and 1 are regular expressions.
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Regular Expressions

Example: alphabet Σ = {0, 1}

According to the definition, 0 and 1 are regular expressions.

Since 0 and 1 are regular expression, (0+ 1) is also a regular
expression.

Since 0 is a regular expression, (0∗) is also a regular expression.

Since (0+ 1) and (0∗) are regular expressions, ((0+ 1) · (0∗)) is also
a regular expression.

Remark: If α is a regular expression, by L(α) we denote the language
defined by the regular expression α.

L(((0+ 1) · (0∗))) = {0, 1, 00, 10, 000, 100, 0000, 1000, 00000, . . . }
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Regular Expressions

The structure of a regular expression can be represented by an abstract
syntax tree:

+

·

·

∗

·

0 1

1

·

1 1

∗

+

·

0 0

1

(((((0 · 1)∗) · 1) · (1 · 1)) + (((0 · 0) + 1)∗))
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Regular Expressions

The formal definition of semantics of regular expressions:

L(∅) = ∅

L(ε) = {ε}

L(a) = {a}

L(α∗) = L(α)∗

L(α · β) = L(α) · L(β)

L(α+ β) = L(α) ∪ L(β)
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Regular Expressions

To make regular expressions more lucid and succinct, we use the following
conventions:

The outward pair of parentheses can be omitted.

We can omit parentheses that are superflous due to associativity of
operations of union (+) and concatenation (·).

We can omit parentheses that are superflous due to the defined
priority of operators (iteration (∗) has the highest priority,
concatenation (·) has lower priority, and union (+) has the lowest
priority).

A dot denoting concatenation can be omitted.

Example: Instead of

(((((0 · 1)∗) · 1) · (1 · 1)) + (((0 · 0) + 1)∗))

we usually write

(01)∗111+ (00+ 1)∗
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Regular Expressions

Examples: In all examples Σ = {a, b}.

a . . . the language containing the only word a
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Regular Expressions

Examples: In all examples Σ = {a, b}.

a . . . the language containing the only word a

ab . . . the language containing the only word ab

a+ b . . . the language containing two words a and b

a
∗ . . . the language containing words ε, a, aa, aaa, . . .

(ab)∗ . . . the language containing words ε, ab, abab, ababab, . . .

(a+ b)∗ . . . the language containing all words over the alphabet
{a, b}

(a+ b)∗aa . . . the language containing all words ending with aa

(ab)∗bbb(ab)∗ . . . the language containing all words that contain a
subword bbb preceded and followed by an arbitrary number
of copies of the word ab
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Regular Expressions

(a+ b)∗aa+ (ab)∗bbb(ab)∗ . . . the language containing all words that
either end with aa or contain a subwords bbb preceded and
followed with some arbitrary number of words ab
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Regular Expressions
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Regular Expressions

(a+ b)∗aa+ (ab)∗bbb(ab)∗ . . . the language containing all words that
either end with aa or contain a subwords bbb preceded and
followed with some arbitrary number of words ab

(a+ b)∗b(a+ b)∗ . . . the language of all words that contain at least one
occurrence of symbol b

a
∗(ba∗ba∗)∗ . . . the language containg all words with an even number of

occurrences of symbol b
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Transformation of a Regular Expression to a Finite

Automaton

Proposition

Every language that can be represented by a regular expression is regular
(i.e., it is accepted by some finite automaton).

Proof: It is sufficient to show how to construct for a given regular
expression α a finite automaton accepting the language L(α).

The construction is recursive and proceeds by the structure of the
expression α:

If α is a elementary expression (i.e., ∅, ε or a):
We construct the corresponding automaton directly.

If α is of the form (β + γ), (β · γ) or (β∗):
We construct automata accepting languages L(β) and L(γ) recursively.
Using these two automata, we construct the automaton accepting the
language L(α).
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Transformation of a Regular Expression to a Finite

Automaton

The automata for the elementary expressions:

∅

ε

ε

a

a
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Transformation of a Regular Expression to a Finite

Automaton

The construction for the concatenation:
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Transformation of a Regular Expression to a Finite

Automaton

Example: The construction of an automaton for expression ((a+ b) · b)∗:
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Transformation of a Regular Expression to a Finite

Automaton

If an expression α consists of n symbols (not counting parenthesis) then
the resulting automaton has:

at most 2n states,

at most 4n transitions.

Remark: By transforming the generalized nondeterministic automaton
into a deterministic one, the number of states can grow exponentially,
i.e., the resulting automaton can have up to 22n = 4n states.
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Transformation of an Automaton to a Regular Expression

Proposition

Every regular language can be represented by some regular expression.

Proof: It is sufficient to show how to construct for a given finite
automaton A a regular expression α such that L(α) = L(A).

We modify A in such a way that ensures it has exactly one initial and
exactly one accepting state.

Its states will be removed one by one.

Its transitions will be labelled with regular expressions.

The resulting automaton will have only two states – the initial and
the accepting, and only one transition labelled with the resulting
regular expression.
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Transformation of an Automaton to a Regular Expression

The main idea: If a state q is removed, for every pair of remaining states
qj , qk we extend the label on a transition from qj to qk by a regular
expression representing paths from qj to qk going through q.

qj qk

q

α

β

γ

δ

After removing of the state q:

qj qk
α+ βγ∗δ
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Transformation of an Automaton to a Regular Expression

Example:

1 2

3
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b

a

b

b

a
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Transformation of an Automaton to a Regular Expression

Example:

2

3

s f

b+ aa

a+ ba

ε

ε

a

b

ab

bb
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Transformation of an Automaton to a Regular Expression

Example:

3

s f

ε+ (a+ ba)(b+ aa)∗b+ a(b+ aa)∗ab

bb+ (a+ ba)(b+ aa)∗ab

a(b+ aa)∗
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Transformation of an Automaton to a Regular Expression

Example:

s f

a(b+ aa)∗+

(b+ a(b+ aa)∗ab)

(bb+ (a+ ba)(b+ aa)∗ab)∗

(ε+ (a+ ba)(b+ aa)∗)
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Equivalence of Finite Automata and Regular Expressions

Theorem

A language is regular iff it can be represented by a regular expression.
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Nonregular Languages
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Nonregular Languages

Not all languages are regular.

There are languages for which there exist no finite automata accepting
them.

Examples of nonregular languages:

L1 = {anbn | n ≥ 0}

L2 = {ww | w ∈ {a, b}∗}

L3 = {wwR | w ∈ {a, b}∗}

Remark: The existence of nonregular languages is already apparent from
the fact that there are only countably many (nonisomorphic) automata
working over some alphabet Σ but there are uncountably many languages
over the alphabet Σ.
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Nonregular Languages

How to prove that some language L is not regular?

A language is not regular if there is no automaton (i.e., it is not possible
to construct an automaton) accepting the language.

But how to prove that something does not exist?
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Nonregular Languages

How to prove that some language L is not regular?

A language is not regular if there is no automaton (i.e., it is not possible
to construct an automaton) accepting the language.

But how to prove that something does not exist?

The answer: By contradiction.

E.g., we can assume there is some automaton A accepting the language L,
and show that this assumption leads to a contradiction.
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Nonregular Languages

We show that language L = {anbn | n ≥ 0} is not regular.

The proof by contradiction.

Let us assume there exists a DFA A = (Q,Σ, δ, q0,F ) such that L(A) = L.
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Nonregular Languages

We show that language L = {anbn | n ≥ 0} is not regular.

The proof by contradiction.

Let us assume there exists a DFA A = (Q,Σ, δ, q0,F ) such that L(A) = L.

Let |Q| = n.

Consider word z = anbn.

Since z ∈ L, there must be an accepting computation of the automaton A

q0
a

−→ q1
a

−→ q2
a

−→ · · ·
a

−→ qn−1
a

−→ qn
b

−→ qn+1
b

−→ · · ·
b

−→ q2n−1
b

−→ q2n

where q0 is an initial state, and q2n ∈ F .
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Nonregular Languages

Consider now the first n + 1 states of the computation

q0
a

−→ q1
a

−→ q2
a

−→ · · ·
a

−→ qn−1
a

−→ qn
b

−→ qn+1
b

−→ · · ·
b

−→ q2n−1
b

−→ q2n

i.e., the sequence of states q0, q1, . . . , qn.

It is obvious that all states in this sequence can not be pairwise different,
since |Q| = n and the sequence has n + 1 elements.

This means that there exists a state q ∈ Q which occurs (at least) twice in
the sequence.
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Nonregular Languages

Consider now the first n + 1 states of the computation

q0
a

−→ q1
a

−→ q2
a

−→ · · ·
a

−→ qn−1
a

−→ qn
b

−→ qn+1
b

−→ · · ·
b

−→ q2n−1
b

−→ q2n

i.e., the sequence of states q0, q1, . . . , qn.

It is obvious that all states in this sequence can not be pairwise different,
since |Q| = n and the sequence has n + 1 elements.

This means that there exists a state q ∈ Q which occurs (at least) twice in
the sequence.

It is an application of so called pigeonhole principle.

Pigeonhole principle

If we have n + 1 pigeons in n holes then there is at least one hole
containing at least two pigeons.
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Nonregular Languages

Consider now the first n + 1 states of the computation

q0
a

−→ q1
a

−→ q2
a

−→ · · ·
a

−→ qn−1
a

−→ qn
b

−→ qn+1
b

−→ · · ·
b

−→ q2n−1
b

−→ q2n

i.e., the sequence of states q0, q1, . . . , qn.

It is obvious that all states in this sequence can not be pairwise different,
since |Q| = n and the sequence has n + 1 elements.

This means that there exists a state q ∈ Q which occurs (at least) twice in
the sequence.

I.e., there are indexes i , j such that 0 ≤ i < j ≤ n and

qi = qj

which means that the automaton A must go through a cycle when reading
the symbols a in the word z = anbn.

Z. Sawa (TU Ostrava) Theoretical Computer Science October 11, 2021 22 / 35



Nonregular Languages

a a a a a a

a

a

a

a

a b b bba
q0 q1 q2 qi−1 qi = qj

qi+1

qi+2

qi+3

qj−1

qj+1 qj+2 qn−1 qn qn+1 qn+2 q2n−1 q2n

u

v

w

The word z = anbn can be divided into three parts u, v ,w such that
z = uvw :

u = ai v = aj−i w = an−jbn
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Nonregular Languages

For the words u = ai , v = aj−i , and w = an−jbn we have

q0
u

−→ qi qi
v

−→ qj qj
w
−→ q2n

Let r be the length of the word v , i.e., r = j − i (obviously r > 0, due to
i < j).

Since qi = qj , the automaton accepts word uw = an−rbn that does not
belong to L:

q0
u

−→ qi
w
−→ q2n

The word uvvw = an+rbn, that also does not belong to L, is accepted too:

q0
u

−→ qi
v

−→ qi
v

−→ qi
w

−→ q2n
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Nonregular Languages

Similarly we can show that every word of the form uvvvv · · · vvw , i.e., of
the form uvkw for some k ≥ 0, is accepted by the automaton A:

q0
u

−→ qi
v

−→ qi
v

−→ qi
v

−→ · · ·
v

−→ qi
v

−→ qi
w
−→ q2n

A word of the form uvkw looks as follows: an−r+rkbn.

Since r > 0, the following equivalence holds only for k = 1:

n − r + rk = n

This means that if k 6= 1 then uvkw does not belong to the language L.

However, the automaton A accepts each such word, which is a
contradiction with the assumption that L(A) = {anbn | n ≥ 0}.
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Pumping Lemma

Let us assume that language L is accepted by some particular
automaton A, i.e., L = L(A).

Let us consider some arbitrary word z ∈ L where z = a1a2 · · · ak .

Since automaton A accepts word z , there must be some accepting
computation of the automaton, i.e., a sequence of states:

q0, q1, q2, . . . , qk−1, qk

of length k + 1 where

q0 is an initial state

qi−1
ai−→ qi for each i ∈ {1, 2, . . . , k}

qk is an accepting state
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Pumping Lemma

Let us assume that A has n states (i.e., |Q| = n), and that |z | ≥ n.

Since |z | = k , the computation of automaton A over word z forms
a sequence, whose length is at least n + 1, that contains at most n
different states:

q0, q1, q2, . . . , qk−1, qk

It follows that there must be at least one state q that occurs at least twice
in this sequence (recall the pigeonhole principle).
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Pumping Lemma

Let us say that the repeated state occurs on positions i and j , i.e., qi = qj
where i < j .

q0, · · · , qi , · · · , qj , · · · , qk

Remark: It is obvious that in fact we can find i and j such that i < j ≤ n.

The word z can be divided into three parts:

a1 · · · ai
︸ ︷︷ ︸

u

ai+1 · · · aj
︸ ︷︷ ︸

v

aj+1 · · · ak
︸ ︷︷ ︸

w

q0
u

−→ qi

qi
v

−→ qj (and so also qi
v

−→ qi since qj = qi )

qj
w
−→ qk (and so also qi

w
−→ qk since qj = qi )
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Pumping Lemma

Consider now words:
a1 · · · ai
︸ ︷︷ ︸

u

aj+1 · · · ak
︸ ︷︷ ︸

w

a1 · · · ai
︸ ︷︷ ︸

u

ai+1 · · · aj
︸ ︷︷ ︸

v

ai+1 · · · aj
︸ ︷︷ ︸

v

aj+1 · · · ak
︸ ︷︷ ︸

w

a1 · · · ai
︸ ︷︷ ︸

u

ai+1 · · · aj
︸ ︷︷ ︸

v

ai+1 · · · aj
︸ ︷︷ ︸

v

ai+1 · · · aj
︸ ︷︷ ︸

v

aj+1 · · · ak
︸ ︷︷ ︸

w

· · ·

It is obvious that A accepts all of them because

q0
u

−→ qi

qi
v

−→ qi

qi
w
−→ qk where qk ∈ F
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Pumping Lemma

Pumping Lemma

If language L is regular then there exists n ∈ N such that every word z ∈ L

such that |z | ≥ n can be divided into subwords u, v ,w such that z = uvw ,
|uv | ≤ n, |v | ≥ 1, and for every i ≥ 0 it holds that uv iw ∈ L.

Formally:

If L is regular then

(∃n ∈ N)(∀z ∈ L s.t. |z | ≥ n)(∃u, v ,w s.t. z = uvw , |uv | ≤ n, |v | ≥ 1)
(∀i ≥ 0) : uv iw ∈ L
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Pumping Lemma

We can take the contrapositive of the pumping lemma. (A ⇒ B is
equivalent to ¬B ⇒ ¬A.)

If

(∀n ∈ N)(∃z ∈ L s.t. |z | ≥ n)(∀u, v ,w s.t. z = uvw , |uv | ≤ n, |v | ≥ 1)
(∃i ≥ 0) : uv iw 6∈ L,

then L is not regular.

So if we want to show that a language L is not regular, it is sufficient to
show that L satisfies this condition.

Z. Sawa (TU Ostrava) Theoretical Computer Science October 11, 2021 31 / 35



Pumping Lemma

Example: Let us consider laguage L = {aibi | i ≥ 0}.

Let us assume that L is accepted by some automaton with n states.

Let us consider word z = anbn.

Let us consider all possibilities how z can be divided into three
subwords u, v ,w satisfying conditions |uv | ≤ n and |v | ≥ 1.

It is obvious that words u and v contain only symbols a. For every
particular division there are some j and k such that j + k ≤ n, k ≥ 1,
and

u = aj

v = ak

w = an−(j+k)bn

If we choose i = 0, we obtain uv iw = uw = an−kbn. Since
n − k < n, we have uv iw 6∈ L.
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Pumping Lemma

Remark: Proving that some first order logic formula with alternating
universal and existential quantifiers can be viewed as game played by two
players, Player A and Player B.

Player A chooses values of variables bound by existential quantifiers and
Player B values of variables bound by universal quantifiers.

If we want to refute the given claim, it is sufficient to find a winning
strategy for Player B.
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Pumping Lemma

If L is regular then
(∃n ∈ N)(∀z ∈ L s.t. |z | ≥ n)(∃u, v ,w s.t. z = uvw , |uv | ≤ n, |v | ≥ 1)

(∀i ≥ 0) : uv iw ∈ L.

The game for Pumping Lemma looks as follows:

1 Player A chooses some n ∈ N.

2 Player B chooses a word z such that z ∈ L and |z | ≥ n.

3 Player A chooses words u, v ,w such that z = uvw , |uv | ≤ n, |v | ≥ 1.

4 Player B chooses i ≥ 0.

5 If uv iw ∈ L then Player A wins. If uv iw /∈ L then Player B wins.

If Player B has a winning strategy in this game then L is not regular.
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Pumping Lemma

Example: L = {aibi | i ≥ 0}

1 Player A chooses n > 0.

2 Player B chooses z = anbn.

3 Player A chooses words u, v ,w such that z = uvw , |uv | ≤ n, |v | ≥ 1.

4 Player B chooses i = 0.

5 Player B wins, since no matter what Player A does, we always have
uv iw 6∈ L because a non-empty word z occurs in the part of word z

consisting only of symbols a, and when we omit it, we obtain a word
of the form akbn where k < n, which does not belong to L.
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