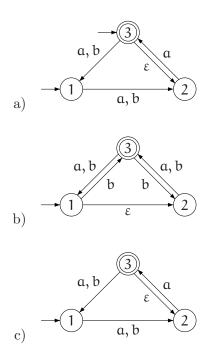
Tutorial 3

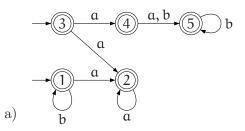
Exercise 1: Construct GNFA accepting languages L_1 and L_4 :

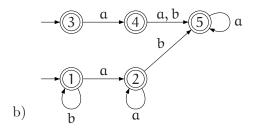
- a) $L_1 = L_2 \cdot L_3$, where $L_2 = \{w \in \{0, 1\}^* \mid \text{every occurrence of } 00 \text{ in } w \text{ is immediately followed by } 1\}$ $L_3 = \{w \in \{0, 1\}^* \mid |w|_1 \mod 3 = 2\}$
- b) $L_4 = \{w \in \{a, b\}^* \mid w \text{ is obtained from some word } w' \in L_5 \text{ by ommiting of one symbol}\},$ where L_5 is the language consisting of those words over alphabet $\{a, b\}$ that contain subword abba and end with suffix abb.

Exercise 2: Construct equivalent DFA for the given GNFA:



Exercise 3: For each of the following automata find at least one word over alphabet $\{a, b\}$, which is not accepted by the given automaton.





Exercise 4: Write regular expressions for the following languages:

- a) The language {ab, ba, abb, bab, babb}
- b) The language over alphabet $\{a, b, c\}$ containing exactly those words that contain subword abb.
- c) The language over alphabet $\{a, b, c\}$ containing exactly those words that start with prefix bca or end with suffix ccab.
- d) The language $\{w \in \{0, 1\}^* \mid |w|_0 \mod 2 = 0\}$.
- e) The language $\{w \in \{0, 1\}^* \mid |w|_0 \mod 3 = 1\}$.
- f) The language $\{w \in \{0, 1\}^* \mid w \text{ contains subwords 010 and 111}\}$
- g) The language $\{w \in \{a, b\}^* \mid w \text{ contains subword } bab \text{ or } |w|_b \leq 3\}$
- h) The language $\{w \in \{a, b\}^* \mid w \text{ contains subword } bab \text{ and } |w|_b \leq 3\}$
- i) The language of all words over $\{a, b, c\}$ that contain no two consecutive a's.

Exercise 5: Let us have two languages K and L described by the regular expressions

 $L_1 = [0^* 1^* 0^* 1^* 0^*], \qquad L_2 = [(01 + 10)^*].$

- a) What are the shortest and the longest words in the intersection $L_1 \cap L_2$?
- b) Why none of the languages L_1 and L_2 is a subset of the other?
- c) What is the shortest word that does not belong to the union $L_1 \cup L_2$? Is it unambiguous?

Exercise 6: Let us say that we would like to devise a syntax for representation of simple arithmetic expressions by words over alphabet

$$\Sigma = \{A, B, \dots, Z, a, b, \dots, z, 0, 1, \dots, 9, ., +, -, *, /, (,)\}.$$

- a) Propose how identifiers will look like, and deribe them using a regular expression.
- b) Propose how number constants will look like, and describe them using a regular expression.

Remark: Allow the number constants that would represent integers, e.g., 129 or 0, and also floating-point number constants, e.g., 3.14, -1e10, or 4.2E-23. Consider also the possibility of representing number constants in other number systems except the decimal number system (e.g., hexadecimal, octal, binary).

Exercise 7: For each of the following regular expressions, construct an equivalent finite automaton (it can be a GNFA):

a) (0 + 11)*01b) (0 + 11)*00*1c) $(a + bab)* + a*(ba + \varepsilon)$

Exercise 8: Describe an algorithm that for a given NFA $A = (Q, \Sigma, \delta, I, F)$ decides if:

- a) $L(A) = \emptyset$
- b) $L(A) = \Sigma^*$

Exercise 9: Describe an algorithm that for given NFA $A_1 = (Q_1, \Sigma, \delta_1, I_1, F_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, I_2, F_2)$ decides if $L(A_1) = L(A_2)$.

Exercise 10: Describe an algorithm that for given GNFA A constructs an equivalent NFA A' such that the sets of states of automata A and A' are the same.

***Exercise 11:** Consider an arbitrary alphabet Σ .

The **Hamming distance** h(u, v) of a pair of words $u, v \in \Sigma^*$, such that |u| = |v|, is the number of positions in the words u, v where these two words differ. Formally, h(u, v) can be defined as follows: $h(\varepsilon, \varepsilon) = 0$, and for all symbols $a, b \in \Sigma$ and words $u, v \in \Sigma^*$, such that |u| = |v|, we have

$$h(au, bv) = \begin{cases} h(u, v) & \text{if } a = b\\ 1 + h(u, v) & \text{if } a \neq b \end{cases}$$

For a language $L\subseteq \Sigma^*$ and each $k\geq 0$ we define the language $H_k(L)$ as

$$H_k(L) = \{ w \in \Sigma^* \mid \exists w' \in L : |w| = |w'| \land h(w, w') \le k \}.$$

Show that for each $k \ge 0$ holds that if a language L is regular then also language $H_k(L)$ is regular.