Tutorial 1

Exercise 1: For each of the following languages, give an example of 5 words belonging to the language, and an example of 5 words that do not belong to the language.

a) L₁ = {w ∈ {0, 1}* | the length of word w is less than 5}
b) L₂ = {w ∈ {a, b}* | the number of occurrences of symbol b in word w is even}
c) L₃ = {w ∈ {0, 1}* | in w is every 0 (directly) followed by 1}
d) L₄ = {w ∈ {0, 1}* | w begins and ends with the same symbol}
e) L₅ = {w ∈ {a, b}* | w contains as a subword the sequence abb}

Exercise 2: Let us assume $\Sigma = \{a, b\}$ and $n \in \mathbb{N}$.

- a) How many words in Σ^* are of length n?
- b) How many words in Σ^* are of length at most n?

Exercise 3: For each of the following languages, construct a DFA accepting the given language. Represent the constructed automata by graphs and tables.

- a) $L_1 = \{w \in \{a, b\}^* \mid w = a\}$
- b) $L_2 = \{b, ab\}$
- c) $L_3 = \{w \in \{a, b\}^* \mid \exists n \in \mathbb{N} : w = a^n\}$
- d) L₄ = {w \in {a, b, c}* | $|w|_a \ge 1$ }
- e) $L_5 = \{ w \in \{0, 1\}^* \mid w \text{ contains subword } 011 \}$
- f) $L_6 = \{w \in \{a, b, c\}^* \mid |w| > 0 \land |w|_a = 0\}$
- g) $L_7 = \{w \in \{a, b\}^* \mid |w| \ge 2 \text{ and the last two symbols of } w \text{ are not the same}\}$
- h) $L_8 = \{w \in \{a, b\}^* \mid |w|_a \mod 3 = 1\}$

Exercise 4: Construct DFA accepting words beginning with abaab, ending with abaab, and containing abaab, i.e., construct deterministic finite automata accepting the following three languages:

- a) $L_1 = \{abaabw | w \in \{a, b\}^*\}$
- b) $L_2 = \{wabaab \mid w \in \{a, b\}^*\}$
- c) $L_3 = \{w_1 a b a a b w_2 \mid w_1, w_2 \in \{a, b\}^*\}$

Exercise 5: Describe how to find out for a given DFA $A = (Q, \Sigma, \delta, q_0, F)$ if:

- a) $L(A) = \emptyset$
- b) $L(A) = \Sigma^*$

***Exercise 6:** Construct a deterministic finite automaton accepting exactly those words over the alphabet $\{a, b, c, d\}$ that do not start with a, do not have b on the second position, do not have c on the third position, and do not have d on the fourth position. (Including those w where |w| < 4.)

***Exercise 7:** Construct a deterministic finite automaton accepting exactly those words over the alphabet $\{a, b, c, d\}$ that do not start with a, or do not have b on the second position, or do not have c on the third position, or do not have d on the fourth position.