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Logarithmic amount of memory

One specific kind of algorithms are algorithms that use extremely small
amout of memory — asymptotically smaller than n where n is the size of
an input.

In particular, we will concentrate here on problems with logarithmic
space complexity, i.e., the space complexity O(log n).

@ It is obvious that an algorithm whose time complexity is smaller
than n does not have enough memory to store whole input instance in
memory.

@ So for algorithms that work with such small amount of memory,
the memory used to store an input is not counted into their space
complexity.
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Logarithmic amount of memory

For such algorithms we assume that they are exectuted by a type of
machine (e.g., a Turing machine) that has:

o Input tape — it contains an input word, delimeted from the left and
from the right by special markers ‘=" and ‘—’, the machine can not
write on it (it is read-only), it has one head that can move in both
directions

e Output tape — the machine can only write on it (it is write-only), it

can not read from it, it is empty at the beginning of a computation,
the head can move only from the left to the right

o Working memory — it can be read from it and written to it; e.g., in
the case of Turing machines, it has a form of one or more tapes

The amount of used memory is given by the number of bits that are
sufficient for storing the content of the working memory during
computation.
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Logarithmic amount of memory
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Logarithmic amount of memory

If the size of an input is n, O(log n) bits of memory are only sufficient to
store some fixed finite number of values where each of them requires at

most O(log n) bits.

Using k bits, we can represent numbers in the interval from 0 to ok 1.

So logarithmic number of bits are sufficient to represent a number whose
value is bounded by a polynomial (i.e., a number whose maximal value
is O(n) where c is a constant).

By such numbers we can represent for example:
@ an index of a cell on the input tape — basically a pointer to the input
data
@ a counter whose value is bounded by a polynomial
@ in graph algorithms, for example an index of a node or an edge

@ in algorithms working with matrices, for example an index of a row or
a column
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Logarithmic amount of memory

On the other hand, O(log n) bits of memory are not sufficient to store
things like:

@ To store at least 1 bit of information (for exaple some flag) for each
element from an input when the input consists of a sequence
of n elements.

@ In graph algorithms, to remember, which nodes have been visited.
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Logarithmic amount of memory

Example: Consider problems where an input looks as follows:

Input: A pair of numbers x and y where these numbers are
represented in binary as sequences of n bits.

There are algorithms with logarithmic space complexity for things like:
@ the sum and the difference of numbers x and y (i.e., the values x + y
and x — y)
@ the product of numbers x and y (i.e., the value x - y)
o finding out whether x =y, x <y, x <y

@ the maximum and minumum (the values max(x,y) and min(x,y))
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Logarithmic amount of memory

Example: Consider problems where an input looks as follows:

Input: A sequence of numbers a;, as, . .., ax.

Let us say that n is the total number of bits necessary to represent
numbers aq, as, ..., ak.

There are algorithms with space complexity O(log n) that can compute for
example the following:
@ to sort the elements from the smallest to the biggest

@ the sum a; + a» + +-+ + a;

Remark: Note that computing the sum of numbers a;, a5, ..., a, in
space O(log n) is not a completely trivial problem since some of the
numbers can require more than O(log n) bits — consider for example the
case where we have \/n numbers where each of these numbers has /n bits.
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Logarithmic amount of memory

Example: Also the following problem can be solved with space complexity
O(log n):

Matrix multiplication
Input: Matrices A and B whose elements are natural numbers.

Output: The matrix A - B.

Remark: Similarly as in the previous case, the size of an input n is the
total number of bits necessary to store matrices A and B (i.e., to write all
their elements).

It is possible that some of these elements of these matrices have more
than O(log n) bits.

So this problem is not as simple as it may look at the first sight.
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Logarithmic amount of memory

Also the following problem can be easily solved by a deterministic
algorithm with space complexity O(log n):

Input: A word w consisting of different kinds of parenthesis
(ol [ b oo [0 1)

Question: Is w a correctly parenthesised sequence?

A correctly parenthesised sequence here means a sequence belonging to
the language generated by the following context-free grammar:

A-ce | AAILALILRALRI - T[AL
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Logarithmic amount of memory

It is interesting that most of polynomial time reductions used for example
in proofs of NP-hardness, PSPACE-completeness, etc., of different
problems (that we have seen in the previous lectures or that are discribed
in a literature) can in fact be implemented as a (deterministic) algorithm
working with a logarithmic amount of memory.

Such reduction are called logspace reductions.
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Logspace reductions

A logspace reduction of a decision problem A to a decision problem B is
a deterministic algorithm Alg with space complexity O(log n) that:

@ It obtains an instance x of problem A as an input.

@ It produces an instance y of problem B as an output.
@ The answer for the instance y of problem B is YES iff the answer for
the instance x of problem A is YES.
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Logspace reductions

Theorem

If there exist:
@ a logspace reduction from problem A to problem B, and
@ a logspace reduction from problem B to problem C,
then there is also:
@ a logspace reduction from problem A to problem C.

Proof: Let us assume that:

@ Alg; is a logspace reduction from problem A to problem B

o Alg, is a logspace reduction from problému B to problem C
The following simple construction, that works correctly for polynomial
time reduction, does not work:

@ to apply the reduction Alg; to an instance x of problem A, and then
to apply the reduction Alg, to the resulting instance of problem B
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Logspace reductions

The problem with this simple construction is that the resulting algorith is
a reduction but not necessary a logspace reduction:

@ An instance y of problem B constructed by the reduction Alg; can be
of a polynomial size with respect to the size of the original instance x
of problem A
— a working memory of logarithmic size is not sufficient for storing
this instance y
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Logspace reductions

It is necessary to use a different approach — an algorithm transforming an
instance of problem A to an instace of problem C will work as follows:

@ It will simulate a computation of the algorithm Alg,.
@ It will remember the position of its head on its input tape — this
position will be represented in binary
(O(log n) bits are sufficient for this).
@ Whenever tha algorithm Alg, needs to read a symbol from its input:
o It will start a simulation of the algorithm Alg; from the
beginning.
o In those steps, where the algorithm Alg; would write a symbols
to its output, this symbol is not written anywhere. Instead,
a counter of written symbols is incremented by 1.
o At the moment when Alg; would write a symbol to a position
that Alg, needs to read, the simulation of Alg; is stopped, and
the algorithm Alg, obtains the corresponding symbols, and the

simulation of Alg, continues.
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Logspace reductions

It is not difficult to see the following:
@ Let us assume that problem A is logspace reducible to problem B.

@ Is there would exist an algorithm with logarithmic space complexity
solving problem B, there would exists also an algorithm solving
problem A with logarithmic space complexity.

@ So if there is no algorithm with logarithmic space complexity solving
problem A, then there is also no algorithm solving problem B with
logarithmic space complexity.
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Logarithmic amount of memory

No deterministic algorithm with logarithmic space complexity is known
for the following problem:

Graph Reachability

Input: A directed graph G = (V/, E) with two designated nodes s
and t.

Question: Is there a path from node s to node t in the graph G?

But obviously there is a very simple nondeterministic algorithm with
space complexity O(log n) solving this problem:
@ It rememebers only a current node v and a value of a couter c.
o It initialized v := s a ¢ := m — 1 where m is the number of nodes of
the graph G.

@ It nondeterministically guesses a path, and with every step, it
decrements the value of the counter by 1.
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Classes L and NL

Let us recall definitions of the following classes:

The class LOGSPACE (shortly L)

The class LOGSPACE (shortly L) consists of exactly those decision
problems, for which there exists a deterministic algorithm with space
complexity O(log n).

The class NLOGSPACE (shortly NL)

The class NLOGSPACE (shortly NL) consists of exactly thost decision
problems, for which there exists a nondeterministic algorithm with space

complexity O(log n).
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Classes L and NL

@ It is obvious that L € NL.

@ Similarly as in the case of classes P and NP where it is not known

whether P = NP,
also for the classes L and NL it is not known whether L = NL.

(It seems that probably this equality does not hold
but there is no proof of that.)

Example: We have seen the following:

The "' Graph Reachability” problem is in NL.

It seems that this problem is not in L but it is not sure.

Z. Sawa (TU Ostrava) Theoretical Computer Science December 10, 2024 19 /42



NL-complete problems

@ A problem A is NL-hard if every problem from NL is logspace
reducible to the problem A.

@ A problem A is NL-complete if it is NL-hard and belongs to NL.

o If any NL-complete problem could be solved by a deterministic
algorithm with logarithmic space complexity, it would mean that
L = NL.

@ If there would be at least one problem that is in NL but not in L, then
there surely could not exist a deterministic algorithm with logarithmic
space complexity for any NL-hard problem.
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NL-complete problems

Theorem
“Graph Reachability” is an NL-complete problem.

Proof idea:
We have already seen that this problem belongs to NL.

We must show that for every problem A from NL there exists a logspace
reduction from A to the graph reachability problem.

Since problem A belongs to NL, there exists a nondeterministic
machine M (e.g., a Turing machine or other type of a machine) with
logarithmic space complexity that solves it.

The number of possible configurations of the machine M on the given
input x of size n will be polynomial.

In a logarithmic space, it is possible to generate a graph where:
@ nodes — configurations of the machine M

o edges — transitions between these configurations
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NL-complete problems

Using logspace reductions from this problem, we can show NL-hardness of
other problems.

Examples of some NL-complete problems:

2-UNSAT

Input: Boolean formula ¢ in conjunctive normal form where every
clause contains exactly 2 literals.

Question: Is the formula ¢ unsatisfiable (i.e., is it a contradiction)?
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NL-complete problems

Accepting a word by an NFA

Input: Nondeterministic finite automaton A and a word w.

Question: Does the automaton A accept the word w
(i.e., does w € L(.A) hold)?

Reachable nonterminals in a context-free grammar

Input: A context-free grammar G = (1,X, S, P) and
nonterminal B € 1.

Question: Are there some o, 3 € (MU X)* such that S =™ aBS?
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NL-complete problems

Emptiness of a language accepted by a DFA

Input: A deterministic finite automaton A.
Question: Does L(A) = @ hold?

Universality of a DFA

Input: A deterministic finite automaton A.
Question: Does £(A) = £* hold?

Equivalence of DFA

Input: Deterministic finite automata A; and As.
Question: Does L(A;) = L(A5) hold?
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NL-complete problems

Generating an element by an associative operation

Input: A finite set X, an associative binary operation o on the
set X (given in a form of a table specifying values x o y for
each pair x,y € X), a subset S € X, and an element t € X.

Question: Is it possible to generate the element t from the elements of
the set S7?

An element t can be generated from the elements of a set S if there exists
a sequence xi, Xo, . . . , X, of elements of the set S such that

t=X10Xp0 *++ O X
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P-complete problems
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P-complete problems

Let us recall that P (resp. PTIME) is the class of decision problems
solvable by an algorithm with a polynomial time complexity.

Definition

@ A problem A is P-hard if every problem from P is logspace reducible
to the problem A.

A problem A is P-complete if it is P-hard and it belongs to the
class P.

It is obvious that NL € P.
Whether NL = P is not known. (It seems that probably NL # P)

If any P-complete problem would be in NL, then every problem
from P would be in NL, and we would have NL = P.

On the other hand, if there would at least one problem in P that
would not be in NL, then no P-complete problem would be in NL.
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P-complete problems

P-complete problems play an important role as problems that:

@ They can be solved in a polynomial time.

@ They are difficult to parallelize in the sense that it seems that there
are no efficient parallel algorithms for them, i.e., algorithms that:
e use a polynomial number of processors

o work in a polylogarithmic time
(i.e., in time (’)(Iogk n) for some constant k)

Remark: The class of problems that can be solved by such efficient
parallel algorithms is denoted NC.

We will deal with the class NC (and parallel algorithms in general)
later.
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A Boolean circuit is a directed acyclic graph consisting of nodes of two
types — inputs and gates, and edges that represent wires:

@ Inputs — there are no wires going to them, they are denoted by
names of boolean variables (every input with a different variable)
— a value of the given input is given by an assignment of a boolean
variable to the corresponding variable

o Gates — are of three different types:

o NOT — negation; exactly one edge enters into this gate

o AND — conjunction; there are always at least two edges entering
this gate

o OR — disjunction; there are always at least two edge entering
this gate

@ One of the nodes is denoted as an output.
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Circuit Value Problem (CVP)

Circuit Value Problem (CVP)

Input: A description of a boolean circuit G and a truth valuation v
representing values assigned to its inputs.

Question: Is the value 1 on the output of the circuit G in the given
assignment v ?
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Circuit Value Problem (CVP)
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Circuit Value Problem (CVP)

Theorem

CVP is P-complete problem.

Proof idea:

The fact that CVP belongs to the class P is obvious — a straightforward
algorithm evaluating values of all gates has obviously a polynomial time
complexity.

We need to show that every problem from P is logspace reducible to CVP.

Let us assume we have a problem A from the class P.

There exists a polynomial algorithm that solves the problem A.

This algorithm can implemented as a machine (e.g., a Turing machine) M
with a polynomial time complexity that can be bounded from above by
some polynomial p(n).
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Circuit Value Problem (CVP)

The length of a computation on an input of size n is at most p(n).
Individual configuration of the machine M can be encoded as sequences
of O(p(n)) bits.

A circuit is constructed for an input x:

@ It will consist of p(n) + 1 “levels” that would correspond to
configurations ag, oy, . .., ap(n) through which the machine M goes
in the computation on the input x.

@ The inputs will represent the initial configuration «y.

o Between levels / and i + 1 (where 0 < i < p(n)) we add a circuit that
computes a binary representation of a configuration «;,1 from
a binary representation of a configuration «;.

o After the last level (level p(n)) we add a circuit that generates
output 1 iff the values on this level represent an accepting
configuration.
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Circuit Value Problem (CVP)

Definition

A directed acyclic graph G = (V, E) is topologically sorted if its nodes
are numbered by numbers {1,2,...,n} in such a way that for every edge
(i,j) € E we have i < j (i.e., edges go only from nodes with lower indexes

to nodes with higher indexes).

@ It is not difficult to see that the construction in the proof of
P-completeness of CVP can be done in such a way that the resulting
graph of the constructed circuit is topologically sorted.

@ So the CVP remains P-complete also in the special case where we
require that the graph of the circuit is topologically sorted.
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Circuit Value Problem (CVP) — a planar graph

Using a logspace reduction from CVP we can show P-completeness of
CVP also in the special case where we require that the graph of a circuit is

planar.

Proof idea: A crossing of wires can be replaced with three XOR gates:

B A
B A
QOI' XOD
(o)
A B
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Circuit Value Problem (CVP) — a planar graph

A XOR gate can be implemented using four NAND gates in such a way
that the resulting graph is planar:

A B

(AT(ATB)1T((A1B)1B) = ~((A1(A1B))A((A1B)1B))

= (AT (ATB)V-((ATB)TB) & (AAN(AT1B))V((ATB)AB)

= (AA=(AAB))V(-(AAB)AB) & (AA(-AV aB)) v ((-Av =B)AB)
< (AA=-B)V(-AAB) & AxorB
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Monotone Circuit Value Problem (MCVP)

A boolean circuit is monotone if it does not contain NOT gates.

Monotone Circuit Value Problem (MCVP)

Input: A description of a monotone boolean circuit G where
moreover exactly two wires enter to each gate of type AND
and OR, and a truth valuation v.

Question: Is the output value of the circuit G for the valuation v the
value 17

By a logspace reduction from CVP we can show the following:

MCVP is P-complete problem.
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Monotone Circuit Value Problem (MCVP)

@ Replacement of AND gate:

AAB AANB AAB

oy}

A B A A B

@ Replacement of OR gate:

AV B AVB AVB
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Monotone Circuit Value Problem (MCVP)

@ Replacements of inputs:

(L | (1 <£ @g
@ Replacement of NOT gate:

A A A
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Examples of P-complete problems

Using logspace reductions from MCVP, we can show P-hardness of other
problems.

Several examples of P-complete problems are described.

Combinatorial game

Input: A combinatorial game of two players where a graph of the

game is given explicitly, i.e., where all positions and possible
moves are listed explicitly.

Question: Does Player I have a winning strategy in this game?
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Examples of P-complete problems

Generating a word by a context-free grammar

Input: A context-free grammar G and a word w € P

Question: Does the word w belong to the language generated by the
grammar G
(i.e., does w € L(G) hold)?

Emptiness of a language generated by a context-free grammar

Input: A context-free grammar G.
Question: Does £L(G) = @hold?

Infinity of a language generated by a context-free grammar

Input: A context-free language G.
Question: Is the language £(G) infinite?
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Examples of P-complete problems

Generating of an element by a binary operation

Input: A finite set X, a binary operation o on the set X (given as
a table specifying value x o y for each pair x,y € X),
a subset S € X, and an element t € X.

Question: Is it possible to generate the element t from elements of the
set 7

An element t can be generated from elements of a set S if there exists an
expression consisting of constants representing the elements form the set
S, on which the operation o can be applied, where the value of this
exapression is 1.

Another way how to say this, is to specify that the element t belongs to
the smallest Y (where Y < X), satisfying two following conditions:
eScYy
o for each two elements x,y € Y it holds that xoy € Y.
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Examples of P-complete problems

Maximum flow problem

Input: A network G with capacities of edges, with a source s and

a sink t, and a number k.

Question: Has the k-th bit of the number representing the maximal
flow in G from the source to the sing the value 17

Depth-first seach

Input: A directed graph G = (V, E) where it is specified for each
node a particular ordering of edges going out of this node,
the initial node s € V/, and a pair of nodes u,v € V.
Question: In the depth-first search of the graph G that starts in the
node s, and that goes through edges going out of each node

in the specified order, is the node u visited before the
node v ?
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