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Complexity of Problems

It seems that different (algorithmic) problems are of different
difficulty.

More difficult are those problems that require more time and space to
be solved.

We would like to analyze somehow the difficultness of problems

absolutely — how much time and space do we need for their
solution,

relatively — by how much is their solution harder or simpler with
respect to other problems.

Why do we not succeed in finding efficient algorithms for some
problems?
Can there exist an efficient algorithm for a given problem?

What are practical boundaries of what can be achieved?
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Complexity of Problems

It is necessary to distinguish between a complexity of an algorithm and
a complexity of a problem.

If we for exaple study the time complexity in the worst case, informally we
could say:

complexity of an algorithm — a function expressing maximal
running time of the given algorithm on inputs of size n

complexity of a problem — what is the time complexity of the
“most efficient” algorithm for the given problem

A formal definition of a notion “complexity of a problem” in the above
sense leads to some technical difficulties. So the notion “complexity of a
problem” is not defined as such but it is bypassed by a definition of
complexity classes.
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Complexity Classes

Complexity classes are subsets of the set of all (algorithmic) problems.

A certain particular complexity class is always characterized by a property
that is shared by all the problems belonging to the class.

A typical example of such a property is a property that for the given
problem there exists some algorithm with some restrictions (e.g., on its
time or space complexity):

Only a problem for which such algorithm exists belongs to the given
class.

A problem for which such algorithm does not exist does not belong to
the class.

Remark: In the following discussion, we will concentrate almost
exclusively on classes of decision problems.
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Complexity Classes

Definition

For every function f ∶ N → N we define DTIME(f (n)) as the class
containing exactly those decision problems for which there exists an
algorithm with time complexity O(f (n)).

Example:

DTIME(n) – the class of all decision problems for which there exists
an algorithm with time complexity O(n)

DTIME(n
2
) – the class of all decision problems for which there exists

an algorithm with time complexity O(n
2
)

DTIME(n log n) – the class of all decision problems for which there
exists an algorithm with time complexity O(n log n)
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Complexity Classes

Definition

For every function f ∶ N → N we define DSPACE(f (n)) as the class
containing exactly those decision problems for which there exists an
algorithm with space complexity O(f (n)).

Example:

DSPACE(n) – the class of all decision problems for which there exists
an algorithm with space complexity O(n)

DSPACE(n
2
) – the class of all decision problems for which there

exists an algorithm with space complexity O(n
2
)

DSPACE(n log n) – the class of all decision problems for which there
exists an algorithm with space complexity O(n log n)
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Complexity Classes

Remark:

Note that for classed DTIME(f ) and DSPACE(f ) it depends which
problems belong to the class on the used computational model (if it is a
RAM, a one-tape Turing machine, a multitape Turing machine, . . . ).
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Complexity Classes

Using classes DTIME(f (n)) and DSPACE(f (n)) we can define classes
PTIME and PSPACE as

PTIME = ⋃
k≥0

DTIME(n
k
) PSPACE = ⋃

k≥0

DSPACE(n
k
)

PTIME is the class of all decision problems for which there exists an
algorithm with polynomial time complexity, i.e., with time complexity
O(n

k
) where k is a constant.

PSPACE is the class of all decision problems for which there exists an
algorithm with polynomial space complexity, i.e., with space
complexity O(n

k
) where k is a constant.
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Complexity Classes

Since all (reasonable) computational models are able to simulate each
other in such a way that in this simulation the number of steps does not
increase more than polynomially, the definitions of classes PTIME and
PSPACE are not dependent on the used computational model.
For their definition we can use any computational model.

We say that these classes are robust – their definitions do not depend on
the used computational model, For all “reasonable” sequential models of
computation, this class contains the same problems.

Remark: As “resonable” sequential models of computation are considered
those that can be simulated by Turing machines in such a way that the
running time increases only polynomially in such simulation.
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“Reasonable” Sequential Models of Computation

Examples of models of computation considered to be “reasonable” from
this point of view:

variants of Turing machines (one-tape, multi-tape, . . . )

RAMs with the use of logarithmic measure

RAMs without operations for multiplication and division with the use
of unit measure

RAMs that have operations for multiplication and division with the
use unit measure if it is ensured for the given RAM that during
a computation each memory cell contains a number whose size is
bounded by some polynomial
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Models of computation that are not “reasonable”

Examples of models of computation that are not “reasonable” from this
point of view:

RAMs with operations form multiplication and division using the unit
measure (without restrictions on the size of numbers, on which
arithmetic operations can be performed in one step) — they can
perform in one step perform arithmetic operations on numbers that
have exponential number of bits

Minsky machines — they are too slow, execution of simple operations
takes too much time; in a simulation of a computation of a Turing
machine, the time grows exponentially with respect to the original
Turing machine
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Complexity Classes

Other classes are introduced analogously:

EXPTIME – the set of all decision problems for which there exists an

algorithm with time complexity 2
O(n

k
)
where k is a constant

EXPSPACE – the set of all decision problems for which there exists an

algorithm with space complexity 2
O(n

k
)
where k is a constant

LOGSPACE – the set of all decision problems for which there exists an
algorithm with space complexity O(log n)

Remark: Instead of 2
O(n

k
)
we can also write O(c

n
k

) where c and k are
constants.
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Complexity Classes

For definition of LOGSPACE class we specify more exacly what we
consider as a space complexity of an algorithm.

For example, let us consider a Turing machine with three tapes:

An input tape on which the input is written at the beginning.

A working tape which is empty at the start of the computation. It is
possible to read from this tape and to write on it.

An output tape which is also empty at the start of the computation.
It is only possible to write on it.

The amount of used space is then defined as the number of cells used on
the working tape.
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Complexity Classes

Other examples of complexity classes:

2-EXPTIME – the set of all problems for which there exists an algorithm

with time complexity 2
2
O(n

k
)

where k is a constant

2-EXPSPACE – the set of all problems for which there exists an algorithm

with space complexity 2
2
O(n

k
)

where k is a constant

ELEMENTARY – the set of all problems for which there exists an
algorithm with time (or space) complexity

2
2
2
⋅
⋅
⋅
2
2
O(n

k
)

where k is a constant and the number of exponents is
bounded by a constant.
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Relationships between Complexity Classes

If a Turing machine performs m steps then it visits at most m cells on the
tape.

This means that if there exists an algorithm for some problem with time
complexity O(f (n)), the space complexity of this algorithm is (at
most) O(f (n)).

So it is obvious that the following relationship holds.

Observation

For every function f ∶ N → N is DTIME(f (n)) ⊆ DSPACE(f (n)).

Remark: We can analogously reason in the case of a RAM.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 27, 2024 15 / 59



Relationships between Complexity Classes

Based on the previous, we see that:

PTIME ⊆ PSPACE

EXPTIME ⊆ EXPSPACE

2-EXPTIME ⊆ 2-EXPSPACE

⋮

Since polynomial functions grow more slowly than exponential and
logarithmic more slowly than polynomial, we obviously have:

PTIME ⊆ EXPTIME ⊆ 2-EXPTIME ⊆ ⋯

LOGSPACE ⊆ PSPACE ⊆ EXPSPACE ⊆ 2-EXPSPACE ⊆ ⋯
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Relationships between Complexity Classes

For analyzing relationships between complexity classes it is useful to
consider configurations.

A configuration is a global state of a machine during one step of a
computation.

For a Turing machine, a configuration is given by the state of its
control unit, the content of the tape (resp. tapes), and the position of
the head (resp. heads).

For a RAM, a configuration is given by the content of the memory, by
the content of all registers (including IP), by the content of the input
and output tapes, and by positions of their heads.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 27, 2024 17 / 59



Relationships between Complexity Classes

It should be clear that configurations (or rather their descriptions) can be
written as words over some alphabet.

Moreover, we can write configurations in such a way that the length of the
corresponding words will be approximately the same as the amount of
memory used by the algorithm (i.e., the number of cells on the tape used
by a Turing machine, the number of number of bits of memory used by
a RAM, etc.).

Remark: If we have an alphabet Σ where ∣Σ∣ = c then:

The number of words of length n is c
n
, i.e., 2

Θ(n)
.

The number of words of length at most n is

n

∑
i=0

c
i
=

c
n+1

− 1

c − 1

i.e., also 2
Θ(n)

.
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Relationships between Complexity Classes

It is clear that during a computation of an algorithm there is no
configuration repeated, since otherwise the computation would loop.

Therefore, if we know that the space complexity of an algorithm is
O(f (n)), it means that the number of different configurations that are

reachable during a computation is 2
O(f (n))

.

Since configurations do not repeat during a computation, also the time

complexity of the algorithm is at most 2
O(f (n))

.

Observation

For every function f ∶ N → N it holds that if a problem P is solved by
an algorithm with space complexity in O(f (n)), then the time complexity

of this algorithm is in 2
O(f (n))

.

So if a problem P is in class DSPACE(f (n)), then it is also in class

DTIME(2
c⋅f (n)

) for some c > 0.
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Relationships between Complexity Classes

The following results can be drawn from the previous discussion:

LOGSPACE ⊆ PTIME

PSPACE ⊆ EXPTIME

EXPSPACE ⊆ 2-EXPTIME

⋮

Summary:

LOGSPACE ⊆ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE ⊆

⊆ 2-EXPTIME ⊆ 2-EXPSPACE ⊆ ⋯ ⊆ ELEMENTARY
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Upper and Lower Bounds on Complexity of Problems

An upper bound on a complexity of a problem means that the complexity
of the problem is not greater than some specified complexity.

Usually it is formulated so that the problem belongs to a particular
complexity class.

Examples of propositions dealing with upper bounds on the complexity:

The problem of reachability in a graph is in PTIME.

The problem of equivalence of two regular expressions is
in EXPSPACE.

If we want to find some upper bound on the complexity of a problem it is
sufficient to show that there is an algorithm with a given complexity.
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Upper and Lower Bounds on Complexity of Problems

A lower bound on a complexity of a problem means that the complexity
of the problem is at least as big as some specified complexity.

In general, proving of (nontrivial) lower bounds is more difficult than
proving of upper bounds.

To derive a lower bound we must prove that every algorithm solving the
given problem has the given complexity.
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Upper and Lower Bounds on Complexity of Problems

Problem “Sorting”

Input: Sequence of elements a1, a2, . . . , an.

Output: Elements a1, a2, . . . , an sorted from the smallest to the
greatest.

It can be proven that every algorithm, that solves the problem “Sorting”
and that has the property that the only operation applied on elements of a
sorted sequence is a comparison (i.e., it does not examine the content of
these elements), has the time complexity in the worst case Ω(n log n)
(i.e., for every such algorithm there exist constants c > 0 and n ≥ n0 such
that for every n ≥ n0 there is an input of size n, for which the algorithm
performs at least cn log n operations.)
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Nodeterministic Algorithms and

Complexity Classes
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Nondeterminism

So far, we have considered only deterministic algorithms.

We can also consider nondeterministic algorithms performed by
nondeterministic variants of various kinds of machines:

Turing machines

RAMs

. . .

In general, nondeterministic algorithms are algorithms where:

In every step, the algorithm can choose from several possibilities of
a next instruction that will be performed.

If at least one of computations of such a machine on a given input
ends with the answer Yes, then the answer is Yes.

If all computations end with the answer No then the answer is No.
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Nondeterminism

For example, for one-tape Turing machine, the only difference between the
deterministic and nondeterministic variant is in the definition of transition
function δ:

deterministic: δ ∶ (Q − F ) × Γ → Q × Γ × {−1, 0,+1}

nondeterministic: δ ∶ (Q − F ) × Γ → P(Q × Γ × {−1, 0,+1})

Nondeterministic RAM:

Its definition is very similar to that of a deterministic RAM.

Moreover, it has an instruction

nd goto ℓ1, ℓ2

that allows it to choose the next instruction from two possibilities.

We can define nondeterministic variants of arbitrary other models of
computation in a similar way.
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Nondeterminism

A nondeterministic algorithm gives the answer Yes for a given input x if there
exists at least one computation of this machine that gives answer Yes.

YESYESYES

NO

NONO

NO NONONONONO

The time required for a computation of a nondeterministic RAM (or other
nondeterministic machine) on a given input is defined as the length of the
longest computation on the input.
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Nondeterminism

Problem “Coloring of a graph with k colors”

Input: An undirected graph G and a natural number k .

Question: Is it possible to color the nodes of the graph G with k colors
in such a way that no two nodes connected with an edge are
colored with the same color?

k = 3
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Nondeterminism

Problem “Coloring of a graph with k colors”

Input: An undirected graph G and a natural number k .

Question: Is it possible to color the nodes of the graph G with k colors
in such a way that no two nodes connected with an edge are
colored with the same color?

A nondeterministic algorithm works as follows:

1 It assignes nondeterministically to every node of G one of k colors.

2 It goes through all edges of G and for each of them verifies that its
endpoints are colored with different colors. If this is not the case, it
halts with the answer No.

3 If it has verified for all edges that their endpoints are colored with
different colors, it halts with the answer Yes.
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Nondeterminism

Problem “Graph isomorphism”

Input: Undirected graphs G1 = (V1,E1) and G2 = (V2,E2).

Question: Are graphs G1 and G2 isomorphic?

Remark: Graphs G1 and G2 are isomorphic if there exists some bijection
f ∶ V1 → V2 such that for every pair of nodes u, v ∈ V1 is (u, v) ∈ E1 iff
(f (u), f (v)) ∈ E2.

A nondeterministic algorithm works as follows:

1 It nondeterministically chooses values of the function f for every
v ∈ V1.

2 It (deterministically) verifies that f is a bijection and that the above
mentioned condition is satisfied for all pairs of nodes.

3 If some of the conditions is violated, it halts with the answer No.
Otherwise it halts with the answer Yes.
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Nondeterminism

Boolean formula ϕ is satisfiable if there exists some truth valuation ν, for
which the formula ϕ is true, i.e., has truth value 1.

SAT (boolean satisfiability problem)

Input: Boolean formula ϕ.

Question: Is ϕ satisfiable?

Example:

Formula ϕ1 = x1 ∧ (¬x2 ∨ x3) is satisfiable:
e.g., for valuation ν where ν(x1) = 1, ν(x2) = 0, ν(x3) = 1, the
formula ϕ1 is true.

Formula ϕ2 = (x1 ∧ ¬x1) ∨ (¬x2 ∧ x3 ∧ x2) is not satisfiable:
it is false for every valuation ν.
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Nondeterminism

A nondeterministic algorithm solving the SAT problem in polynomial time:

It reads a formula ϕ.

It cycles through all variables x1, x2, . . . , xk occurring in the formula ϕ.

For each of these variables, it nondeterministically chooses if it
assigns value 0 or value 1 to it.

It evaluates the truth value of formula ϕ for the generated valuation.

It halts with answer Yes if the formula ϕ is true for the give
valuation.

Otherwise, it halts with answer No.
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Nondeterminism

For decidability of problems, the nondeterministic algorithms are not
more powerful than deterministic ones:
If a problem can be solved by a nondeterministic RAM or TM, it can
be also solved by a deterministic RAM or TM that successively tries
all possible computations of the nondeterministic machine on a given
input.

Nondeterminism is useful primarily in the study of a complexity of
problems.
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Nondeterminism

In the straightforward simulation of a nondeterministic algorithm by
a deterministic, described above, where the deterministic algorithm
systematically tries all possible computations, the time complexity of
the deterministic algorithm is exponentially bigger than in the
nondeterministic algorithm.

For many problems, it is clear that there exists a nondeterministic
algorithm with a polynomial time complexity solving the given
problem but it is not clear at all whether there also exists
a deterministic algorithm solving the same problem with a polynomial
time complexity.
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Nondeterminism

Nondeterminism can be viewed in two different ways:

1 When a machine should nondeterministically choose between several
possibilities, it “guesses” which of these possibilities will lead to the
answer Yes (if there is such a possibility).

2 When a machine should choose between several possibilities, it splits
itself into several copies, each corresponding to one of the
possibilities. These copies continue in the computation in parallel.

The answer is Yes iff at least one of these copies halts with the
answer Yes.

None of these possibilities is something that could be efficiently
realistically implemented.
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Nondeterminism

Other possible view of the nondeterminism:

A kind of an algorithm that does not solve the given problem but
using an additional information — called witness — can verify that
the answer for the given instance is Yes.

Let us assume that in the original problem the input is some x from
the set of instances In and the question is whether this x has some
specified property P .

For the given input x , there is a corresponding set W(x) of potential
witnesses with the property that x has the property P iff there exists
an actual witness y ∈ W(w) of the fact that x really has property P .

There is a deterministic algorithm Alg that expects as input
a pair (x , y) (where y ∈ W(x)) and that checks that y is a witness of
the fact that x has property P .
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Nondeterminism

Example: The problem “Graph Colouring with k colours”:

Input: An undirected graph G = (V ,E) and number k .

Potential witnesses: All possible colourings of nodes of graph G with
k colours, i.e., all functions c of the form c ∶ V → {1, . . . , k}.

Actual witnesses: Those colourings c where for each edge (u, v) ∈ E

holds that c(u) ≠ c(v).
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Nondeterminism

For each deterministic algorithm Alg that can verify for a given pair
(x , y) that y is a witness of the fact that x has property P , we can
easily construct a corresponding nondeterministic algorithm that
solves the original problem:

For a given x ∈ In it generates nondeterministically a potential
witness y ∈ W(x).

Then it uses the (deterministic) algorithm Alg as a subroutine to
check that y is an actual witness.
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Nondeterminism

On the contrary, for every nondeterministic algorithm, we can also
easily construct a deterministic algorithm for checking witnesses:

A potential witness will be a sequence specifying for each
nondeterministic step of the original algorithm, which possibility
should be chosen in the given step.

The deterministic algorithm then simulates one particular
computation (one branch of the tree) of the original algorithm
where in those steps where several choices are possible, it does
not guess but continues according to the sequence given as
a witness.
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Nondeterminism

We will concentrate particularly to those cases where the time complexity
of the algorithm for checking a witness is polynomial with respect to the
size of input x .

This also means that a given witness y , witnessing that the answer for x
is Yes, must be of a polynomial size.

So by a nondeterministic algorithm with a polynomial time complexity we
can solve those decision problems where:

for a given input x there exists a corresponding (polynomially big)
witness iff the answer for x is Yes,

it is possible to check using a deterministic algorithm in polynomial
time that a given potential witness is really a witness.
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Nondeterminism

In many cases, the existence of such polynomially big witnesses and
deterministic algorithms checking them is obvious and it is trivial to show
that they exist — e.g., for problems like “Graph Colouring
with k Colours”, “Graph Isomorphism”, or the following problem:

Testing that a number is composite

Input: A natural number x .

Question: Is the number x composite?

Remark: Number x is composite if there exist natural numbers a and b

such that a > 1, b > 1, and x = a ⋅ b.

For example, number 15 is composite because 15 = 3 ⋅ 5.

So the number x ∈ N is composite iff x > 1 and x is not a prime.

Existence of such polynomially big witnesses of course does not
automatically mean that it is easy to find them.
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Nondeterminism

For some problems, a proof of existence of such polynomially bounded
witnesses, which can be checked deterministically in a polynomial time,
rather nontrivial result.

An example can be the following problem:

Primality Testing

Input: A natural number x .

Question: Is number x a prime?

Using some nontrivial results from number theory, there can be shown
existence of such witnesses even for this problem — those witnesses here
are rather complicated recursively defined data structures.

Remark: This result was shown by V. Pratt in 1975.

Much later it was shown that “Primality Testing” is in PTIME
(Agrawal–Kayal–Saxena, 2002).
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Nondeterministic Complexity Classes

Definition

For a function f ∶ N → N we define the time complexity class NTIME(f )
as the set of all problems that are solved by nondeterministic RAMs with
a time complexity in O(f (n)).

Definition

For a function f ∶ N → N we define the space complexity class

NSPACE(f ) as the set of all problems that are solved by nondeterministic
RAMs with a space complexity in O(f (n)).

Remark: Of course, the definitions given above can also use Turing
machines or some other model of computation instead of RAMs.

Z. Sawa (TU Ostrava) Theoretical Computer Science November 27, 2024 42 / 59



Class NPTIME

Definition

NPTIME =

∞

⋃
k=0

NTIME(n
k
)

NPTIME (sometimes we write just NP) is the class of all problems,
for which there exists a nondeterministic algorithm with polynomial
time complexity.

The class NPTIME contains those problems for which it is possible to
verify in polynomial time that the answer is Yes if somebody, who
wants to convince us that this is really the case, provides additional
information.
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Classes NPSPACE, NEXPTIME, NEXPSPACE, . . .

Other classes can be defined similarly:

NPSPACE – the set of all decision problems, for which there exists
a nondeterministic algorithm with polynomial space
complexity

NEXPTIME – the set of all decision problems, for which there exists an

algorithm with time complexity 2
O(n

k
)
where k is a constant

NEXPSPACE – the set of all decision problems for which there exists an

algorithm with space complexity 2
O(n

k
)
where k is a constant

NLOGSPACE – the set of all decision problems for which there exists an
algorithm with space complexity O(log n)
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Names of complexity classes

Remarks: The following shorter names are commonly used in literature.

These shorter names with be sometimes used also in this course:

L – LOGSPACE
NL – NLOGSPACE
P – PTIME
NP – NPTIME

EXP – EXPTIME

NEXP – NEXPTIME
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Relationships between Complexity Classes

It is clear that deterministic algorithms can be viewed as a special case of
nondeterministic algorithms.

Therefore it obviously holds that:

LOGSPACE ⊆ NLOGSPACE

PTIME ⊆ NPTIME

PSPACE ⊆ NPSPACE

EXPTIME ⊆ NEXPTIME

EXPSPACE ⊆ NEXPSPACE

⋮
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Relationships between Complexity Classes

It is also obvious that for both deterministic and nondeterministic
algorithms, an algorithm can not use considerably bigger number of
memory cells than what is the number of steps executed by the algorithm.

A space complexity of an algorithm is therefore always at most as big as
its time complexity.

From this follows that:

PTIME ⊆ PSPACE

NPTIME ⊆ NPSPACE

EXPTIME ⊆ EXPSPACE

NEXPTIME ⊆ NEXPSPACE

⋮
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Relationships between Complexity Classes

Theorem

A nondeterministic algorithm with time complexity O(f (n)) can be
simulated by a deterministic algorithm with space complexity O(f (n)).

Proof: Consider a nondeterministic algorithm with time

complexity O(f (n)).

The deterministic algorithm will simulate its behaviour by systematically
going through all its computations:

It goes through the tree of all computations using a depth-first search.

It will use a stack to store information necessary for returning to the
previous configuration.
— to allow to go back to a previous configuration α from a following
configuration α

′
, it is sufficient to store a constant amount of

information — only those things that were changed in th transition
from α to α

′
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This simulating algorithm needs the following memory:

a memory to store a current configuration of the simulated machine
— its size is O(f (n)) (since if this simulated machine performs at
most O(f (n)) steps then its configurations will use at most O(f (n))

memory cells)

a memory to store a stack that will be used to allow returning to
previous configurations

Since the length of branches is O(f (n)), the amount of memory
needed for the stack is O(f (n)).

So in total, the deterministic algorithm uses in this simulation an amount
of memory, which is at most O(f (n)).
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It follows from this that:

NPTIME ⊆ PSPACE

NEXPTIME ⊆ EXPSPACE

⋮
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Consider a nondeterministic algorithm with a space complexity O(f (n)):

Let us recall that the total number of configurations of size at

most O(f (n)) is O(c
f (n)

), where c is a constant, so this can be

written as 2
O(f (n))

.

So the number of steps of the nondeterministic algorithm in one

branch of computation could be at most 2
O(f (n))

.

(Remark: No configuration can be repeated during a computation
since otherwise computations could be infinite.)

So the simulation done this way would have time complexity 2
2
O(f (n))

.
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In a simulation we can proceed in a more clever way — consider a directed
graph where:

nodes — all configurations of the simulated machine whose size is at
most O(f (n))

— the number of such configurations is 2
O(f (n))

edges — there is an edge between nodes representing configurations
α and α

′
iff the simulated machine can go in one step from

configuration α to configuration α
′

— the number of edges going out from each node is bounded from

above by some constant — so the number of edges is also 2
O(f (n))

It is sufficient to be able to find out whether there is a path in this graph
from the node corresponding to the initial configuration (for the given
input x) to some node corresponding to a final configuration where the
machine gives answer Yes.
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Existence of such a path can be tested using an arbitrary algorithm for
searching a graph — for example by breadth-first search or depth-first
search:

This algorithm needs to store and mark, which configurations have
been already visited.
It also needs a memory to store a queue or a stack, etc.

The time and space complexity of such algorithm is linear with

respect to the size of the graph, i.e., 2
O(f (n))

.
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So we obtain the following:

Theorem

The behaviour of a nondeterministic algorithm whose space complexity
is O(f (n)) can be simulated by a deterministic algorithm with time

complexity 2
O(f (n))

.

It follows from this that:

NLOGSPACE ⊆ PTIME

NPSPACE ⊆ EXPTIME

NEXPSPACE ⊆ 2-EXPTIME

⋮
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Consider once again a nondeterministic algorithm with space

complexity O(f (n)). Now we would like to have the space complexity of
the simulating deterministic algorithm as small as possible.

Theorem (Savitch, 1970)

The behaviour of a nondeterministic algorithm with space complexity
O(f (n)) can be simulated by a deterministic algorithm with space
complexity O(f (n)

2
).

Proof idea:

Consider once again the graph of configurations with 2
O(f (n))

nodes
(and edges).

The algorithm will try to find out whether there exists a path from
the initial configuration to some accepting configuration.
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The most important part is a recursive function F (α, α
′
, i) that for

arbitrary configurations α and α
′
and number i ∈ N finds out whether the

given graph contains a path from α to α
′
of length at most 2

i
:

For i = 0 it finds out whether there is a path from α to α
′
of length

at most 1:

it is either a path of length 0, i.e., α = α
′
,

or it is a path of length 1, i.e., it is possible to go from α to α
′
in one

step

For i > 0, it will systematically try all configurations α
′′
and check

whether:

there is a path of length at most 2
i
/2 from α to α

′′

— it calls F (α, α
′′
, i − 1) recursively

there is a path of length at most 2
i
/2 from α

′′
to α

′

— it calls F (α
′′
, α

′
, i − 1) recursively

If both returns True, it returns True, otherwise it continues with
trying the next α

′′
.
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The analysis of the space complexity of the algorithm:

in one recursive call of the function F , the algorithm needs to store:

three configurations α, α
′
, α

′′
— all of them of size O(f (n))

the value of the number i , which is approximately O(f (n)) — so to
store this number, O(log f (n)) bits are sufficient

other auxiliary variables whose sizes are negligible compared to the
sizes of the values described above

So the amount of memory needed for one recursive call is O(f (n)).

The depth of the recursion is also O(f (n)).

So the total space complexity of the algorithm is O(f (n)
2
).
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It follows from this theorem that:

NPSPACE ⊆ PSPACE

NEXPSPACE ⊆ EXPSPACE

⋮

Together with the trivial facts that PSPACE ⊆ NPSPACE,
EXPSPACE ⊆ NEXPSPACE, atd., this implies:

PSPACE = NPSPACE

EXPSPACE = NEXPSPACE

⋮

Remark: Note that it does not follow from this that
LOGSPACE = NLOGSPACE.
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Putting all this together, we obtain the following hierarchy of complexity

classes:

LOGSPACE ⊆ NLOGSPACE ⊆

⊆ PTIME ⊆ NPTIME ⊆ PSPACE = NPSPACE ⊆

⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE = NEXPSPACE ⊆

⋮
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