Equivalence problems for finite-state and
one-counter processes

Zdenék Sawa

1 Introduction

In the study of processes two main activities are modelling and verification. Modelling means rep-
resenting of processes, usually by means of some mathematical formalism, in a way that abstracts
from unimportant details of the system. Verification of processes means proving statements about
processes, such as that a given process has a given property or that the behaviors of two systems
are equivalent.

In the study of concurrent systems, different formalisms were proposed for modelling of systems.
Examples of such formalisms are Petri nets, different process calculi (such as CCS [29], CSP [17]
and ASP [4]) or rewrite transition systems [10]. In any case, not matter what formalism is used
for the description of the system, the behavior of a system is interpreted like an edge-labelled
graph, whose nodes correspond to different states of the system, and whose edges correspond to
transitions from one state to another. A label on an edge represents an action connected with the
transition (typically a communication with an environment of the process).

Definition 1.1 A labelled transition system is a tuple (S, Act, —) where:

e S is a set of states (finite or infinite).
e Act is a finite set of actions.

e —C Sx Actx S is the transition relation. We write « — 3 instead of (a,a,B) €—>, and

we extend this notation to the reflexive and transitive closure of —», i.e. we write & — B3,
where w € Act*.

We identify a process with one state of a transition system. The transition system then
describes all possible behavior of the process.

The concurrent behavior of the system is modelled using interleaving semantics. That means
that concurrent execution of actions a and b, is modelled like a sequence of actions ab or ba.

In the field of the concurrency theory, two main problems are intensively studied:

e Given two systems, are the behaviors of these systems equal with respect to a certain equiv-
alence notion? This problem is called equivalence problem or equivalence checking.

e Given a system and a property expressed in a certain temporal or modal logic (as a for-
mula @), does the system satisfy the property (is it the model of the formula ¢)? This
problem is called model checking.

The problem of model checking is not considered in this paper.

Now there is a question, when we should consider two systems to be equivalent. It turns out
that the notion of language equivalence,' as traditionally used in the theory of formal languages,
is not suitable for concurrent systems.

In the case of language equivalence, we usually have a system (like a finite automaton, push-
down automaton, Turing machine etc.) that has a word written on its input tape at the start,
performs some computation on the input and accepts or rejects it. Two systems are considered to

L1f we identify actions with symbols and sequences of actions with words.

. A
[] []

Figure 1: An example of two processes with quite different capabilities

be equivalent if they accept and reject the same sets of words. The situation is quite different in
the case of concurrent systems. Their input is not known at the start of the computation, but is
received during the computation, they receive actions and react to them.

This difference can be illustrated in the following example depicted in the figure 1 (start states
of both processes are denoted with small arrows). Both processes are able to perform the same
sequences of actions (ab and ac). The difference between them is that the first one can perform
the action a and then choose between actions b and ¢, but the second one must choose between
two a actions at the start and then can perform only one of b or ¢, depending on its previous
chose.

It is clear from this example that the language equivalence is too coarse for concurrent systems,
because two systems with quite different capabilities are considered to be equivalent under this
notion of equivalence.

Moreover, the concurrent systems are often systems, which are not supposed to terminate at
all, such as network protocols, control systems etc. The behavior of such systems can not be
modelled in terms of accepting or rejecting their input.

Remark: In the equivalence problem, we can consider instead of two separate systems only one
system (formed as a disjoint union of these systems). The equivalence problem is then formulated
as a problem of equivalence of a pair of states of the given transition system.

There has been many different notions of equivalence proposed in the literature. Van Glabbeek
classified these equivalences in [31] and organized them in a hierarchy called linear time/branching
time spectrum. A diagram containing some of the most important equivalences in the hierarchy
is in the figure 2. (An arrow from equivalence R to equivalence S means that any states related
by equivalence R are also related by S, but the converse is not true for some systems. That is,
S is “coarser” equivalence than R and R is “finer” than S.) All equivalences in this hierarchy
lie between bisimulation equivalence (which is thus the finest of all these equivalences) and trace
equivalence (which is the coarsest).

We call the transition system deterministic, if for each state a and any action a there is at
most one &' s.t. a — o', and we call it nondeterministic otherwise. All equivalences in the
hierarchy differ only if we consider nondeterministic transition systems, because for deterministic
systems are all these equivalences identical and the hierarchy collapses.

In the literature are also defined such equivalences that take into account unobservable actions
(called T-actions), i.e. transitions performed by the process without an interaction with the envi-
ronment, (weak bisimulation equivalence is an example of such equivalence), but these equivalences
are not discussed in this paper.

2 Basic definitions

2.1 Equivalences

There is no “right” equivalence. Different equivalences can be useful for different purposes and
it depends on the processes and properties we want to study, which one is appropriate. But it

Bisimulation equivalence

2-nested simulation equivalence

Ready simulation equivalence

Possible-futures equivalence Ready trace equivalence

J

Readiness equivaence Failure trace equivalence

N

Failures equivalence

Simulation‘equivalence

/

N

Completed trace egquivalence

Trace equivaence

Figure 2: The linear time/branching time spectrum

turns out that bisimulation equivalence, simulation equivalence and trace equivalence are very
important. Their definitions follow:

Definition 2.1 (Bisimulation equivalence) A binary relation R on states of a transition sys-
tem is called a bisimulation iff for any {a, 8) € R two following conditions hold:

o If a -5 o for some a € Act then f -2 ' for some ' such that {o/,B') € R.

o If - B' for some a € Act then a —= o' for some o such that (o, ') € R.

States o and (are bisimulation equivalent or bisimilar, written a ~ 8, iff (a,8) € R for some
bisimulation R.

Definition 2.2 (Simulation equivalence) A binary relation R on states of a transition system
is called o simulation iff for any (a, 8) € R the following condition holds:

If o -2 o/ for some a € Act then f — f3' for some ' such that (o/,5') € R.

State a is simulated by state 8, written o <, B3, iff (o, 8) € R for some simulation R. States
a and B are simulation equivalent, written a =, 8, iff a <, 8 and 8 <, a.

Definition 2.3 (Trace equivalence) If a is a state of a transition system, we define the set of
traces, denoted tr(a), as a set of all possible sequences of actions from the given state, formally:

tr(a) = {w € Act* | 3o’ such that o = o'}

The states o and 3 are trace equivalent, written o =y 8, iff tr(a) = tr(B).

All these equivalences could be also equivalently characterized using characteristic games. Such
games are played by two players, denoted Player I and Player II in the following. The goal of
Player I is to show that the given two states are not equivalent and the goal of Player II is to show
the contrary. The states are equivalent if there is a winning strategy for Player II.

For example the characteristic game for bisimulation equivalence (bisimulation game) is defined
such that in every move Player I can choose a process he wants to play with, he performs one
transition of this process and this transition must be matched in the other process by Player II
by a transition with the same label. The game continues until one of the players can not perform
any transition — then the player that is stuck loses. If the game never ends, Player II wins.

The characteristic game for the simulation equivalence (simulation game) is defined similarly,
but Player I can choose the process he wants to play with only at the beginning, and then he must
always play with the chosen process.

2.2 Classes of processes

Now, if we want to solve the equivalence problem for some transition systems, there is a question
to what extend we can automate this testing. It should be clear that it is not possible to test
algorithmically equivalence of systems that have full Turing power, because we can easily reduce
the halting problem to such an equivalence problem.

On the other hand, if we consider systems with finitely many states, all the equivalences in
the hierarchy are decidable (some of them in polynomial time), at least by some kind of “naive”
algorithm based on exhaustive search.

Now there is a natural question, where exactly lies the boundary between systems for which
equivalence problem is decidable and systems for which it is undecidable, and what is the com-
plexity of the problem (in the case that it is decidable)?

Some of the most important classes of processes that are studied in the field are (see e.g. [7]
for definitions):

e FSA — finite state automata

e BPA — basic process algebras

e BPP — basic parallel processes
e PDA — pushdown automata

e PN — Petri nets

e OCA — one-counter automata

e OCN — one-counter nets

In the proofs in this paper only classes FSA, OCA and OCN are considered.

FSA is a class of processes with finitely many states. It is basically the well known class of
nondeterministic finite automata.

OCA (also called one-counter machines) form a proper subclass of PDA. PDA is a class of
processes that have a finite control unit (as FSA) equipped with an infinite stack, i.e. the states
of PDA are elements of QI™, where @) is a finite set of control states and T is a finite set of stack
symbols. There is defined a finite set of transition rules of the form pA —— ga, where p,q € Q,
A €T and o € T'*. The possible transitions are of the form pAS — qaf3, where § € I'* and
pA - g is a transition rule.

OCA is a subclass of PDA with the restrictions that the set of stack symbols is I' = {Z, I}
and the allowed transition rules are of the form pI — ¢I* or pZ — qI*Z where p,q € Q. All
reachable states are of the form pIl...IZ, so the stack behaves in fact like a counter, because
only the number of Is is important. We use more convenient notation p(4) for states, where p € Q)
and 7 € N represents the number of I's on the stack.

It can be shown that every OCA process can be represented (up to the labelling of states) by
a process that has at most 2 Is in the right hand sides of transition rules, i.e. the value of the
counter can increase or decrease at most by 1 in one step.

OCA are “strong” in the sense that they are able to test for zero, they can perform different
actions if the value of the counter is zero and if it is non-zero.

OCN is a family of “weak” OCA that are not able to test for zero. If there is some transition
possible when the value of the counter is zero, is is possible also if it is non-zero. Formally, if there
is a transition rule pZ — gaZ where p,q € Q, Z,I € T and a € I*, then there is also a transition
rule pI %+ gal. The class OCN corresponds to the class of Petri nets with one unbounded place.

3 State of the art

In this section we present a survey of known decidability and complexity results for equivalence
problems. It turns out that all equivalences in linear time/branching time spectrum are decidable
for finite-state processes, and the main concern is therefore that on the computational complexity.
On the other hand, for many classes of infinite-state systems, no equivalence in the spectrum
is decidable, however, for certain interesting classes and equivalences (especially for bisimulation
equivalence) is the equivalence problem decidable.

3.1 Finite-state processes

The equivalences in the spectrum can be generally divided to simulation-like and trace-like equiv-
alences.

The simulation-like equivalences are the equivalences between bisimulation and simulation
equivalence (such as bisimulation equivalence, simulation equivalence, ready-simulation equiva-
lence, n-nested simulation etc.) It was shown that all these equivalences are decidable in polyno-
mial time (see [19] for a more detailed survey of the results).

The trace-like equivalences are defined in terms of unbounded sequences of actions (traces). In
general all equivalences in the spectrum between ready trace equivalence and trace equivalence,
and between possible-futures equivalence and trace equivalence belong to this category. It was
proved in [25] that the equivalence problem for finite-state processes is PSPACE-complete for all
these equivalences.

It was proved in [2] that the problem of equivalence of finite-state processes is P-complete for
bisimulation equivalence.

3.2 Infinite-state processes

In [5] (and in [6]) Baeten, Bergstra and Klop proved that bisimulation equivalence is decidable
for normed BPA processes. (A process is normed, if from any reachable state is reachable a state,
where no transitions are possible.) Normed BPA processes correspond to context-free grammars
without redundant nonterminals. Simpler proof of this result was presented by Caucal [9] and yet
another proof using tableau technique was presented in [20]. Later, Hirshfeld, Jerrum and Moller
showed that this problem is in PTIME [15].

The decidability of bisimulation equivalence for BPA processes in general case was established
in [13]. The elementary algorithm for the problem (in 2-EXPTIME) was presented in [8].

It was shown in [14] that the equivalence problem for BPA processes is undecidable for all
equivalences in the spectrum except bisimilarity.

Bisimulation equivalence of BPP processes is decidable, as was shown in [11] and [12]. It was
shown by Mayr [27] that this problem is coNP-hard. For normed BPP is this problem decidable
in polynomial time [16].

As was shown in [18], the equivalence problem for BPP is undecidable for all equivalences
except bisimilarity.

Sénizergues has shown that bisimilarity of PDA processes is decidable [30]. Mayr has shown
in [28] that this problem is PSPACE-hard.

Jancar has shown in [21] that the equivalence problem for PN is undecidable for any equivalence
between bisimulation equivalence and trace equivalence. (The undecidability holds even for MSA—
multiset automata, that form a proper subclass of PN.)

Bisimulation equivalence was shown to be decidable for OCA processes by Jancar in [22].

The proof of decidability of simulation equivalence for OCN was first presented in [1]. A
simpler proof was presented in [23] and also in [24], where was also shown that this problem is
undecidable for OCA.

4 Own results

In the following own results are presented. The main own results in the field achieved so far are:

e Simulation equivalence is undecidable for OCA processes.
e Deciding simulation equivalence is DP-hard for OCN processes.

e Deciding equivalence of finite-state processes is P-hard for all equivalences between bisimu-
lation equivalence and trace equivalence.

The first result has been published in [24]. The undecidability was shown using reduction
from the halting problem for Minsky machine with two counters. The other two results were not
published yet, so the proofs of these results are presented in the following two subsections.

4.1 DP-hardness of simulation equivalence for one-counter nets

In the following is proved that testing of simulation equivalence is DP-hard problem for OCN
processes.
DP is the class of decision problems defined as follows:

DP ={A4| A= BnC for some B in NP and C in coNP}

A problem P is DP-hard if any problem in DP can be reduced to P in polynomial time. P is
DP-complete, if P is DP-hard and P € DP. (DP-hardness of the problem means that the problem
is NP-hard and also coNP-hard.)

DP-hardness of the problem is shown using a polynomial time reduction from the SAT-UNSAT
problem, which is known to be DP-complete. The SAT-UNSAT problem is defined as follows:

INSTANCE: A pair (¢1, ¢2) of Boolean formulae in conjunctive normal form (CNF), such that any
clause in formulae contains exactly 3 literals.

QUESTION: Is ¢; satisfiable and is ¢2 not satisfiable?

The reduction is based on two following lemmas, that stay that the well known 3-SAT problem
can be reduced in polynomial time to the problem if one OCN process is simulated by another,
and also to the complement of this problem.

Lemma 4.1 3-SAT can be reduced in polynomial time to the problem if p(0) As p'(0), where p(0)
and p'(0) are the start states of OCN processes.

Lemma 4.2 3-SAT can be reduced in polynomial time to the problem if p(0) < p'(0), where p(0)
and p'(0) are the start states of OCN processes.

The constructions in the proofs of these two lemmas are quite similar and use some ideas that
were used previously in [26]. The most important idea is the way how different valuations of
boolean variables in the formula are encoded in states of OCN processes.

They are encoded as values of the counter and this encoding uses prime numbers. Let us
denote 7; the i** prime number. Let Var = {z1,z2,...,7,} be a set of boolean variables in the

formula and let k¥ € N be a value of the counter. Using this value we can define a valuation
v : Var — {true,false} s.t. z; = true iff ¥ mod m; = 0. It is clear that for any valuation v
there is some k € N s.t. v = v;. We can take for example k to be product of f(i) for 1 <i <n
where

o | m fv(z;) =true
16) = { 1 if v(z;) = false

The important fact is that the value of the sum Y"1 | 7; is in O(n®) (see, e.g., [3]). This ensures
that the following constructions can be achieved in polynomial time.

Let us first describe a construction of (parts of) OCN processes that are used for testing of
boolean values in the valuation v, (under assumption that the values of counters of both processes

are k).
We create the transition system A. We add the control states s and sp to A. Let Var =
{z1,%2,...,2,} be a set of boolean variables. For every variable z; (where 1 <14 < n) we add two

sets of control states to A: {{(z;,7) |0 <j <m} and {{Z;,j) | 0 < j < m}.
We add the following transitions (for each 1 <i < n):

° sli)se SIL)SFIand sZ—b>sFZ

z;,)T - (x4, (j + 1) mod m;)e for each 0 < j < m;,
z;,0)1 LN SFE,

I-% spI and (zi,7)2Z 2y spZ for each 0 < Jj <,

(
(

* (zi,]
(z
(z

)
)

zi,) - (%3, (j + 1) mod m;)e for each 0 < j < m;,
)

i, 00T 2Ly spI and (:,0)Z LN SpZ,

(Zi,)T by spe for each 0 < Jj < m;.

It holds for any k € N that s(k) As (z;,0)(k) iff K mod m; = 0, i.e. iff vg(z;) = true.
Similarly, s(k) Zs {Z:,0)(k) iff ¥ mod m; # 0, i.e. iff v(z;) = false. The proofs of these facts are
straightforward.

Notice that the number of control states of A is in O(n?), and the construction of A can be
done in polynomial time.

PROOF OF LEMMA 4.1: Let ¢ be an instance of 3-SAT. Let us suppose that ¢ contains a set of
boolean variables {1, 2,...,z,} and is of the form C; AC3 A--- A Cpp,, where each Cj is a clause
of the form L]‘,l \% Lj’g \% Lj,g, where each L]‘,k is either T; Or x;.

We construct processes with start states p(0),p'(0), such that p(0) <, p'(0) iff ¢ is not satis-
fiable. We start with the transition system A constructed above. We add control states p and r
and the transitions:

o pZ = pIZ and pI - pII,

. pZi>7‘Z a,ndeiH'I,

o r7 = sZ and rI - sI where x € {a,b,c}.

Then we add the control state p’ and for every clause C; (1 < j < m) we add the control

state ;.
Finally we add the transitions:

o p'Z 5 p'IZ and p'I = p'II,
e p'7 LN r;Z and p'I SN r;I for each 1 < j < m,
e for each clause C; (of the form L;, V Lj2 V Lj 3):
TjX LN Qj,lX TjX —b) Qj,zX T]'X <5 Q]',gX X € {I,Z}

where @ is (x;,0) if L;j, is z;, and (Z;,0) if L; is —z;.

If we describe the problem, if p(0) <; p'(0), in terms of the simulation game, the game has the
following phases:

1. Player I chooses some valuation of boolean variables in the formula (encoded as a value of
the counter of OCN) — he can increase the value of the counter of the first process using a
actions. Player IT must increase the value of the counter of his process to the same value.
Notice, that Player I can not increase the value infinitely long and he must eventually stop
increasing it and perform an action b otherwise Player IT would win.

2. Player II chooses some clause C; of the formula. Player I has only one possible transition,
but Player II can choose between states ri,...,r,, that correspond to the clauses of the
formula. The values of the counters are not changed in this phase.

3. Player I chooses one literal in the clause C; (if Player II has chosen the control state r; in
the previous move) by choosing one of the actions a,b, c. The values of the counters are not
changed in this phase.

4. The value of the chosen literal is tested. Player I wins if the value of the literal is true, and
Player II wins otherwise.

Now Player I has the winning strategy, if ¢ is satisfiable — he can choose a valuation that
makes ¢ true. Then there is in every clause at least one literal with the value true in the given
valuation. On the other hand if ¢ is not satisfiable, then in every valuation is some clause with
all literals with the value false, so Player II has the winning strategy now, because in phase 2 he
can choose a state corresponding to this clause. |

The proof of lemma 4.2 is rather similar to the proof of lemma 4.1 and is only sketched.

PROOF OF LEMMA 4.2 (SKETCH): The roles of the players are interchanged now.

The way how Player II chooses the valuation is a little bit more complicated than in the
previous case, because Player II can not choose it by increasing the value of the counter (because
it that case he would always win by increasing the value infinitely long), so another technique is
used. First, Player I must set the value of the counter to “big” enough value — he must choose
a value that is multiple of the product of all m; for 1 < ¢ < n, where {21,2z2,...,2,} is a set of
boolean variables in the formula. Player II then chooses the valuation by decreasing this value.
The game then continues as in the previous case.

It can be divided into the following phases:

1. Player I must set the value of the counter to some value.

2. It is tested, if Player I set the value to be the multiple of the product of 7; for 1 <i < n. If
not, Player IT wins.

Player II chooses the valuation (by decreasing the value of the counter).
Player I chooses some clause.

Player II chooses some literal in that clause.

S ol w

The value of the chosen literal is tested, Player II wins iff the value of the literal in the given
valuation is true.

It can be easily checked that Player II has winning strategy iff the formula ¢ is satisfiable —
he can choose valuation that makes ¢ true. Then there is in every clause at least one literal with
the value true. Player I has winning strategy if ¢ is not satisfiable, because in every valuation he
can choose a clause where all literals have the value false.

The details of the construction of processes are omitted. O

Theorem 4.3 The problem if p(0) < p'(0), where p(0),p'(0) are states of OCN, is DP-hard.

PRrROOF: Let (¢1,d2) be an instance of SAT-UNSAT problem. Using lemma 4.2, we can construct
(in polynomial time) OCN processes with start states ¢(0),¢'(0), such that ¢(0) <s ¢'(0) iff ¢;
is satisfiable, and using lemma 4.1 we can construct OCN processes with start states r(0),r'(0),
such that r(0) < 7'(0) iff ¢, is not satisfiable.

Now we can construct a disjoint union of these processes with new control states p,p’, where
we add the transitions:

pX = gX pX Lyrx pP’X 54X p'X Lyrx

where X € {I,Z}, a,b € Act and a # b. As can be easily checked, it holds that p(0) <, p'(0) iff
q(0) %5 ¢'(0) and r(0) =<, ' (0), i.e. iff ¢; is satisfiable and ¢, is not satisfiable. O

Corollary 4.4 The problem if ¢(0) =5 ¢'(0), where ¢(0),q'(0) are states of OCN, is DP-hard.

Proor: We reduce the problem, if p(0) <, p'(0), that is DP-hard (theorem 4.3), to the problem,
if ¢(0) =, ¢'(0), using the following general construction.

Given states a, 3 of some transition system A, we add the states 7,+' and the transitions
v a,7y — Band v - [to A. As can be easily checked, v =, +' iff @ <, /3, because ¥ <, 7
is always true, and v <; v holds only if a <, . O

4.2 P-hardness of all equivalences for finite-state processes

In the following is proved that deciding equivalence of finite-state processes is P-hard problem for
any equivalence between (and including) bisimulation equivalence and trace equivalence.

A problem P is P-hard if any problem in PTIME can be reduced to P by LOGSPACE reduction.
A problem P is P-complete if P is P-hard and P € PTIME.

P-complete problems are considered to be inherently sequential in the sense, that there is
not known an efficient parallel algorithm for any P-complete problem. A parallel algorithm is
considered to be efficient, if its time complexity is polylogarithmic, i.e. if its time complexity is in
O(logF n) for some constant k (where n is the size of an instance) when only a polynomial number
of processors is used, i.e. when the number of processors is in O(n*) for some constant k. A class
of problems, for which such algorithms exist, is called NC (Nick’s class).

It is known that NC C PTIME, but if NC # PTIME (i.e. if NC C PTIME) is an open question.
It is widely believed that the inclusion is proper, and that there are problems that are in PTIME,
but are not in NC. P-complete problems are candidates to be such problems, because it can be
shown that if NC C PTIME, then no P-complete would be in NC, and if at least one of P-complete
problems would be in NC, then NC = PTIME.

The P-completeness of deciding bisimilarity of finite state processes was shown in [2] and
equivalences between ready-trace equivalence and trace equivalence and between possible-futures
equivalence and trace equivalence are known to be PSPACE-complete [25], so the result obtained
here is new only for the remaining equivalences in linear time/branching time spectrum.

To prove P-hardness of deciding equivalence, we describe a reduction from CvP (circuit value
problem — it is described in detail below) to the problem of equivalence of finite-state processes.
The CvVP problem is known to be P-complete. Given an instance w of CVP, we construct two
finite-state processes with the start states pg and qg, s.t. pg and ¢o are not trace equivalent if w
is accepted by an algorithm deciding CvP, and pg and gy are bisimilar if w is rejected. It follows
that CVP can be reduced in this way to deciding of any equivalence X s.t. ~C X C=y.. (In
fact, CvP is reduced to the problem of non-equivalence, but the difference does not matter.) A
similar technique of constructing two processes, that are bisimilar in one case and are not even
trace equivalent in the other, was used e.g. in [21].

We start with a few definitions:
Boolean circuit is a directed, acyclic, labelled graph, in which the nodes of indegree zero are
the inputs, and all other nodes are of indegree 2 and are labelled by one of {A, V}. One node (with

outdegree zero) is the output node. The nodes are called also gates. We say that a gate x depends
on a gate y, if there is an edge from y to z. A gate labelled with A or V computes its value from
values on gates it depends on, using boolean function indicated in its label. The values on gates
are boolean values, denoted as 0 and 1 in the following.

The CvP problem is defined as follows:

INSTANCE: A boolean circuit and an assignment of boolean values to its input gates.
QUESTION: Is on the output gate the value 17

We may further assume that the gates {z,zs,...,z,} are ordered in such a way, that z; is
the output gate and if z; depends on z;, then ¢ < j. We may assume w.l.o.g. that the output gate
in not also an input gate. The problem CVP still remains P-complete under these assumptions.

Let us define the function ¢ : I — {A,V,0,1}, where I = {1,2,...,n}, that is used to denote
the types of the gates:

if the gate x; is labelled with A
if the gate x; is labelled with Vv
if the gate x; is an input gate with the value 0
if the gate x; is an input gate with the value 1

#(i) =

o< >

A pair of (partial) functions ¢;,c¢p : I — I is used to express dependence between gates. If a
gate z; depends on gates x; and xy, where ¢ < j < k then ¢1(i) = j and ¢2(i) = k. If 2; is an
input gate, then values of ¢1 (%), ca (i) are undefined.

The function v : I — {0, 1} is used to denote the actual values on gates, i.e. v(7) is the value
on the gate z;.

We will construct a transition system denoted A, and pg, go will be two different states of A.
The process with the start state py (resp. go) will be called the process po (resp. the process go)-
The set of actions of A will be {0,1, h}.

The sequences of actions, that could be performed by both processes, will be of the form
aias...a, where each a; corresponds to the value on the gate z;. If z; is an input gate, i.e. if
t(i) = 0 or t(i) = 1, then a; must be the value on the input gate, i.e. a; = ¢(i) if t(4) = 0 or
t(i) = 1. If z; is the output gate, then a; must be 1, i.e. a; = 1. In all other cases a; may be 0
or 1.

The difference between the processes pg and ¢ is that the process pg can always perform the
action h after that sequence, but the process go can perform the action h after the sequence only
if the sequence is “wrong” in the sense that it does not correspond to the actual values on the
gates.

The sequence is considered to be wrong if it contains some wrong action a; (where 1 <4 < n).
The action a; is wrong if a; = 1 and either ¢(i) = A and at least one of a;, ay, is 0, where j = ¢ (%)
and k = ¢2(4), or (i) = V and both a;,as are 0.

We call the action a; cheating if a; = 1, but v(i) = 0. As can be easily checked, if a; is cheating,
then either a; is wrong, or at least one of a;, ay is cheating. So if a sequence contains a cheating
action, then it must be wrong, because ¢ < j, k and the actions that correspond to the input gates
can not be cheating.

Notice, that if v(1) = 1 (i.e. if there is the value 1 on the output gate), then at least one
sequence that is not wrong exists (the one where a; = v(i) for each 1 < i < n), and if v(1) = 0,
then every sequence is wrong.

The set of states of the transition system A will be the union of the following sets:

{pi|0<i<n},
{rij |1 <j <ca(i)} for each 1 <4 < n, such that ¢(i) =V,
{rijli<j<ec(i)}and {r;; | i <j<ca(i)} for each 1 <i < n, such that (i) = A.

10

()
A \% 0 1
0,1 0,1 0 1
Dj—1 — Dj — Pj — Dj — DPj
0,1 0,1 0 1
dj—1 — qj — qj — — g
If t(i) = A
ap - . . 0,1 0,1 0 1
rij-1 i <j<e(i) = 7 > T — i, 5 i
o . 0 0 0
if j = c1(d) — Dj — pj — p;
, i< . 01 01 0. , 1.,
g i< j <ea(i) — 'y ' — i — i
e . 0 0 0
if j = ex(i) — P — pj —)
Ift(i) = v:
. . 0,1 0.1 0 1
Ti,j—1 ifi < 1< (’L) —> T —> T —> T — T
or ¢1(i) < j < e2(i)
e . 0 0 0
if j = e1(0) — T T — T
if = ool 0 0 0
if j = c2(d) — D — Dj — D
Common
I I 1
any state from the set — qj — qj — g
1 1
{Pj—l; qj—1, T’i,j—laré,]’q} —Tjj — T
1.0
T g

Table 1: The transitions of the transition system A

We say that the state « is on the p-line, if a = p; for some i, that it is on the g¢-line, if a = g;
for some ¢, and that it is on the r-line, if o = r; ; for some 7, j. We say that the state « is on the
level j if a is pj, g;, ri,; or r; ; for some i.

The transitions of A are described in the table 1. All transitions are of the form a;_; — 3;,
where 1 < j < n, a;_; is a state on the level j — 1, 3; is a state on the level j and z € {0,1}.
The rows in the table correspond to the different possible values of a;_1, the columns correspond
to the different values of ¢(j) and the fields in the table are of the form —— $3;. Some fields may

: . . 0,1 L 0
contain more than one transition. The notation — j; stands for two transitions (— £; and

SN B;)- The last row in the table contains transitions that are possible in any a;_;.
There is one exception to the transitions described in the table: No transitions labelled with 0
are possible in the states po and qq.

There is one transition not mentioned in the table — the transition p,, LN Dn-

The construction can be described informally as follows:

e We start with the p-line and ¢-line. An example of this construction is in the figure 3 for a
circuit where n = 6, x5 and xg are input gates and values on x5 and x¢ are 0 and 1.

e For every gate x;, such that ¢(i) = V we add one r-line in a way depicted in the figure 4.
This r-line can be used for testing, whether the action a; is wrong. If it is so, this r-line
allows the process qg to reach the same state as process pg.

e For every gate x;, such that #(i) = A we add two r-lines in a way depicted in the figure 5.
These r-lines can be used for testing, whether the action a; is wrong. If it is so, this r-lines
allow the process qo to reach the same state as process pg.

e To states on the p-line and to states on r-lines we add transitions labelled with 1 to all states,
to which such transitions from the states on the g¢-line exist on the same level.

11

1 0,1 0,1 0,1 0 1
—0 0 D
Po yat P2 b3 P4 Y45 Dpe
1 0,1 0,1 0,1 0 1
—0 O O
q0 q1 q2 q3 q4 g5 g6

Figure 3: An example of the start of the construction of the transition system A

qo qi—1 qi gj—1 ¢qj k-1 94k dn

Ti

Po Pk Pn

Figure 4: The construction for a gate labelled with V

i

Po Dj Pn

Figure 5: The construction for a gate labelled with A

12

Lemma 4.5 If v(1) = 1, then there is a trace from the state po, that can not be matched by any
trace from the state qp.

Proor: The trace ajas .. .ayh, where a; = v(i) for each 1 < 4 < n, can be performed by the
process pg. It is clear that the sequence a;as . ..a, is not wrong.

Let us suppose that this trace can be also performed by the process qg. Because the h action
can be performed only in the state p,, and because a state on the p-line can be reached from a
state on the g-line only through some r-line that ensures that the sequence ajas...a, is wrong,
the sequence must be wrong, but this is a contradiction. a

Lemma 4.6 Ifv(1) =0, then the states po and qo are bisimilar.

Proor: We will describe the proof in terms of the bisimulation game. Notice, that in this game
are both processes in every move in the states on the same level. They start in states on the
level 0, then go to states on the level 1, then on the level 2 and so on. Notice also, that the the set
of actions, that can be performed, is the same for all states on the same level j (where 0 < j < n),
and this set depends only on £(j + 1).

Let us first suppose that Player I uses only transitions on the p-line, i.e. transitions of the form
Di-1 R p;j. The sequence aias...a, must be wrong, because a; = 1 is cheating and Player I
can not play a; = 0 (there is no such transition).

The winning strategy for Player II can be described as follows: Whenever Player I uses cheating
action a; (a; = 1 in this case), use transition to the corresponding r-line and then show that either
a; was wrong (and then you can reach the same state as the process pg) or at least one of a;,ax
(where j = ¢1(¢) and k = c2(4)) must be cheating and you can use the same strategy to show it.
(If ¢(¢) = A choose between two r-lines the one that shows that a; is wrong or that must contain
a cheating action.) Otherwise, keep on the line where you are.

As can be easily checked, this strategy always allows Player II to show, that there is some
wrong action a;, so he can reach some state on the p-line, and then he simply mimics all moves
performed by Player I.

Now we consider the general case, where Player I can perform any transition, and we show
that Player I is in fact forced to use transitions on the p-line.

Let us suppose that Player I deviates from playing on the p-line using some transition labelled
with a;. If a; = 0, then due the fact that in every state is possible at most one transition labelled
with 0, the players only interchange their roles in this move and the result is exactly the same as
if Player I has not deviated from playing on the p-line.

So suppose a; = 1. If Player I uses a transition to some of g;, r; j or rg’ ; in one of the processes,
then the matching transition to the same state exists in the other process, so after the move both
processes are in the same state and Player IT wins.

The only remaining case is the situation, when Player I uses the transition r; ;_; N r;; (resp.

Tii—1 SN r;;) in the process go. Then Player II plays p;_1 N p; and the situation after the
move is again exactly the same, as if Player I has not deviated from playing on the p-line. |

Theorem 4.7 Deciding equivalence of finite-state processes is P-hard problem for any equivalence
between bisimulation equivalence and trace equivalence.

ProOOF: The correctness of the described construction follows from lemmas 4.5 and 4.6, so it
remains to show that this construction can be achieved in LOGSPACE.

The algorithm performing the construction requires only fixed number of variables to store
some indexes, pointers and values. For example to construct all transitions from some state a on
the level 4, the only information required is 4, j = ¢1(¢ + 1), k = c2(¢ + 1), t(i + 1), t(j) and t(k)
(and also 4', j' = c1(i'), k' = c2(i"), t(3'), t(4') and t(K'), if a = ry ; or @ =71} ;).

13

Let n be the number of gates in the circuit. Then the transition system A contains O(n?)

states, and all the variables required during the construction can be stored using only O(logn)

space. O
References
[1] P.A. Abdulla and K. Cerans. Simulation is decidable for one-counter nets. In Proceedings of

[2]

[3]

[4]

[8]

[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

CONCUR’98, volume 1466 of LNCS, pages 253-268. Springer, 1998.

C. Alvarez, J.L. Balcazar, J. Gabarro, and M. Santha. Parallel complexity in the design and
analysis of concurrentsystems. In PARLFE91, volume 505 of LNCS. Springer-Verlag, 1991.

E. Bach and J. Shallit. Algorithmic Number Theory. Vol. 1, Efficient Algoritms. The MIT
Press, 1996.

J. C. M. Baeten and W. P. Weijand. Process Algebra, volume 18 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge, England, 1990.

J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation equivalence for
processes generating context-free languages. In Proceedings of the Conference on Parallel
Architectures and Languages Europe (PARLE). Volume II: Parallel Languages, volume 259
of LNCS, pages 93-114. Springer-Verlag, 1987.

J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of bisimulation equivalence for
processes generating context-free languages. Journal of the ACM, 40(3):653—682, July 1993.

O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite structures. To
appear in Handbook of Process Algebras.

O. Burkart, D. Caucal, and B. Steffen. An elementary bisimulation decision procedure for
arbitrary context-free processes. In Proceedings of MFCS’95, volume 969 of LNCS, pages
423-433. Springer-Verlag, 1995.

D. Caucal. Graphes canoniques de graphes algébriques. Technical Report RR-0872, Inria,
Institut National de Recherche en Informatique et en Automatique, 1988.

D. Caucal. On the regular structure of prefix rewriting. Theoretical Computer Science,
106(1):61-86, November 1992.

S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation equivalence is decidable for all basic
parallel processes. In CONCUR’93, volume 715 of LNCS, pages 143-157. Springer, 1993.

S. Christensen, Y. Hirshfeld, and F. Moller. Decomposability, decidability and axiomatisabil-
ity for bisimulation equivalence on basic parallel processes. In LICS’93, pages 386-396. IEEE
Computer Society Press, 1993.

S. Christensen, H. Hiittel, and C. Stirling. Bisimulation equivalence is decidable for all
context-free process. In CONCUR 92, volume 630 of LNCS, pages 138-147. Springer, 1992.

J.F. Groote and H. Hiittel. Undecidable equivalences for basic process algebra. Information
and Computation, 115(2):354-371, 1994.

Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial algorithm for deciding bisimilarity
of normed context-free processes. Technical Report ECS-LFCS-940286, Department of Com-
puter Science, 1994.

Y. Hishfeld, M. Jerrum, and F. Moller. A polynimial algorithm for deciding bisimulation
equivalence of normed basic parallel processes. To appear in Mathematical Structures in
Computer Science, 1996.

14

[17]
[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
H. Hiittel. Undecidable equivalences for basic parallel processes. LNCS, 789:454, 1994.

H. Hiittel and S. Shukla. On the complexity of deciding behavioural equivalences and pre-
orders. Technical Report SUNYA-CS-96-03, State University of New York at Albany, Decem-
ber 28, 1996.

H. Hiittel and C. Stirling. Actions speak louder than words: Proving bisimilarity for context-
free processes. In Proceedings of LICS 91, pages 376-386. IEEE Computer Society Press,
1991.

P. Janc¢ar. Undecidability of bisimilarity for petri nets and some related problems. Theoretical
Computer Science, 148:281-301, 1995.

P. Jancar. Bisimulation equivalence is decidable for one-counter processes. In ICALP’97,
volume 1256 of LNCS, pages 549-559, 1997.

P. Jancar and F. Moller. Simulation of one-counter nets via colouring. Technical Report 159,
Computing Science Department, Uppsala University, 1999.

P. Janéar, F. Moller, and Z. Sawa. Simulation problems for one-counter machines. In Pro-
ceedings of SOFSEM’99, LNCS. Springer, 1999.

P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes and three problems
of equivalence. Information and Computation, 86:43—-68, 1990.

A. Kucera. Efficient verification algorithms for one-counter processes. In Proceedings of
ICALP 2000, volume 1853 of LNCS, pages 192-207. Springer, 2000.

R. Mayr. On the complexity of bisimulation problems for basic parallel processes. In
ICALP’2000, volume 1853 of LNCS, Geneva, Switzerland, 2000. Springer Verlag.

R. Mayr. On the complexity of bisimulation problems for pushdown automata. In IFIP
TCS’2000, volume 1872 of LNCS, Sendai, Japan, 2000. Springer Verlag.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

G. Sénizergues. Decidability of bisimulation equivalence of equational graphs of finite out-
degree. In Proc. of FOCS’98. IEEE, 1998.

R.J. van Glabbeek. The linear time — branching time spectrum. In Proceedings CONCUR’90,
volume 458 of LNCS, pages 278-297, Amsterdam, 1990. Springer-Verlag,.

15

Contents
1 Introduction

2 Basic definitions
2.1 Equivalences e
2.2 Classes of Processes o v v it e e e e e e e

3 State of the art
3.1 Finite-state processes« . v v v i i e e e e e e e e e e e e e
3.2 Infinite-state Processes v v v v i e e e e e e e e e e e e e e e e e

4 Own results
4.1 DP-hardness of simulation equivalence for one-counter nets
4.2 P-hardness of all equivalences for finite-state processes

16

<t

[N =]

