Simulation on One-Counter Machines

Petr Jancar Faron Moller Zdenék Sawa

January 15, 2002

Abstract

We discuss the decidability questions for simulation preorder (and equivalence) for
processes generated by one-counter machines. We sketch a proof of decidability in
the case when testing for zero is not possible and show the undecidability in the
general case.

1 Introduction

By a one-counter machine M we mean a nondeterministic finite automaton, we refer
to its states as control states, denoted p, g, ..., acting on a counter ranging over the set of
nonnegative integers N. The term states we reserve for configuration, denoted p(m),
There are (finitely many) transition rules; each of them may have a boolean guards of
the form ‘if the current state is p and counter is positive’ or ‘if the current state is p and
counter is zero’ and enables to perform action a out of a finite alphabet 3, changing the
control state to some ¢ and either increment, decrement, or ignore the counter value. (A
decrementing transition is only possible if the counter is positive.) We call M ‘weak’ iff
there is no guard of the second form (zero test). Note that, when m>0, the initial “moves”
of p(m) do not depend on the actual value of m.

A binary relation § between the states of two such nets is a stmulation if and only if,
whenever (p(m), ¢(n)) € S and p(m) = p'(m’'), we have ¢(n) = ¢'(n') with (p'(m"), ¢'(n")) €
S. p(m) is simulated by q(n), written p(m) < ¢g(n), if and only if they are related by
some simulation relation S. If two states are related by a symmetric simulation relation,
then they are bistmilar.

Such automata are enjoying renewed interest within the automata and process theory
communities due to the present active search for the dividing line between decidable and
undecidable theories for classes of infinite state systems (see, e.g., [4, 2]).

Recently, Abdulla and Cerans [1] outlined an extensive and involved proof of the decid-
ability of simulation preorder over one-counter nets. Their 16-page extended abstract is
very technical and refers to an unpublished full paper for the proofs of most of the crucial

lemmas; it thus is also hard to verify. Here we sketch a short proof, using a ‘geometri-
cal’ (more ‘visible’, lucid ?) approach; although short, due to space limitations and other
results communicated here, we just sketch it and refer to the full version [?].!

We then show that simulation preorder between one-counter machines with tests for zero
is undecidable, even a very restricted subcase of deterministic machines; it is easily trans-
formed to show undecidability of simulation equivalence in the (very easy subcase of) non-
deterministic case, which contrasts with the decidability of bisimulation equivalence [3].

2 Decidability

For any pair of control states (p, ¢) € Q1 xQ2 taken from two weak one-counter machines,
we can ask for what values m,n € N do we have p(m) < ¢(n). We can picture the “graphs”
of the functions Gy, 4 : NxN — {black, white} given by

_ [black, if p(m) < q(n);
Gip.g) (m;n) = { white, if p(m) £ q¢(n)

by appropriately colouring (black or white) the integral points in the first quadrant of the
plane. Note that if p(m) < g(n) then p(m') < g(n') for all m'<m and n'>n; this follows
immediately from the observation that

{em), () : p(m) < q(n), m'<m, n'>n}

is a simulation relation. Hence the black points are upwards- and leftwards-closed, and the
white points are downwards- and rightwards-closed. For a fixed pair of states po(myg) and
go(no) of these nets, we shall decide the question “Is pg(mg) =< go(no) #” by effectively con-
structing an initial portion of these k=|Q1|x|Q2| graphs which includes the point (mq, ny),
and then look to the colour of Gy, 40y (M0, 7).

Define the frontier function fy 4 (n) = max{m : Gy gq(m,n) = black}, that is, the
greatest value m such that p(m)=q(n); fip.q(n)=00 if G, 4 (m,n) = black, that is p(m) <
q(n), for all m; and fip g (n)=—1if Gy g (0, n) = white, that is p(0) A ¢(n). This function
is monotone nondecreasing, and the set of frontier points (f, 4 (n),n) € NxN defines
the frontier of G, 4, the collection of the right-most black points from each level. Note
that the order of the pairs (fi,q(n),n) in the frontier sets is reverse to the usual way
of representing functions as sets; this is an unavoidable confusion. (If we follow the usual
convention, then other confusions inevitably arise.) Also, note that we shall abuse notation
by using f to refer not just to the frontier function but also to the frontier given by the
frontier function.

The next theorem is the clue to our decidability result.?

ITo this submission, we add an appendix for convenience.
2see Appendix for the proof

o0 e0e0@®O0/

®@e®o o00o0p

e0e00@O0/0

e@oo0o00/p

i
M

Figure 1: Segments of six graphs H, .y superimposed onto each other.

[The Belt Theorem Fuvery frontier lies within a linear belt with rational (or infinite) slope.]

Now we describe the decision procedure which is based on this theorem. Consider con-
structing the graphs of some functions Hy, 4 : NxN — {black, white} as follows. Start
by assuming that all points are black, and by considering ever larger initial squares, make
Hip.q) (m, n) white if there is a transition p(m) = p/(m’') such that for every transition
q(n) = ¢'(n') we have previously recoloured Hy, . (m',n’) white. By induction, if we ever
recolour a point H, ,y (m, n) white, then p(m) A ¢(n). If we carry out this procedure indef-
initely, we would in fact construct the graphs Gy, 4, since the set of pairs (p(m), ¢(n)) such
that H, . (m,n) remains black is readily seen to be a simulation. (No pair corresponding
to a black point could contradict the definition of a simulation, as this is the criterion for
recolouring the point white.) Thus, every point which should be white (according to the

3

graphs G) would indeed be recoloured white at some point in this construction.

Because of this, by the Belt Theorem we must eventually be able to lay down a set of linear
belts with rational slopes such that (see Figure 1):

e within the currently recoloured square, there is an initial (MxXM) square inside of
which each frontier lies within some belt (we may assume that parallel belts coincide,
so that two or more frontiers may appear in the same belt);

e outside of some initial (NXN) square (N<M) containing the point (mqg, ng), the belts
are separated by gaps wide enough so that no point has neighbouring points in two
belts;

e within the area bounded by the initial (NXN) and (MXxM) squares, looking at each
horizontal level within each belt (or each vertical level, in the case of a horizontal belt)
we find a pattern which repeat itself—along with all of its neighbouring points—at
two different levels. (That is, the colourings of the points and neighbouring points
are the same in every graph on these levels within the belt.) Furthermore, the shift
from one occurrence of the pattern to the next has a slope equal to that of the belt.

Note that these belts need not a priori be the true frontier belts specified in the Belt
Theorem; but since (by the pigeonhole principle) the true frontier belts display such a
repetitive pattern, the true frontier belts must eventually appear in the above fashion if
no other belts appear earlier on in the construction.

Once we recognise such belts, the complete graphs H, ,y are determined by continuing the
colouring of the graphs by periodically repeating the colouring within the belts between
the levels at which the patterns repeat, and recolouring points to the right of the belts to
maintain the invariant that white points are rightwards-closed.

We can then readily confirm that the set of all pairs (p(m), ¢(n)) such that Hy, 5 (m,n) is
black is a simulation. (The validity of the simulation condition for a black point is depen-
dent only on its neighbouring points; and to each black point anywhere on the graphs there
is a corresponding black point—perhaps the point itself—which has identically-coloured
neighbouring points and which has explicitly been shown to locally satisfy the simulation
condition in this sense.) Thus, all black points are correct (that is, Gy, q (m,n) is black
whenever H, oy (m,n) is black), and all white points within the initial (NxN) square are
correct, proving that we have correctly constructed the initial (NXN) square.

3 Undecidability

A Minsky machine C' with two nonnegative counters cy, ¢, is a program

1:COMM;2:COMMs;...;n:COMM,

where COMM,, is a halt-command and COMM; (i = 1,2,...,n — 1) are commands of
the following two types (assuming 1 < k, k1, ko <n,1 < j < m)

(1) ¢j:==cj+1; gotok

(2) if ¢j =0 then goto ky else (c¢; :=c; — 1; goto k»)
The computation of the machine C' is deterministic.

Lemma 1 Ifp(m) and q(n) are states of one-counter machines with tests for zero My and
Mo, then the problem if p(m) < q(n) is undecidable.

Proof: It is useful to think about simulation in terms of a game. There are two players—
Player 1 and Player 2. Each player plays with one one-counter machine (Player 1 with
My, Player 2 with M,). Both players take turns selecting transitions of their machines.
Player 1 begins with selection of some transition with some label, Player 2 has to respond
with selection of some transition with the same label. If Player 2 has no such transition, he
loses. If he can always respond, he wins. Player 1 has a winning strategy iff p(0) £ ¢(0),
Player 2 has defending strategy otherwise.

We can show the undecidability by reduction of the halting problem for a Minsky machine
C with 2 counters (which is known to be undecidable) to the problem if p(m) < ¢(n).
We shall construct two one-counter machines M; and M, corresponding to C', such that
p(0) A ¢(0) iff the computation C halts (p(0) and ¢(0) are start states of M; and Ms).
There is even possible to construct M; and M, such that M; or M, has fixed structure
independent on C.

The main idea is same in both cases. Labels of actions of both machines correspond to
different kinds of actions of C' (increment the value of the counter, decrement it, if it is
positive, or ignore it, if it is zero). There are different labels for actions on different counters
of C' and there is also a special label for the halt-command. Both machines simulate the
computation of C' (M; actions on the counter ¢;, and M, actions on the counter cy).
Player 1 can choose, what action shall be performed next (but he can always choose only
actions which are possible in C' wrt the value of ¢1), but if he chooses an action violating
the simulation of C' (wrt the value of ¢;), Player 2 performs the transition to a special
control state, where transitions with any label are possible and M, stays there forever.
The only way, how Player 1 can win, is to correctly simulate actions of C' and to reach the
state corresponding to the halt-command of C, where no transitions are possible in Mo,
but some transition is possible in M;, and then perform a transition, which Player 2 can
not respond to.

Let us first discuss the case where M, has fixed structure. My has only two control states
one corresponding to the correct simulation of C' and one used when Player 1 violates sim-
ulation. The control states of M; correspond to the commands of C'. There is always only
one transition possible in all such states, with the only exception of a state corresponding
to the decrementation of ¢y, where next action depends on the value of ¢y (if it is zero
or not). This is the only place, where Player 1 can violate the simulation. In the state

corresponding to the halt instruction Player 1 can perform the halt-action, which Player 2
can not respond to.

Now let us discuss the case where M; has fixed structure. M; has only one state and control
states of M, correspond to the commands of C'. Player 1 can choose whatever transition
he wants (but can not decrement cy, if it is zero), but M, has information what action is
actually possible, so incorrect moves of Player 1 are punished by the same way as described
above. When Player 1 chooses the halt-action, Player 2 can react (go to the special state,
where transitions with all labels are possible) in all states with the only exception of the
state corresponding to the halt-instruction, where no transitions are possible.

Lemma 2 If p(m) and q(n) are states of non-deterministic one-counter machines with
tests for zero My and Ms, then the problem if p(m) = q(n) is undecidable.

Proof: We can reduce the problem if one machine is simulated by another (which was
shown to be undecidable) to the problem if there is a simulation equivalence between two
non-deterministic machines.

Let us have two machines M; and M,. We can restrict to a special case where both M,
and M, have only one possible transition in their start states and both these transitions
have the same label. There should not exist any transition to these start states. We can
always convert any two machines to this form by adding new start states and transitions.

Now we can construct new non-deterministic machine N, such that M; is simulated by
M, iff there is simulation equivalence of M, and N. (We mean the relations of their start
states here of course.)

N is constructed as the union of M; and M; (the union of their control states and transitions
with an exception of their start states) with the new common start state and corresponding
transitions added. N can non-deterministically choose at the start state if it will act as
M or M, after the first transition.

It is obvious that M, is simulated by N, because M, is part part of N’s structure. N is
simulated by M, iff M, is simulated by M,, because if N chooses that it will act as Mo,
then M, can performs exactly the same transitions as N, but if N chooses that it will act
as M, then M, has to be able to simulate M;.

References

[1] Abdulla, P., K. Cerans (1998). Simulation is decidable for one-counter nets (Ex-
tended Abstract.) In Proceedings of CONCUR’98, Lecture Notes in Computer Sci-
ence 1466:253-268.

[2] Burkart, O., J. Esparza (1997). More infinite results. Proceedings of Infinity’97. Elec-
tronic Notes in Theoretical Computer Science 5.

[3] Jancar, P. (1997). Decidability of bisimilarity for one-counter processes. In Proceedings
of ICALP’97, Lecture Notes in Computer Science 1256:549-559. (Revised version to
appear in The Journal of Information and Computation.)

[4] Moller, F. (1996). Infinite results. Proceedings of CONCUR’96, Lecture Notes in Com-
puter Science 1119:195-216.

[6] P. Jancar, Undecidability of bisimilarity for Petri nets and some related problems,
Theoretical Computer Science 148 (1995) 281-301

[6] P. Jancar, Nonprimitive recursive complexity and undecidability for Petri net equiv-
alences (1998)

[7] M. Minsky, Computation: Finite and Infinite Machines (Prentice-Hall, Englewood
Cliffs, NJ, 1967)

Appendix

Proof of the Belt Theorem

By an area we mean a set A C NxN. We define its tntertor and border as follows.

interior(4) = {(m,n) : {m—1,m,m+1}x{n—1,n,n+1} C A };
border(4) = A — interior(A).

Given an area A and a vector v € ZxZ (where Z denotes the set of integers), we shall let
shift(A4,v) = (A+v) N (NxN) denote the area A shifted by vector v. We say that the shift
of an area A by a vector v is safe wrt B C shift(A,v) iff for all graphs Gy) and all ueB
we have that Gy, q) (u) is black whenever Gy, 4 (u—v) is black. We say that such a shift is
safe iff it is safe wrt shift(A, v), that is, if it never shifts a black point to a white point.
We shall use the following fact, as well as its corollary which gives a sufficient condition
for when a shift is safe.

Fact 3 Let A be an area and V a set of vectors which satisfy the following:

if we have some u € A and v € V with u+v € border(shift(A,v))
such that Gy gy (u) = black and Gy, gy (u+v) = white for some graph Gy g,

then we also have someu' € A andv' € V with v'+v' = u+v € interior(shift(A4,v'))
such that Gy g (u') = black.

Then the shift of A by any vector v € V is safe.
Proof: It suffices to demonstrate that the following relation is a simulation.
§ = 2U{lm+i), a(n+9) : (mn) € 4, (i,5) € V, meti,n+j € N, p(m) < g(n)}

To do this, we need to verify the simulation condition for each pair of §. This is immediate
for pairs in <, so consider the pair (p(m+i),q(n+j)) ¢ =< (that is, G, g (m+i,n+j) =
white) where (m,n) € A, (i,j) € V, m+i,n+j € N and p(m) < ¢g(n). By the premise
in the Lemma, we can assume that (m+i,n+j) € interior(shift(A, (i,j))), and hence
(m,n) € interior(A), so m, m+i,n,n+j > 0.

I plm+i) - /(' +), then plm) % p(m'), 50 q(n) ¢(a') with () < (a'), s
qg(n+j) = ¢'(n'+j), and (as (m/,n') € A and m'+i,n'+j € N) (p'(m'+i),¢ (' +5)) € S.
(|

Corollary 4 The shift of A by v is safe if it is safe wrt border(shift(A4,v)).

By a line ¢ we mean a line with a finite rational slope S > 0; however, we shall occasionally
refer explicitly to horizontal or vertical lines. We shall also view a line as a function, writing
£(y) to represent the value x such that the point (x,y) is on the line. We shall often refer
to areas determined by a horizontal line at level b € N and one or two lines. For this, we
shall use the following notation: A[b, 7, <€_'] denotes the set of all points of Nx N which lie
on or above level b, on or to the right of £, and on or to the left of . We shall omit b
when b = 0. Finally, by a belt we mean the set of points on or between two parallel lines;
here we also allow horizontal and vertical lines. Thus we may have a horizontal belt, or a
vertical belt, or a belt of the form A[?, <€_’] where ¢ and ¢’ are parallel lines with ¢ to the
right of ¢.

We can partition the frontiers according to whether or not they lie in a horizontal or a
vertical belt. To this end we make the following definitions.

(i) HF is the set of frontiers f such that f(n) = oo for some n € N. We let hb € N (the
“horizontal bound”) be the least value such that f(hb) = oo for all f € HF. The
frontiers of HF are those which lie in a horizontal belt.

(ii) VF is the set of frontiers f such that lim,_,, f(n) < co. We let vb € N (the “vertical

bound”) be the least value such that f(n) < vb for all f € VF and all n € N. The
frontiers of VF are those which lie in a vertical belt.

(iii) IF is the set of interior frontiers, those not appearing in HF nor in VF.

We shall now formalize the notion of a line separating frontiers. For this, we need the
following notions. We shall refer to a (horizontal) shift of a line £ by an amount i € Z by
lineshift(¢, ¢); this is the line ¢’ such that ¢'(y) = ¢(y) +i. Given >0, we let step(f8) € N
be the least integral horizontal distance which two lines with slope § must be separated
so as to fit a unit square between them; this ensures that, given two such lines ¢/ and
¢ = shift(¢, step(3)) we have A[?] N interior(NxN) C interior(A[?’]). Note that
step(a)<step() whenever a>p.

Definition 1 A line ¢ with rational slope 3 > 0 separates frontiers above level b € N

(i) for all f € HF, f(b) = oco; that is, b > hb;

)
(ii) for all f, if f(b)=—1 then f(n)=—1 for alln;
(iii) for all f € IF, f(b) > vb;
(iv) forall f, if f(b) < ¥€(b) then f(n) < {(n)—step(B) for alln>b
(in which case we call f an (-left frontier);

(v) forall f, if f(b) > £(b) then f(n)> {(n)+step(B) foralln>b
(in which case we call f an ¢-right frontier).

Thus the ¢-left and £-right frontiers are separated by a belt with (horizontal) width 2- step(p)
centered on the line £. We say simply that a line separates frontiers if it separates
frontiers above some level.

The next Lemma shows that there always exists such a separating line.

Lemma 5 There is a line ¢ (with rational slope 3>0) which separates frontiers, in which
the (-right frontiers are exactly those of HF.

Proof: If IF = () then we can take £ to be any line, e.g., with slope 1/2. Thus assume
that IF # (). Define maxjump(n) = max{f(n+1) — f(n) : f € IF}, and let b be chosen so
that the first three clauses of Definition 1 are satisfied and so that maxjump(b) > 0.

Let A = A[b+1, 7] where ¢ is the vertical line defined by £(y) = vb+ maxjump(b) and
let v = (— maxjump(b), —1). Then the shift of A by v wrt border(shift(4,v)) is safe:
it is certainly safe for the graphs Gy, g of the frontiers fy, ,y € HF (the relevant points are
all black), and for the graphs Gy, of the frontiers f, ;y € VF (the relevant points are all
white); and for the graphs Gy, 4 of the frontiers fy, , € IF, the vertical border points are
all black, so we could only shift a black point to a white point on the bottom, which would
suggest a (contradictory) jump in the frontier greater than maxjump(b).

Thus by Corollary 4 the shift of A by v is safe, and we can then readily extract a separating
line with slope 8 = 1/ maxjump(b), since for any u € A, if G, q (u) = white then

white = Gpq) (u—v) = Gip,g) (u—2v) = Gip,g) (u—3v) = ---

since each point (u — i-v) is in A. For example, we can take a line with slope S which
goes through the rightmost frontier point of IF on level b+1 and shift this by an amount
step(5)+1. O

We now prove our Belt Theorem; along the way we shall state and use two technical
lemmas, the proofs of which we shall defer until the end.

10

Proof of The Belt Theorem: Suppose we have a line ¢ with rational slope S which
separates frontiers above level b in such a way that ¢-right frontiers lie in belts and their
number cannot be increased by choosing a different /. That such a separating line exists
is ensured by Lemma 5.

Let £ be the set of £-left frontiers, and suppose for the sake of contradiction that L—VF # ()
(otherwise we have nothing to prove).

For any n>b, let gap; (n) be the (horizontal) distance from £ to the rightmost ¢-left frontier
point on level n; that is, gap;(n) = min{¢(n)—f(n) : f€L}. Note that, since f is rational,
the fractional part of gap;(n) ranges over a finite set. Hence we cannot have an infinite
sequence of levels i1, 19,13,... above b such that gap;(i;)> gapi(i2)> gapq(iz)>---. We
can thus take an infinite sequence i1 <iy<i3< - - - of levels above b such that

1. gap1(i) < gapi(n) for all i€ {iy,is,13,...} and all n>i;

2. either gap (i) = gapi(iz) = gap:(i3) = - - -
or gapi(i1) < gapi(i2) < gapi(i3) < -

3. for some fixed (-left frontier fra, € L: gap1(i) = £(i)— fmax(i) for all i €
{i1,d2,13,...}.

The above conditions can be satisfied by starting with the infinite sequence b+1, b+2, b+3, . ..
and first extracting an infinite subsequence which satisfies the first condition, then extract-
ing from this a further infinite subsequence which satisfies (also) the second condition, and
then extracting from this a further infinite subsequence which satisfies (also) the third
condition.

For i € {iy,1s,13,...}, we let offset; : L — N be defined by offset;(f) = fuax(i)—f(7)-
We can then assume that our infinite sequence further satisfies the following condition.

4. For each f € L: either offset;, (f) = offset;,(f) = offset;,(f) =---
or offset; (f) < offset;,(f) < offset;,(f) < ---

In the first case, we call f a fixed-offset frontier; and in the second case, we call
f an increasing-offset frontier.

This condition can be satisfied by repeatedly extracting an infinite subsequence to satisfy
the condition for each feL in turn. Finally, we assume our sequence satisfies the following

condition.

5. We have a maximal number of fixed-offset frontiers; no other sequence satisfying
conditions 1-4 can have more ¢-left frontiers f € £ with offset;, (f) = offset,,(f) =
For technical reasons, we also suppose the next two conditions which can be satisfied by

dropping some number of initial levels (that is, sequence elements).

11

6. gapa(i1) > |L| step(f), where gap(i;) is defined as

min{offset;, (f) : f is an increasing-offset frontier}
— max{offset;, (f) : f is a fixed-offset frontier}

7. fmax(il) < fma.X(ZZ)

The line going through the points u; = (fmax(i1),71) and us = (fmax(i2),72) has some
slope a>p. If we let left-of(uy) denote the set of points consisting of us along with all
points to its left (that is, all (m,is) with m < fiax(i2)) then the shift of left-of(us) by
v = uj—uy is safe: for the shift of the point onto the y-axis, this is assured by condition (ii)
of Definition 1; and for the remaining points, this is assured since frontier offsets cannot
shrink (condition 4 above). We can thus invoke the following.

G{ight Lemma Consider a line £ with slope (3
which separates frontiers above level b, and take
two <p_oints up = (my,11) and ug = (ma,iz) in
Alb, £] with m1 < mg and b < iy < io such that
the slope a of the vector v = ui—us is at least
B. Let £y be the line parallel to £ which goes
through us, and suppose that all C-left frontier 2
points in Alig] are in A[E], and that the shift of
left-of(us) by v is safe.

11

Then there is a line ¢ with slope o which

separates the same frontiers as £ does above level b

Right Lemma thus gives us a line /% with slope a separating the same frontiers as £ above

12.

Now, there must then be a line ¢y with slope a to the left of £ above level ; such that every
fixed-offset frontier appears in (that is, intersects with) A = Ali, ng, 7], and such that
whenever a frontier f appears in A there is a frontier point uy = (f(n),n) € interior(A)
such that f(n)—£o(n) > f(i1)—Lo(i1); that is, us is at least as far to the right of ¢, as the
frontier point of f on level i;. (We can first consider ¢y to be the line going through the
frontier points at levels 7; and iy of the fixed-offset frontier with the greatest offset value;
if some frontier f is on the border but not in the interior of A, then we can instead take
£y to be the shift of this line by — step(«). If there is now some other frontier which is
on the border but not in the interior of A, then we again shift the line by — step(a). We
need only shift (at most) once for each frontier in £ before being guaranteed to arrive at
a suitable choice for £y, so we shift by at most |L|-step(a) < |L|-step(S), and hence by
condition 5 we don’t reach the increasing-offset frontiers on level 7;.) We may then invoke
the following.

12

Geft Lemma Suppose we have a line £ \
with rational slope B which separates frontiers
above level 11, and a line £y with rational slope
a>f which is to the left of £ above level ;.
Suppose further that whenever a frontier f
appears in A = A[il,%, 7], there is a frontier
point uy = (f(n),n) € interior(A) such that
f(n)—to(n) > f(i1)—Lo(ir).

Then there is a line ¢¥ to the left of £y with slope
\a such that f C A[¢”] for each such frontier f.

The premise of Left Lemma is thus satisfied, so all frontiers with frontier points in A are

in A[¢"] for some line ¢~ with slope o. Hence they are in the belt A[¢”, /%] above z_2>, ?ild
in fact only the fixed-offset frontiers can (and do) have frontier points in A = Aliy, £y, ¢ |,
for otherwise they would not correspond to increasing-offset frontiers.

It remains to demonstrate that we can choose ¢* so that it separates frontiers. This

can only fail if an increasing-offset frontier appears infinitely often in A[#'] where ¢' =
shift (¢, —2- step(«)). But then there would be two levels i;, and 7, where fiax(ij,)—£5(i;,) =
Jmax(ij,)—E(i;,) = d and gapa(i;,) > d+|L|- step(). W((%_could then find a contradiction

using Left Lemma, by considering now the area A[i;,, £~, ¢%]. O

13

Groof of Right Lemma: [t sufﬁ(ges to \
show that the shift of A = Alis, £5] by
v is safe, where ¢, = shift(/,,step(p)),

for then we get that for any v € A, if ! &
Gyp.g (1) = white then / / ,
white = Gy) (u — v) i U ¢
= G(pq) (u — 2v) - v

1 @
1 1

= G(p,q) (u — 3v)

since each point (u —4-v) is in A, from which ~ ©
the result readily follows.

To show that the shift of A by v is safe, by Corollary 4 we need only check that the
shift of A by v wrt border(shift(4,v)) is safe.

e The safety of the shift to the y-axis border points is assured since if
Gp,g)(0,7) = white for j > b, then by the second clause of Definition 1,
Gp,g) (4,) = white for all 4,5 € N.

e The safety of the shift of left-of(us) is assumed in the premise of the Lemma.

e The safety of the remaining border points is assured, as the only black points
which are shifted to these border points appear in the graphs of ¢-right fron-
tiers; and by the final clause of Definition 1, the border points in this case

\ must all be black. D/

14

/ Proof of Left Lemma: Let h>i; be a level such that the occurrences of t@
frontier points uy appearing in A as described in the Lemma appear below level A.

Take d € N so that shifting A to the left by d units moves the portion of A below
level h to the left of the y-axis. Then let V be the set of vectors describing shifts to
the left by a (rational) amount d’ > d followed by a (possibly null) shift upwards
at an angle of a.

TN A

% 'u,fl

Suppose u € A and v € V with u+v € border(shift(A,v)) such that for some
graph G, gy, Gip,q) (u) = black and Gyp gy (u+v) = white. Then u+v must be above
level h in interior(NxN), f, » must appear in A, and u must be on the bottom- or
fo-border of A. Let uy, . be the black point in interior(A) given in the statement
of the Lemma. As uy_ ., must be at least as far to the right of £y as u is, the vector
v' =wv+ (u—uy,) is readily seen to be in V.

The premise of Fact 3 is thus satisfied, so the shift of A by any vector v € V is
safe. The existence of the proposed line ¢X then follows immediately (in fact, we
can take (L = shift(/y, —d)). O

N /

15

