P-hardness of Equivalence Testing on
Finite-State Processes*

Zdenék Sawa and Petr Janéar

Department of Computer Science, Technical University of Ostrava (FEI VSB)
17. listopadu 15, CZ-708 33 Ostrava, Czech Republic

zdenek.sawaQvsb.cz, petr. jancar@vsb.cz

Abstract. The paper shows a simple LOGSPACE-reduction from the
boolean circuit value problem which demonstrates that, on finite labelled
transition systems, deciding an arbitrary relation which subsumes bisim-
ulation equivalence and is subsumed by trace preorder is a polynomial-
time-hard problem (and thus can not be expected to be efficiently par-
allelizable). By this, the result of Balcdzar, Gabarré and Santha (1992)
for bisimilarity is substantially extended.

1 Introduction

It is not necessary to emphasize the importance of theoretical foundations for
design, analysis and verification of (complex) systems, especially concurrent sys-
tems, which are composed from communicating components running in parallel.
One particular research area studies computational complexity of various verifi-
cation problems for finite state systems.

A general model of such systems is given by so called labelled transition sys-
tems (LTSs for short), which capture the notion of (global) states and their
changes by performing transitions — which are labelled by actions (or action
names). Since here we deal only with finite LTSs, they can be viewed as classical
nondeterministic finite automata.

We consider the verification problem of testing behavioural equivalences on fi-
nite LTSs. Let us recall that classical language equivalence turned out to be
mostly too coarse, and it was bisimilarity which was established as the most ap-
propriate notion of general behavioural equivalence (cf. [6]). Nevertheless, other
notions of equivalences (or preorders) turned out to be useful for more specific
aims. Van Glabbeek [9] classified these equivalences in a hierarchy called lin-
ear time/branching time spectrum. The diagram in Fig. 1 shows most prominent
members of the hierarchy and their interrelations (the arrow from R to S means
that equivalence R is finer than equivalence S). As depicted, bisimilarity (i.e.,
bisimulation equivalence) is the finest in the spectrum; the coarsest is trace equiv-
alence, which is the classical language equivalence when we assume all states as

* Supported by the Grant Agency of the Czech Republic, Grant No. 201/00/0400

2 Zdenék Sawa and Petr Jancéar

Bisimulation equivalence

2-nested simulation equivalence

Ready simulation equivalence

Possible-futures equivalence Ready trace equivalence

4

Readiness equivalence Failure trace equivalence

N

Failures equivalence

Simulation equivalence

/

N

Completed trace equivalence

Trace equivalence

Fig. 1. The linear time/branching time spectrum

accepting (i.e., we are interested in the set of all sequences of actions which are
performable).

For the aims of automated verification, a natural research task is to establish
the complexity of the problem

INSTANCE: A finite labelled transition system and two of its states, p and q.
QUESTION: Are p and ¢q equivalent with respect to X ?

for each equivalence X in the spectrum. From language theory results we can eas-
ily derive PSPACE-completeness of trace equivalence. On the other hand, there
is a polynomial time algorithm for bisimilarity [7, 4]. The paper [3] is a (prelimi-
nary) survey of all results in this area. Loosely speaking, ‘trace-like’ equivalences
(on the bottom part of the spectrum) turn out to be PSPACE-complete, the
‘simulation-like’ equivalences (on the top of spectrum) are in PTIME. Balcézar,
Gabarr6 and Santha [1] have considered the question of an efficient paralleliza-
tion of the algorithm for bisimilarity, and they have shown that the problem
is P-complete (i.e., all polynomial-time problems are reducible to this problem
by a LOGSPACE-reduction). This shows that the bisimilarity problem seems to
be ‘inherently sequential’; we can not get a real gain by parallelization, unless
NC = PTIME, which is considered to be very unlikely (cf. e.g. [2]).

Paper [1] shows a (LOGSPACE) reduction from (a special version of) the boolean
circuit value problem which is well-known to be P-complete. The reduction is

P-hardness of Equivalence Testing on Finite-State Processes 3

aiming just at bisimilarity; in particular, it does not show P-hardness of other
‘simulation-like’ equivalences (which are known to be in PTIME as well).

In this paper, we show another reduction from (a less constrained version of)
circuit value problem which we find simple and elegant, and which immediately
shows that deciding an arbitrary relation which subsumes bisimulation equiva-
lence and is subsumed by trace equivalence (more generally, by trace preorder)
is P-hard. By this, the result of [1] is substantially extended; though it brings
nothing new for the (‘trace-like’) equivalences for which PSPACE-hardness has
been established, it surely is relevant for ‘simulation-like’ equivalences (those
between bisimulation and simulation equivalences in the spectrum).

Section 2 gives necessary definitions and formulates the main result, and Sec-
tion 3 contains the technical proof. We then add remarks on a possibility to ‘lift’
the result to settle a conjecture in [8].

2 Definitions

A labelled transition system (an LT-system for short) is a tuple (S, Act,—)
where S is a set of states, Act is a set of actions (or labels), and —C S x Actx S
is a transition relation. We write p —— ¢ instead of (p,a,q) €—s; we also use
p —= q for finite sequences of actions (w € Act*) with the natural meaning. In
this paper, we only consider finite LT-systems, where both the sets S and Act
are finite.

We need precise definitions of trace and bisimulation equivalences on states in
LT-systems. Let us remark that it is sufficient for us only to relate states of
the same LT-system; this could be naturally extended for states of different
LT-systems (we can take disjoint union of these).

For a state p of an LT-system (S, Act,—), we define the set of its traces as
tr(p) = {w € Act* | p = ¢ for some q € S }. States p and ¢ are trace equivalent,
iff tr(p) = tr(q); they are in trace preorder iff tr(p) C tr(q).

A binary relation R C S x S on the state set of an LT-system (S, Act,—) is
a simulation iff for each (p,q) € R and each p - p' there is some ¢ — ¢'
such that (p',q') € R. R is a bisimulation iff both R and its inverse R~! are
simulations. States p, q are bisimulation equivalent (or bisimilar), written p ~ ¢,
iff (p,q) € R for some bisimulation R.

We recall that a problem P is P-hard if any problem in PTIME can be reduced
to P by a LOGSPACE reduction; recall that a Turing machine performing such
a reduction uses work space of size at most O(logn), where n denotes the size
of the input on a read-only input tape (the output is written on a write-only
output tape and its size may be polynomial). A problem P is P-complete if P
is P-hard and P € PTIME.

4 Zdenék Sawa and Petr Jancéar

Remark. We recall that if a problem P is P-hard then it is unlikely that there
exists an efficient parallel algorithm deciding P. ‘Efficient’ here means working
in polylogarithmic time, i.e., with the time complexity in O(log" n) for some
constant k, while the number of the processors used is bounded by a polynomial
in the size n of the input instance. (See e.g. [2] for further details.)

We say that a relation X (relating states in transition systems) is between bisim-
ilarity and trace preorder iff p ~ ¢ implies pXq and pXq implies tr(p) C tr(q).
And we formulate the main result of our paper:

Theorem 1. For any relation X between bisimilarity and trace preorder, the
following problem is P-hard:

INSTANCE: A finite labelled transition system and two of its states, p and q.
QUESTION: Is pXq ¢

We shall prove this in the next section by a LOGSPACE reduction from the
problem of monotone boolean circuit value, mCVP for short.

To define mCVP we need some definitions. Monotone boolean circuit is a di-
rected, acyclic graph, in which the nodes (also called gates) are either of inde-
gree zero (input gates) or of indegree 2 (non-input gates). There is exactly one
node of outdegree zero (the output gate). Non-input gates are labelled by one of
{A,V} (notice that in monotone circuit no —-gates are used). Input of the cir-
cugt is an assignment of boolean values (i.e., values from the set {0,1}) to input
gates. A value on a non-input gate labelled with A (resp. V) is computed as the
conjunction (resp. disjunction) of values on its ancestors. The output value of
the circuit is the value on the output gate.

The mCVP problem is defined as follows:

INSTANCE: A monotone boolean circuit with its input.
QUESTION: Is the output value 1 ?

The problem is well-known to be P-complete (cf. e.g. [2]). We also recall that if
P, is P-hard and P; is LOGSPACE reducible to P, then P, is P-hard as well.

In the next section we show how, given an instance of mCVP, to construct (in
LOGSPACE) a transition system with two designated states p,q so that if the
output value of the circuit is 1 then p ~ ¢, and if the output value is 0 then
tr(p) € tr(q). So for any relation X between bisimilarity and trace preorder,
pXq iff the output value is 1. This immediately implies the theorem.

3 The Reduction

Let us have an instance of mCVP where the set of gates is V = {1,2,...,n}.
For every non-input gate i, we define (i), (i) (left and right ancestor of 7) to be
the gates, such that there are edges from [(7) and r(7) to i (and I(¢) # 7(¢)). For

P-hardness of Equivalence Testing on Finite-State Processes 5

technical reasons we assume the gates are topologically ordered, i.e., for every
non-input gate ¢ we have i > I(i) > r(i), and n is the output gate (mCVP is still
P-complete under this assumption). We define a function ¢ : V. — {0,1, A, V},
where t(7) denotes the ‘type’ of gate i:

0 if 7 is an input gate with value 0
1 if ¢ is an input gate with value 1
A if 4 is a non-input gate labelled with A
V if 4 is a non-input gate labelled with V

#(i) =

Let v; € {0,1} denote the actual value on gate i, i.e., if ¢ is an input gate then
v; = t(i), and if 7 is a non-input gate, then v; is computed from v;(;), v,(;) using
operation indicated by ().

We assume, that an input instance of mCVP consists of n and of values I(3), r(4)

and t(3) for every 1 < i < n (in fact, it suffices that these values can be computed
from the input instance in LOGSPACE).

Given an instance of mCVP, we construct LT-system A = (S, Act,—), where
Act={0,1} and S is a union of the following sets:

—{qg |1<j<i<n},
~{@*|1<k<j<i<n}

We organize states in S into levels. Level i (where 0 <4 < n) contains all states

with the same lower index 4, i.e., {p;} U {qf |1<j<itu {q{’k |1<k<j<i}
as depicted in Fig. 2 (already with some transitions).

| ol
level 3 (gps @ @ 3! <£q§ Can 37?

0,1 0,1 0,1 0,1

level 2 D2 5 @ %!
0,1 0,1

level 1 p1 a
0,1

level 0 O po

Fig. 2. The states of A organized into levels

Informally speaking, the intended purpose of states qg is to ‘test’ whether v; = 1.
State ¢/ is viewed as ‘successful’ if indeed v; = 1 and is ‘unsuccessful’ if v; = 0.

Similarly, state qi"k is ‘successful’ if v; = 1 and v; = 1, and ‘unsuccessful’
otherwise.

6 Zdenék Sawa and Petr Jancéar

The way we construct transition relation — will guarantee, that each successful
state ¢ on level i (i.e., of the form ¢} or ¢ **) is bisimilar with p;, and if ¢ (on level
i) is unsuccessful, then ¢r(p;) Z tr(q). So p, and ¢ are two distinguished states
announced in the previous section, with the required property, that if v, = 1,
then p, ~ ¢7, and otherwise tr(p,) € tr(q?).

Transition relation — will contain only transitions going from states on level ¢
to states on level ¢ — 1. We will construct transitions level by level, starting with
transitions going from (states on) level 1 to level 0, then from level 2 to level 1
and so on. The actual transitions going from level i to level 4 — 1 will depend
on t(%), I(i) and 7(7), so in this sense level i corresponds to gate 4. It is worth
to emphasize here, that the added transitions does not depend on information,
whether a state is successful or not.

Now we describe in detail the construction of transitions leading from states on
level i to states on level ¢ — 1.

Firstly, the following transitions are always possible from states on level i (see
Fig.2):

0,1
pi — Pi-1,
q LN a_; for any j, such that 1 < j <1,
qf’k% qf"_’ﬂ for any j, k, such that 1 < k < j <.
(We write ¢ RN ¢ instead of ¢ - ¢’ and ¢ —» ¢ .) Depending on (i), some
other transitions going from states on level ¢ may be added.

To simplify the notation, we need some further definitions. Let (); be the set of
all states of the form ¢! or qf’k on level 4, ie., Q; = {¢/ |1 <j <i}U {qf’k |
1 <k < j <i}, and let Suce; be the set of all successful states in Q;, i.e.,
Suce; = {q} € Qi |v; =1} U{¢"" € Q; | v; =1 and vj, = 1}.

We use w; to denote the sequence of actions that correspond to actual values on
gates 4,1 —1,...,1,i.e., wy = vy and w; = v;w;_q for ¢ > 1.

We will construct A in such a way, that each level ¢ will satisfy the following
condition:

For each ¢ € Q;: if ¢ € Succ;, then p; ~ ¢, otherwise w; ¢ tr(q). (1)

Notice, that w; & tr(q) implies tr(p;) € tr(q), because tr(p;) contains all possible
traces of length i over Act, so in particular w; € tr(p;).

Now we describe the remaining transitions together with a proof that each level
satisfies the condition (1). We proceed by induction on i.

Remark. To show for some g € @Q; \ Suce;, that w; & tr(q), it suffices to show
for every ¢', such that there is a transition ¢ —= ¢', that w;_; ¢ tr(¢'), i.e., to
show that ¢' ¢ Succ;—1 (because ¢' & Succ;—1 implies w;—; ¢ tr(q') by induction
hypothesis).

P-hardness of Equivalence Testing on Finite-State Processes 7

Base of induction (2 = 1): Because the circuit is topologically ordered, gate 1
must be an input gate, so #(1) is either 0 or 1. If ¢(1) = 0, we do not add any
transitions (see Fig.3). Because (1) = 0 implies v; = 0, we have ¢f ¢ Succ;.

D1 (I% D1 (I%
O
Ift(1) =0: 0.1 Ife(l) =1: 01 0,1
DPo Po

Fig. 3. The construction for ¢ =1

Obviously wy ¢ tr(q}), so the condition (1) holds.

If t(i) = 1, we add transitions ¢} RN po (see Fig.3). From ¢(1) = 1 follows
ql € Succ;, and p; ~ ¢} is obvious, so again the condition (1) holds.

Inductive step (¢ > 1):

e If ¢() = 0: We do not add any transitions. We first consider qf where 1 > j (see
Fig. 4).

) J Jsk
Pi q@ q,
0,1 0,1 0,1
) J g,k
Pi—1 91 qi—1

Fig. 4. The transitions added if 7 > j and t(3) € {0,1, A}

It is clear, that qf € Succ; iff qf_l € Succi_1, SO qf satisfies the condition (1), as
can be easily checked (by induction hypothesis q{_l € Succ;_; implies p; ~ q{_l,
and qf_l & Succ;—1 implies w;_1 ¢ tr(q{_l)). The proof for qi"k, where i > j, is
similar. ' ‘ .

Now, let ¢ be ¢/ or qi’k, where i = j, i.e., one of q:f,q;’k. From t(7) = 0 we have
v; = 0, and this implies q & Succ;. Obviously w; ¢ tr(q), because no transitions
are possible from gq.

o Ift(i) =1: If gis qf or qf’k, where 7 > j, the situation is exactly the same as in
the previous case (see Fig.4). So let ¢ be ¢! or q:."k. We add transitions from gq
as depicted in Fig. 5.
If g is g}, then surely g € Succ; (because v; = 1), and obviously p; ~ g.

8 Zdenék Sawa and Petr Jancéar

Pi q a;
01 0,1
' 0,1
&
Pi—1 qi—1

Fig. 5. The transitions added if ¢ = j and t(7) = 1

If g is qf’k, we can imagine this as the situation when it was tested that v; =1
and it is continued with testing that vy = 1. Because v; = 1, we have qz’k € Succ;

iff ¢¥ | € Succi_1, so the condition (1) is satisfied in q:-"k, as can be easily
checked.

o If t(i) = A: Ifqis qzj or q{’k, where 4 > j, the situation is the same as in two
previous cases (see Fig.4). So let g be ¢! or qz’k We add transitions from ¢ as
depicted in Fig. 6.

pi g a;

0,1

1
pi—1 FARMAR ar

Fig. 6. The transitions added if ¢ = j and t(¢) =

If ¢ € Succ;, then v; = 1. Because t(i) = A, v; = 1 implies v;y = 1 and v,(;) = 1,

SO qi(z) ™ ¢ Suce;_i. From this pi_; ~ ql(’) 0 by

l(z) r(i) (

induction hypothesis, so

i N p;i—1 can be matched by ¢ N q;- and vice versa). Other transitions

can be matched also (g;’ * e Suce 1mp11e§ qF_, € Succi—1), so we have p; ~ q.
Now consider the case ¢ ¢ Succ;. If ¢ is g}, then v; = 0, and this implies v;;) =0
or vp(;) =0, s0 ql(z) ") & Suce;_y, and from this we have w; & tr(q!), because

PN qzm ()

is the only transition labelled with 0 possible in gf.

Ifgis qz. , then either v; = 0 or v; = 1. The case v; = 0 is similar as if ¢ is qf, SO
let us have v; = 1. Then v, = 0, and ¢F ;| & Succ;_1, from which w; ¢ tr(q:-"k)
follows.

l(z)

e If t(i) = V: For every q G Q: we add transitions g — g;-1 and ¢ SN q] @ We

also add transitions p; N qz()1 and p; — qr(')

Let q be qi where > j asin Fig. 7. (The case when ¢ is qi"k, where ¢ > j, is
almost identical.) If ¢} € Succ;, then g]_; € Succ;_1, so by induction hypothesis
Pi_1 ~ qf 1- From this p; ~ qzj easily follows because every possible transition

can be matched (for example p; —— qZ) by q 9, qi(’)l, etc.).

P-hardness of Equivalence Testing on Finite-State Processes 9

Di—1 41 41 qg—l

Fig. 7. The transitions added if ¢ > j and t(i) = V

If q{ ¢ Succ;, then q{_l & Succi_1,80 w1 & tr(q{_l). We need to consider two

cases, v; is either 1 or 0. If v; = 1, we have w; & tr(qg), because qg BN qf_l is the
only transition labelled with 1 possible from g¢. If v; = 0, then v;;) = v,; =0,
S0 qé(_')l, q:&) ¢ Succ;_1, and from this w; ¢ tr(g]) easily follows.

Let us now consider the case, where ¢ is ¢¢ or q;’k. We add transitions as

depicted in Fig. 8.

~O
= :
Pic1 7. ¢ @

Fig. 8. The transitions added if ¢ = j and ¢(i) = V

If ¢ € Succ;, then p; SN pi—1 can be matched by (at least) one of ¢ N qi(_i)l,

q N q:£i1)7 because from v; = 1 we have vy; = 1 or v,;y = 1. All other

transitions are matched as in previous cases, so p; ~ ¢.
Now suppose ¢ ¢ Succ;. If q is g}, then v; = 0, so v = vy = 0, and
qi(_’)l,qi(_z)l ¢ Succi—1. From this w; & tr(q!) easily follows. The case, when g
is qf’k, is similar if v; = 0. The only remaining possibility is that v; = 1 and
v = 0. Then ¢F | & Succ;_1, so obviously w; ¢ tr(q:."k).

To finish the proof of Theorem 1, it remains to show that the described reduction
is in LOGSPACE.

The algorithm performing the reduction requires only fixed number of variables,
such as 1, j, k, and values of £(i),1(3), r (i) for every i, that are part of the read-only
input instance of mCVP. In particular, to construct transitions leading from a
given state, only a fixed number of such values is needed. All such values can
be represented as numbers bounded by n, so O(logn) bits are sufficient to store
them. No other information is needed during the construction, so the algorithm
uses work space of size O(logn). This finishes the proof.

Remark. LT-system A contains O(n?) states and also O(n?) transitions (because
the number of possible transitions in every state is in O(1) and does not depend

10 Zdenék Sawa and Petr Jancéar

on n). Notice, that a state of the form qi"k is not reachable from p, nor g, if
there is no ¢’ € V, such that ¢(i") = A, I(i") = j and r(i") = k, as can be easily
proved by induction. There is at most O(n) pairs j, k, where such i’ exists, and
it is possible to test for given j,k the existence of i’ in LOGSPACE, so we can
add to A only those states qi’k, where such ¢’ exists. In this way we can reduce
the number of states of A to O(n?).

Additional Remarks

We have considered complexity as a function of the size of given labelled tran-
sition systems (which describe the state space explicitly). Rabinovich [8] con-
sidered the problem for concurrent systems of finite agents, measuring complex-
ity in the size of (descriptions of) such systems; the corresponding (implicitly
represented) state space is exponential in that size. He conjectured that all re-
lations between bisimilarity and trace equivalence are EXPTIME-hard in this
setting. Laroussinie and Schnoebelen [5] have confirmed the conjecture partially.
They showed EXPTIME-hardness for all relations between simulation preorder
and bisimilarity, and EXPSPACE-hardness on the ‘trace equivalence end’ of van
Glabbeek’s spectrum. We plan to explore the probable possibility that our con-
struction can be ‘lifted’ (i.e., programmed concisely by a concurrent system of
finite agents), which would settle Rabinovich’s conjecture completely.

Acknowledgement. We thank Philippe Schnoebelen for fruitful discussions.

References

[1] J. Balcizar, J. Gabarr6, and M. Sdntha. Deciding bisimilarity is P-complete. For-
mal Aspects of Computing, 4(6A):638-648, 1992.

[2] A. Gibbons and W. Rytter. Efficient Parallel Algorithms. Cambridge University
Press, 1988.

[3] H. Hiittel and S. Shukla. On the complexity of deciding behavioural
equivalences and preorders. Technical Report SUNYA-CS-96-03, State Uni-
versity of New York at Albany, Dec. 28, 1996. Also available at
http://www.cs.auc.dk/ hans/Publications/pubs.html.

[4] P. Kanellakis and S. Smolka. CCS expressions, finite state processes and three
problems of equivalence. Information and Computation, 86:43—68, 1990.

[6] F. Laroussinie and P. Schnoebelen. The state explosion problem from trace to
bisimulation equivalence. In Proc. FoSSaCS 2000, volume 1784 of Lecture Notes
in Computer Science, pages 192-207. Springer Verlag, 2000.

[6] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[7] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal on
Computing, 16:937-989, 1987.

[8] A.Rabinovich. Complexity of equivalence problems for concurrent systems of finite
agents. Information and Computation, 139(2):111-129, 1997.

[9] R. van Glabbeek. The linear time — branching time spectrum. In Proceedings
CONCUR’90, volume 458 of Lecture Notes in Computer Science, pages 278-297,
Amsterdam, 1990. Springer-Verlag.

