
INFINITY 2004 Preliminary Version

Bisimulation equivalence of a BPP and
a finite-state system can be decided in

polynomial time

Martin Kot 1, Zdeněk Sawa 2,3

Department of Computer Science, FEI, Technical University of Ostrava

17. listopadu 15, 70833 Ostrava-Poruba, Czech Republic

Abstract

In this paper we consider the problem of deciding bisimulation equivalence of a BPP
and a finite-state system. We show that the problem can be solved in polynomial
time and we present an algorithm deciding the problem in time O(n4). The algo-
rithm also constructs for each state of the finite-state system a ‘symbolic’ semilinear
representation of the set of all states of the BPP system which are bisimilar with
this state.

Key words: bisimulation equivalence, basic parallel processes,
finite-state processes

1 Introduction

Bisimulation equivalence also called bisimilarity is one of the most important
behavioral equivalences studied in the area of automatic verification. Basic
parallel processes (BPP) are one type of infinite state systems on which de-
ciding bisimilarity was studied. The problem of deciding bisimilarity on BPP
was shown to be decidable in [2], but no complexity bounds were presented
there. It was proven in [8] that the problem is PSPACE-hard and Jančar
has recently shown in [4] that the problem is in PSPACE, so the problem
is PSPACE-complete. Polynomial time algorithms are known for the case of
normed BPP [3,6].

In this paper we present an algorithm for the special case of the problem
where one of the (unnormed) processes is a finite-state process. The running
time of the algorithm is O(n4) where n is the size of the instance. The result

1 e-mail: martin.kot@vsb.cz
2 e-mail: zdenek.sawa@vsb.cz
3 Both authors supported by the Grant Agency of the Czech Republic, No. 201/03/1161

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Kot and Sawa

implies that it is possible to verify in polynomial time whether a system im-
plemented as a finite-state automaton is equivalent to a ‘specification’ given as
a BPP. The algorithm also generates for each state of the finite-state system
a ‘symbolic’ semilinear representation of bisimilar BPP states.

The paper is organized as follows: In Section 2 we provide some basic
definitions and formulate the main result of the paper. In Section 3 we describe
the main ideas of the algorithm and show its correctness. In Section 4 we
analyze the time complexity of the algorithm. Section 5 contains conclusion
and directions of the future work.

2 Basic Definitions

A labelled transition system (LTS) is a tuple (S,A,−→) where S is a (possibly
infinite) set of states, A is a finite set of actions, and −→⊆ S × A × S is a
transition relation. We write s

a
−→ s′ instead of (s, a, s′) ∈−→. We extend this

notation also to finite sequences of actions and for w ∈ A∗ we write s
w
−→ s′

if w = a1a2 . . . an and there are some states s0, s1, . . . , sn such that s = s0,
s′ = sn and si−1

ai−→ si for each 0 < i ≤ n.

A binary relationR on S (of an LTS) is a bisimulation iff for each (s1, s2) ∈
R the following conditions hold:

• if s1
a
−→ s′1 for some a ∈ A and s′1 ∈ S then there is s′2 ∈ S such that

s2
a
−→ s′2 and (s′1, s

′
2) ∈ R, and

• if s2
a
−→ s′2 for some a ∈ A and s′2 ∈ S then there is s′1 ∈ S such that

s1
a
−→ s′1 and (s′1, s

′
2) ∈ R.

Union of bisimulations is also a bisimulation and so there is the maximal
bisimulation (union of all bisimulations), called bisimulation equivalence or
bisimilarity and denoted by ∼.

A BPP system is traditionally defined as a context free grammar in a
Greibach normal form with a set of variables V = {X1, . . . , Xn}, a set of
terminals A and with rules of the form X

a
−→ Y1Y2 . . . Yk. For each sequence

α of variables we define m-set as the multiset of variables appearing in α

(Parikh image of α). The associated LTS has multisets of variables (ranged
over by M , M ′, . . .) as states, and M

a
−→M ′ iff there is a rule X

a
−→ α such

that X ∈M and M ′ = (M − {X}) ∪m-set(α).

Alternatively a BPP can be defined as a (special) labelled Petri net (BPP
Petri net)

Σ = (P,Tr,pre, F, λ)

where P is a finite set of places, Tr is a finite set of transitions, pre : Tr→ P is
a function assigning the (only) input place to every transition, F : (Tr×P)→
N is a function assigning the (multiset of) output places to each transition,
and λ : Tr → A is a labelling function. N denotes the set of nonnegative
integers. We denote the set of output places of t ∈ Tr by succ(t) = {p ∈ P |

2

Kot and Sawa

F (t, p) > 0}. For p ∈ P we define succ(p) = {t ∈ Tr | pre(t) = p}. We
also extend the notation pre(t) to set of transitions and for T ⊆ Tr define
pre(T) = {p | ∃t ∈ T : p = pre(t)}.

Let P = {p1, p2, . . . , pk} be the set of places. A marking is a function
M : P → N assigning number of tokens to each place. Marking M can be
viewed as a vector (x1, x2, . . . , xk) where xi ∈ N and xi = M(pi). We use M
to denote the set of all markings.

A transition t is enabled in M ∈ M iff M(pre(t)) > 0. A transition that
is not enabled is disabled. An enabled transition can be performed, written

M
t
−→M ′, where

M ′(p) =







M(p)− 1 + F (t, p) if p = pre(t)

M(p) + F (t, p) otherwise

A BPP produces an LTS (S,A,−→) where S = M and M
a
−→ M ′ iff

there is some t ∈ Tr such that M
t
−→M ′ and λ(t) = a.

A finite-state system (FS) is traditionally defined as an LTS (S,A,−→)
where S is finite, but for technical convenience we define it as a BPP where for
each t ∈ Tr there is exactly one p ∈ P such that F (t, p) = 1 and F (t, p′) = 0
if p′ 6= p. For p ∈ P we define a marking Mp such that Mp(p) = 1 and
Mp(p

′) = 0 for p′ 6= p. We call such marking an FS marking.

Given BPPs Σ1 = (P1,Tr1,pre1, F1, λ1) and Σ2 = (P2,Tr2,pre2, F2, λ2)
where P1, P2, Tr1, and Tr2 are disjoint, their disjoint union is a BPP Σ =
(P,Tr,pre, F, λ) where P = P1 ∪ P2, Tr = Tr1 ∪ Tr2, and pre, F , and λ are
defined in an obvious manner. Markings of Σ1 and Σ2 can be extended to
markings of Σ by setting all remaining elements to 0.

The problem bpp-bisim can be formulated as follows: Given two BPP
systems, Σ1 and Σ2, with distinguished markings M1 and M2 of Σ1 and Σ2, is
M1 ∼M2? (The relation ∼ is defined over the disjoint union of Σ1 and Σ2.)

In this paper we consider the problem bpp-fs-bisim which is a special case
of bpp-bisim where Σ1 is a finite-state system and M1 is an FS marking. We
show that the problem bpp-fs-bisim can be solved in time O(n4) where n is
the size of the instance. We assume that BPPs in the instance are encoded as
lists of places and transitions, where the encoding of each transition t contains
a list of all p ∈ succ(t) together with values F (t, p). We assume that numbers
are encoded in binary.

In the rest of this paper Σ = (P,Tr,pre, F, λ) is the disjoint union of the
BPP and the FS from the instance of bpp-fs-bisim, M denotes its set of
markings, PFS and TrFS are the sets of places and transitions of the FS from
this instance (PFS ⊆ P , TrFS ⊆ Tr), and Mp where p ∈ PFS denotes the
marking such that Mp ∈M, Mp(p) = 1 and Mp(p

′) = 0 for p′ 6= p. We define
MFS = {Mp | p ∈ PFS}.

Symbol ω denotes infinity. We stipulate that for each x ∈ N, x < ω,
ω+ x = x+ω = ω+ω = ω−ω = −ω+ω = ω, ω · 0 = 0 ·ω = 0, and for each

3

Kot and Sawa

x ≥ 1, ω · x = x · ω = ω. We define Nω = N ∪ {ω}.

Let U be a set. |U | denotes the cardinality of U . Partition U of U is a set
U = {U1, U2, . . . , Ul} of disjoint non-empty classes whose union is U .

3 The Algorithm

In the proof we use a method of Jančar used in [4] for showing that bpp-

bisim is in PSPACE. The basic idea is to construct a series of norm functions
that are used for approximation of the bisimulation equivalence. The con-
struction stops when no other functions can be added, and at this point the
approximation is exact.

At first we recall some ideas from [4]. Let (S,A,−→) be an LTS, and let
C : S → D be a mapping assigning to each state a value from some domain D.
We say the mapping C is bis-necessary if for each s, s′ ∈ S, s ∼ s′ implies
C(s) = C(s′). If we have a set of functions {C1, C2, . . . Cl} where Ci : S → Di,
we say the set is bis-necessary iff every Ci is bis-necessary. A predicate P
on S can be viewed as a mapping P : S → {0, 1}, and so we can also talk
about bis-necessary predicate. Note that if P is bis-necessary, then ¬P is also
bis-necessary.

Let P be a predicate on S. We define the mapping dist(P) : S → Nω

where dist(P)(s) is the length of the shortest w such that s
w
−→ s′ and P(s′),

and if there is no such w, dist(P)(s) = ω. Intuitively, dist(P) represents
‘distance’ to P .

Claim 3.1 If P is bis-necessary then dist(P) is bis-necessary.

Proof. Let us assume without loss of generality that there are states s1, s2

such that s1 ∼ s2 and dist(P)(s1) < dist(P)(s2). Then there is some shortest
w ∈ A∗ such that s1

w
−→ s′1 and P(s

′
1). Because s1 ∼ s2, there must be some s′2

such that s2
w
−→ s′2 and s

′
1 ∼ s′2. But |w| < dist(P)(s′2), and so ¬P(s′2), which

means that P is not bis-necessary. 2

Let us now consider the BPP Σ from the instance of bpp-fs-bisim. Let
T ⊆ Tr. We say T is disabled inM if every t ∈ T is disabled inM . Notice that
if T is the set of all transitions t such that λ(t) = a for some a ∈ A, then ‘T
is disabled’ is a bis-necessary predicate. Notice also that T is disabled iff each
place in pre(T) is empty. These leads to the following formal definitions. Let
Q ⊆ P be a set of places. We define the predicate zero(Q) on M such that
zero(Q)(M) iff ∀p ∈ Q : M(p) = 0. We define norm of Q as the function
norm(Q) = dist(zero(Q)).

Every norm can be expressed as a linear function L :M→ Nω of the form

L(x1, x2, . . . , xk) = c1x1 + c2x2 + · · ·+ ckxk

where ci ∈ Nω and k is the number of places, see [4] for details. Coefficients
c1, c2, . . . , ck of L for the givenQ can be computed by the algorithm in Figure 1.
Intuitively, ci is the minimal number of transitions that remove one token in

4

Kot and Sawa

for each p ∈ P do

if p ∈ Q then cp := ω else cp := 0
Q′ := Q

T := {t ∈ Tr | pre(t) ∈ Q′}
while Q′ 6= ∅ do

let pmin refer to some p ∈ Q′ with minimal cp

for each t ∈ T such that succ(t) ∩Q′ = ∅ do

remove t from T

p := pre(t); R := succ(t)
dt := 1 +

∑

q∈R cq · F (t, q)

if dt < cp then cp := dt

if cp < cpmin
then pmin := p

end for

if cpmin
= ω then break;

Q′ := Q′ − {pmin}
remove from T every t such that pre(t) = pmin

end while

Fig. 1. Computing coefficients of norm(Q) function

pi from Q. In the algorithm, Q′ is the set of unprocessed places and T is
the set of unprocessed transitions. We write cp instead of ci where p = pi.
Places that are not in Q′ are places for which cp was already determined. The
algorithm computes for each unprocessed transition t that stores tokens only
to places out of Q′ the value dt, a possible candidate for cp where p = pre(t),
and chooses between these candidates the one with the minimal value.

We define Ω-carr(L) = {pi ∈ P | ci = ω}. Note that L(M) = ω iff
M(p) > 0 for some p ∈ Ω-carr(L). It is not hard to show that Ω-carr(L)
is a trap. Recall that a set of places R ⊆ P is a trap iff

∀t : pre(t) ∈ R⇒ (R ∩ succ(t) 6= ∅)

Intuitively this means that every t removing tokens from a trap also adds some
tokens to it, so ‘marked’ trap, i.e., a trap with at least one token, can not get
unmarked. From this follows the following claim:

Claim 3.2 If L = norm(Q) for some Q ⊆ P and L(M) = ω, then L(M ′) =
ω for every M ′ such that ∃w ∈ A∗ : M

w
−→M ′.

For a linear function L we can compute for each t ∈ Tr the value

δL
t = −ci +

∑

1≤j≤k

cj · F (t, pj)(1)

where pre(t) = pi. The value δL
t represents the ‘change’ on the value of L

when the transition t is performed.

Claim 3.3 If M
t
−→M ′ then L(M) + δL

t = L(M ′). If L(M) < ω and δ 6= δL
t

then L(M) + δ 6= L(M ′).

5

Kot and Sawa

Now we come to the description of the algorithm. The algorithm constructs
a set of linear functions L = {L1, L2, . . .} such that each Li represents norm
of some set of places and where each Li is bis-necessary. The algorithm starts
with L = ∅, successively adds linear functions to L and stops when no new
linear function can be added. For L we define the equivalence ≡L onM such
that M ≡L M

′ iff ∀L ∈ L : L(M) = L(M ′). Since each L ∈ L is bis-necessary,
L is also bis-necessary, and M 6≡L M ′ implies M 6∼ M ′. On the other hand,
we show that if M ∈MFS and M ′ ∈M then M ≡L M

′ implies M ∼M ′.

The main algorithm looks as follows:

1. Set L = ∅.

2. For each p ∈ PFS perform Step described below.

3. If L has changed in the previous step, go to 2.

The Step looks as follows: For the given p we define the set F ⊆ L
such that L ∈ F iff L(Mp) < ω. For F we define the equivalence ∼=F on
Tr such that t ∼=F t′ iff λ(t) = λ(t′) and ∀L ∈ F : δL

t = δL
t′ . Let [t] denote

the equivalence class of ∼=F containing t. Let T1 = {[t] | t ∈ succ(p)}, and
let T0 = Tr −

⋃

T∈T1
T . We define the set T as T = T1 ∪ {T0}, respectively

as T = T1 when T0 is empty. Note T is a partition of Tr. We extend the
definition of Ω-carr to sets of linear functions and define

Ω-carr(F) =
⋃

L∈F

Ω-carr(L)

The algorithm now computes for each T ∈ T the function L = norm(pre(T)∪
Ω-carr(F)) and adds it to L.

We now show that the algorithm is correct.

Lemma 3.4 Every L added to L by the algorithm is bis-necessary.

Proof. We proceed by induction on the number of steps. The proposition
is trivially true at the start. Assume now the algorithm performs Step

for some p ∈ PFS and adds norm(Q) to L for some T ∈ T where Q =
pre(T)∪Ω-carr(F). Due to Claim 3.1 it is sufficient to show that zero(Q)
is bis-necessary. Let us assume without loss of generality that M1 ∼ M2,
¬zero(Q)(M1), and zero(Q)(M2). By induction hypothesis, ∀L ∈ L :
L(M1) = L(M2). Let R = Ω-carr(F). Since zero(R)(M2), we have
∀L ∈ F : L(M2) < ω, and zero(R)(M1), since otherwise there is some
L ∈ F such that L(M1) = ω 6= L(M2). From this and ¬zero(Q)(M1) we
have ¬zero(pre(T))(M1). This means there is some transition t ∈ T such

that M1
t
−→ M ′

1. Because M1 ∼ M2 there is some t′ such that M2
t′

−→ M ′
2

where M2 ∼ M ′
2 and λ(t) = λ(t′), but necessarily t′ 6∈ T . This means there is

some L ∈ F such that δL
t 6= δL

t′ . By Claim 3.3 this implies L(M ′
1) 6= L(M ′

2),
a contradiction. 2

Since every L added to L is norm(Q) for some Q ⊆ P , and P is finite,
it is obvious that the algorithm stops after some finite number of steps. The

6

Kot and Sawa

following lemma shows that≡L corresponding to L computed by the algorithm
coincides with ∼ on pairs of markings where one of markings is from MFS .

Lemma 3.5 Let L be the set computed by the algorithm. Then for every
M1 ∈MFS and M2 ∈M, M1 ≡L M2 implies M1 ∼M2.

Proof. We show that ≡L ∩(MFS ×M) is a bisimulation. Let us consider
M1 ∈ MFS and M2 ∈ M such that M1 ≡L M2. Let F = {L ∈ L | L(M1) <
ω} and let R = Ω-carr(F). Note that M1 = Mp for some p ∈ PFS and
the same F would be produced when the algorithm would perform Step

for p. Notice that zero(R)(M1) since otherwise there is some L ∈ F such
that L(M1) = ω. Also zero(R)(M2) is true, because otherwise there is some
L ∈ F such that L(M2) = ω which means L(M1) 6= L(M2). Let T be defined
for F correspondingly as in Step.

At first consider a transition M1
t
−→M ′

1. Let T be the class from T such
that t ∈ T . Obviously T ∈ T1. Consider now the function L1 = norm(R ∪
pre(T)). It must be the case that L1 ∈ L, otherwise L1 could be added to L
and the algorithm has not finished yet. So L1(M1) = L1(M2). From this, from
¬zero(pre(T))(M1), and from zero(R)(M2) we have ¬zero(pre(T))(M2)

and there is some t′ ∈ T such thatM2
t′

−→M ′
2, λ(t) = λ(t′), and ∀L ∈ F : δL

t =
δL
t′ . From this and Claim 3.3 we obtain ∀L ∈ F : L(M ′

1) = L(M ′
2). For each

L ∈ L − F is L(M1) = L(M2) = ω, and, by Claim 3.2, L(M ′
1) = L(M ′

2) = ω.
This means M ′

1 ≡L M
′
2.

Now consider a transition M2
t′

−→ M ′
2. This case similar to the pre-

vious case, but we must also consider the possibility t′ ∈ T0. Let L0 =
norm(R ∪ pre(T0)). Since L0 ∈ L (otherwise the algorithm has not finished
yet), L0(M1) = L0(M2). Because L0(M1) = 0, we obtain L0(M2) = 0, and
zero(pre(T0))(M2), so t

′ is not enabled in M2, a contradiction. 2

4 Time Complexity of the Algorithm

In this section we show that the running time of the algorithm is O(n4). In
the rest of the paper n denotes the size of the input instance.

The running time of the algorithm depends on implementation details of
Step. In Section 3 we described how to, for the given p ∈ PFS , compute
in Step sets F , Ω-carr(F), and T . It is more efficient not to recompute
these sets every time, but instead to store their values and perform necessary
changes on them when new L is added to L. So the algorithm maintains
for each p ∈ PFS values of the corresponding Ω-carr(F) and T . Note that
T always contains at most |succ(p)| + 1 equivalence classes. The algorithm
also maintains for each T ∈ T and for Ω-carr(F) a boolean flag indicating
whether it has changed since the last invocation of Step and adds a new
function L = norm(Ω-carr(F)∪T) to L only when Ω-carr(F) or T is new
or has actually changed.

7

Kot and Sawa

Addition of L to L includes the following steps:

1. Compute coefficients c1, c2, . . . , ck of L.

2. Compute δL
t for each t ∈ Tr.

3. Partition Tr according to values of δL
t and λ(t).

4. For each p ∈ PFS such that L(Mp) < ω:
• Add Ω-carr(L) to the corresponding Ω-carr(F).
• Modify the corresponding T using the partition computed in step 3.

In the proof we need the following well-known fact:

Fact 4.1 Let U be a non-empty finite set, and let U1,U2, . . . be a sequence

of partitions of U such that each Ui+1 is a refinement of Ui. Then the total

number of different classes in all these partitions is less then 2 · |U |.

Proof idea. Use induction on |U |. 2

Lemma 4.2 The number of functions added to L is in O(n2).

Proof. Let us consider all invocations of Step for one p ∈ PFS . In invocations
where Ω-carr(F) has changed, the algorithm adds a new function to L for
each T ∈ T . If Ω-carr(F) has not changed, a new function is added for each
T ∈ T that has changed.

Ω-carr(F) can only grow, so the number of invocations of Step when
Ω-carr(F) has changed is O(|P |). Because |T | is at most h + 1 where h =
succ(p), the number of functions added in such invocations is at most (h +
1) ·O(|P |).

Consider now the possible changes of T . Either some t was added to T0, or
some T ∈ T1 was split, or some combination of these possibilities has occurred.
Since T0 can only grow, the first possibility can occur only O(|Tr|) times. It
remains to estimate the total number of classes from T1. It is in O(|Tr|) as
follows from Fact 4.1, since sequence of values of T1 in subsequent invocations
of Step can be extended to a sequence of refined partitions by adding some
classes to each T1.

Let us sum now the numbers of functions added to L for all p ∈ PFS . In
invocations where Ω-carr(F) has changed it is at most

∑

p∈PFS

(|succ(p)|+ 1) ·O(|P |) = O(|P | · |TrFS |)

The number of function added in the remaining invocations is in O(|PFS |·|Tr|),
so we obtain that the total number of functions is in O(|P | · |Tr|). 2

Now we consider the complexity of computation of coefficients of L =
norm(Q) for some Q ⊆ P . For x ∈ Nω, size(x) denotes the number of
bits of x when encoded in binary. We suppose that size(x + y) = 1 +
max{size(x), size(y)}, size(x · y) = size(x) + size(y), and size(ω) = O(1).

Proposition 4.3 For each p ∈ P , size(cp) is in O(n).

8

Kot and Sawa

Proof. Let p1, p2, . . . , pl be the sequence of places from Q ordered by the order
in which the algorithm determines their coefficients, let ci be the coefficient
of pi, and let ti be the transition used for computation of ci, i.e., the transition
such that pre(ti) = pi and ci = di, where we write di instead of dti . Let size(t)
be the number of bits of representation of t ∈ T , i.e.,

size(t) = O((1 + |R|) · size(|P |)) +
∑

p∈R

size(F (t, p))

where R = succ(t).

By induction on i we prove the following proposition from which the result
directly follows: For each i, 1 ≤ i ≤ l, size(ci) ≤

∑

1≤j≤i size(tj). This
holds trivially for i = 1 because c1 is always 1 or ω, so suppose i > 1. Let
R = succ(ti). Note that

di = 1 +
∑

q∈R

cq · F (ti, q) ≤ 1 +
i−1
∑

j=1

cj · F (ti, pj)

because when di is computed, each cq is known and finite, and so it is either 0
or one from c1 to ci−1.

size(cj ·F (ti, pj)) = size(cj)+ size(F (ti, pj)). The sum of all such products
can be written in the size of maximal of them plus some number less then
their count (overflow caused by addition). This size is less then size(max{cj |
1 ≤ j < i}) +

∑i−1

j=1 size(F (ti, pj)). The second summand (the sum) is less
then size(ti). By induction hypothesis maximal cj can be written in the count
of bits needed for first i − 1 transitions. Therefore di (and hence ci too) can
be written in the space needed for representations of transitions t1, . . . , ti. 2

Proposition 4.4 All coefficients of L = norm(Q) are computed in O(n2).

Proof. The most time-consuming step is computation of all di. In computa-
tion of this, multiplications are more time-consuming than additions. Hence it
suffices to show that aggregated complexity of all multiplications is in O(n2).

In our algorithm, each di is computed only once. During computation of
di we need to determine all products F (ti, pj) · cj where pj ∈ succ(t). From
Proposition 4.3 we know that size(cj) is in O(n) for every cj. Hence one
product is computed in O(n · size(F (ti, pj))). If we sum complexities of such
products for all transitions and places to which transitions give tokens, we get
the aggregated complexity of all multiplications

O(
∑

i,j

(n · size(F (ti, pj)))) = O(n ·
∑

i,j

size(F (ti, pj))) = O(n2)

. 2

Proposition 4.5 For given L = norm(Q), changes δL
t caused by all transi-

tions can be computed in time O(n2).

Proof. For each transition t, the value δL
t is computed using expression 1

from Section 3. If some cj is infinite then δL
t is infinite too. Hence we do

9

Kot and Sawa

computation of the sum only for finite values. The complexity of additions
is dominated by the complexity of multiplications cj · F (t, pj). Each such
product is computed only once. From Proposition 4.3 we know that each cj

is in O(n). Each F (t, pj) is used only once and is part of our representation
of BPP. Hence we can similarly as in Proposition 4.4 for coefficients deduce
that aggregated complexity of all multiplications is in O(n2), from which the
result follows. 2

Lemma 4.6 The algorithm adds one L to L in time O(n2).

Proof. As follows from Propositions 4.4 and 4.5, the running time of steps 1
and 2 is O(n2). The running time of step 3 is also O(n2) using one of standard
algorithms for lexicographic sorting of strings (see [1,7]), because values of δL

t

can be represented as binary numbers, i.e., as strings of 0 and 1. Also the
running time of step 4 is O(n2) if it is implemented carefully. 2

Theorem 4.7 There is an algorithm solving bpp-fs-bisim with running time

O(n4).

Proof. We have described the algorithm. Lemmas 3.4 and 3.5 ensure the
correctness of the algorithm. Since the addition of new L to L is the most
time consuming operation of the algorithm, it follows from Lemmas 4.2 and 4.6
that the running time of the algorithm is O(n4). 2

5 Conclusion and Future Work

In this paper we have presented an algorithm for deciding bisimilarity between
a BPP and a finite-state system with time complexity O(n4). However it is
possible that the time complexity of the algorithm is not optimal and can be
further improved.

Other problem where the techniques from [4] used in this paper can be
used is the problem of deciding regularity of a BPP system, i.e., the problem
whether for a given BPP process there exists a bisimilar finite-state process.
This problem is known to be decidable [5] and PSPACE-hard [8], but no
upper bound is known for the problem. We conjecture that the problem is in
PSPACE and we plan to show it in the future.

References

[1] Aho, A. V., J. E. Hopcroft and J. D. Ullman, “Design and Analysis of Computer
Algorithms,” Addison-Wesley Reading, 1974.

[2] Christensen, S., Y. Hirsfeld and F. Moller, Bisimulation is decidable for all basic

parallel processes, in: Proc. CONCUR’93, LNCS 715 (1993), pp. 143–157.

10

Kot and Sawa

[3] Hirsfeld, Y., M. Jerrum and F. Moller, A polynomial algorithm for deciding

bisimulation equivalence of normed basic parallel processes, Mathematical
Structures in Computer Science 6 (1996), pp. 251–259.

[4] Jančar, P., Strong bisimilarity on basic parallel processes is PSPACE-complete,
in: Proc. 18th LiCS (2003), pp. 218–227.

[5] Jančar, P. and J. Esparza, Deciding finiteness of petri nets up to bisimulation,
in: Proc. of ICALP’96, LNCS 1099 (1996), pp. 478–489.

[6] Jančar, P. and M. Kot, Bisimilarity on normed basic parallel processes can

be decided in time O(n3), in: R. Bharadwaj, editor, Proceedings of the Third

International Workshop on Automated Verification of Infinite-State Systems –

AVIS 2004, 2004.

[7] Paige, R. and R. E. Tarjan, Three partition refinement algorithms, SIAM Journal
on Computing 16 (1987), pp. 973–989.

[8] Srba, J., Strong bisimilarity and regularity of basic parallel processes is PSPACE-
hard, in: Proc. STACS’02, LNCS 2285 (2002), pp. 535–546.

11

	Introduction
	Basic Definitions
	The Algorithm
	Time Complexity of the Algorithm
	Conclusion and Future Work
	References

