
Non-Interleaving Bisimulation Equivalences on Basic

Parallel Processes

Sibylle Fröschlea, Petr Jančarb,1, Slawomir Lasotac,2, Zdeněk Sawa∗,b,1

aDepartment of Computing Science, University of Oldenburg, 26111 Oldenburg, Germany
bCenter for Applied Cybernetics, Dept. of Computer Science,

Technical University of Ostrava (FEI VŠB-TU),
17. listopadu 15, Ostrava-Poruba, CZ-708 33, Czech Republic

cInstitute of Informatics, Warsaw University, 02-097 Warszawa, Banacha 2, Poland

Abstract

We show polynomial time algorithms for deciding hereditary history preserving
bisimilarity (in O(n3 log n)) and history preserving bisimilarity (in O(n6)) on
the class Basic Parallel Processes. The latter algorithm also decides a number
of other non-interleaving behavioural equivalences (e.g., distributed bisimilar-
ity) which are known to coincide with history preserving bisimilarity on this
class. The common general scheme of both algorithms is based on a fixpoint
characterization of the equivalences for tree-like labelled event structures. The
technique for realizing the greatest fixpoint computation in the case of hered-
itary history preserving bisimilarity is based on the revealed tight relationship
between equivalent tree-like labelled event structures. In the case of history
preserving bisimilarity, a technique of deciding classical bisimilarity on acyclic
Petri nets is used.

Key words: verification, equivalence checking, non-interleaving equivalences,
labelled event structures, hereditary history preserving bisimilarity, history
preserving bisimilarity, bisimulation equivalence, basic parallel processes

∗Corresponding author — address:
Zdeněk Sawa
Dept. of Computer Science, Technical University of Ostrava (FEI VŠB-TU),
17. listopadu 15, Ostrava-Poruba, CZ-708 33, Czech Republic
e-mail: zdenek.sawa@vsb.cz

Tel.: +420 59 699 4437 (or +420 59 732 4437)
Fax: +420 59 691 9597

Email addresses: froeschle@informatik.uni-oldenburg.de (Sibylle Fröschle),
petr.jancar@vsb.cz (Petr Jančar), sl@mimuw.edu.pl (Slawomir Lasota),
zdenek.sawa@vsb.cz (Zdeněk Sawa)

1The authors gratefully acknowledge the support by the Czech Ministry of Education,
Grant No. 1M0567

2This work has been partially supported by Polish government grant no. N206 008 32/0810.

Preprint submitted to Information and Computation June 14, 2009

1. Introduction

An important research task in the area of automated verification of systems
is to clarify how far (efficient) algorithmic methods can be extended to deal
with (potentially) infinite-state processes. It is well-known that full process cal-
culi such as CCS (Calculus of Communicating Systems) [1] are too expressive to
allow decidability of nontrivial properties. Here we concentrate on a simple sub-
class, called Basic Parallel Processes (BPP) [2]; such a process can be viewed as
an evolving number of finite-state systems running in parallel. BPP is a mem-
ber of the Process Rewrite Systems hierarchy [3], along which the borderlines
of decidability and complexity with respect to the major verification problems
are well-investigated [4]. One of the basic problems is checking whether two
processes are behaviourally equivalent.

A prominent role among behavioural equivalences is played by the bisimu-
lation equivalence, also called bisimilarity. The classical bisimilarity takes the
interleaving approach, in which concurrency (of components running in par-
allel) is abstracted away by nondeterministic sequentialization. Nevertheless,
there are many variations of bisimilarity which model concurrency in a more
faithful way. The goal of this paper is to complete our understanding of such
non-interleaving equivalences for the class BPP.

Most non-interleaving bisimulation equivalences coincide on BPP, and they
are equal to history preserving bisimilarity (hp-b) [5]. In [6] Aceto shows that
distributed bisimilarity [7] and causal bisimilarity [8] coincide for a language
that is essentially BPP without recursion. In an unpublished draft [9] Kiehn has
extended these results by proving that location equivalence [10], causal bisimi-
larity, and distributed bisimilarity coincide over CPP, an extension of BPP that
allows for synchronization in CCS style but disallows explicit τ actions. Causal
bisimilarity is known to coincide with hp-b in general [11]. In [12] a direct
proof of the coincidence between hp-b and distributed bisimilarity on BPP is
provided. Finally, it has been shown in [13] that for BPP distributed bisimilar-
ity coincides with performance equivalence [14]. To sum up, on BPP all rele-
vant non-interleaving bisimulation equivalences coincide with history preserving
bisimilarity, with one exception, which is the finer hereditary history preserv-
ing bisimilarity (hhp-b). Hhp-b takes a special position among non-interleaving
equivalences: it is often considered to be the bisimulation equivalence for true-
concurrency [15, 16]. Unlike all the other equivalences it is undecidable for
finite-state systems [17]; only a few positive results could be achieved for re-
stricted classes [18].

The main results of our paper show polynomial-time algorithms deciding
hhp-b and hp-b on BPP. These positive results are in contrast with the complex-
ity of deciding classical bisimilarity on BPP, which is PSPACE-complete [19, 20].
It is interesting to note that while truly-concurrent verification problems are at
least as hard as their interleaving counterparts for some types of finite-state
systems (e.g., 1-safe Petri nets [21, 17]), for some other types of infinite-state
systems, such as BPP, this effect seems reversed. Such a trend has also been
revealed in model-checking [22], and linear-time equivalence checking [23].

2

Our algorithms build on the ideas presented in [24] and [25] and partly
in [26] but the presentation is substantially revised, unified, and given in a
new self-contained framework. In particular, we clarify a common base for
both cases, i.e., for polynomial-time algorithms for hhp-b and hp-b: speaking
informally in game terminology, the hhp-b game as well as the hp-b game may
be split into a number of ‘local’ games played over BPP processes of causal
depth 1. This insight forms a core ingredient of both our algorithms, providing a
fixpoint characterization of hhp-b and hp-b on tree-like labelled event structures.
The observation that both hp-b and hhp-b can be tackled by dissection into
causal levels was first expressed in [27] in terms of decomposition properties.
In particular, this led to a first, tableau-based, decision procedure for hhp-b
on BPP [12, 27], and later on to the fixpoint characterization of hhp-b in [25].
In these earlier works the causal levels are captured syntactically by the use of
the normal form ENF (Execution Normal Form) [12]. Our characterizations at
the semantic level of event structures are new and avoid the time-consuming
transformation into ENF.

Although both algorithms implement a general scheme of greatest fixpoint
computation for a given family of BPP processes, the implementations differ
considerably for hhp-b and hp-b. For hp-b, a polynomial-time algorithm follows
immediately from the general scheme when we use the algorithm from [28] for
deciding classical bisimilarity on normed BPP as a subroutine. A technically
more complicated version of this approach was used for deciding distributed
bisimilarity (and thus hp-b) on BPP by Lasota in [29]. (A generalized version
of the algorithm from [28] was also used in [30] to show a polynomial-time
algorithm deciding distributed bisimilarity on BPPτ , an extension of BPP with
synchronization on complementary actions in CCS style.) The degree of the
polynomial has not been analyzed but it seems relatively large even when the
(apparently more efficient) algorithm [31] is used. Here we provide a direct self-
contained algorithm deciding hp-b on BPP which runs in time O(n6) (without
assuming the normal form used in [29]). The ideas are mainly inspired by the
technique of the ‘distance-to-disabling functions’ introduced in [20].

Hhp-b was shown decidable on BPP in [12] but the proof left the question
of complexity open. Here we present an algorithm solving the problem in time
O(n3 log n). The basic step in the greatest fixpoint computation is now based on
the fact that BPP (or tree-like labelled event structures in general) have strong
decomposition properties wrt hhp-b (but not wrt hp-b). Roughly speaking,
the labelled event structures associated with two hhp-bisimilar BPP processes
are isomorphic — up-to trivial choices. We again avoid a (time-consuming)
transformation into a normal form (the Execution Normal Form from [25]).

Our characterization of hhp-b combined with our fixpoint approach also
allows us to give a short and unified proof of the following result from [26]:
hhp-b and hp-b coincide for Simple BPP (SBPP) [22]. SBPP correspond to
BPP in normal form, which represent the entire BPP class when interleaving
equivalences are considered; when non-interleaving equivalences are considered,
they form a strictly smaller class. Since hhp-b and hp-b do not coincide for
BPP in general, the coincidence for SBPP underlines that SBPP and BPP do

3

behave differently with respect to non-interleaving equivalences.
The paper is organized as follows. In Section 2 we recall definitions of Ba-

sic Parallel Processes (BPP), classical bisimilarity, and (hereditary) history-
preserving bisimilarity on labelled event structures; then we provide event struc-
ture semantics to BPP processes via their syntax-tree unfoldings, and finally we
formulate the problems to be solved. In Section 3 we provide the greatest fix-
point characterizations of hhp-b and hp-b on tree-like labelled event structures,
which results in a general scheme used by both algorithms; we also explore a cen-
tral notion — depth-1 trees (associated with BPP processes with causal depth
1). Section 4 characterizes hhp-b on depth-1 trees by using the ‘trivial-choice-
free form’, and provides an efficient implementation of the resulting algorithm;
here we also show that hhp-b and hp-b coincide for SBPP. Section 5 presents
the algorithm for hp-b, based on deciding bisimilarity on acyclic Petri nets cor-
responding to BPP systems.

2. Definitions and notation

In Subsections 2.1 and 2.2 we provide standard definitions of BPP processes
and the classical interleaving bisimilarity. Subsection 2.3 recalls the notions of
the history-preserving bisimilarity and the hereditary history-preserving bisim-
ilarity in the context of labelled event structures. Subsections 2.4 and 2.5 then
provide event-structure semantics to BPP processes, via their syntax-tree un-
foldings. (We have chosen this direct and self-contained approach here; another
equivalent option would be to provide semantics of BPP processes in terms of
net unfoldings as, e.g., in [27].) Finally, in Subsection 2.6 we formulate the
computational problems which are then solved in further sections.

2.1. Basic Parallel Processes

We recall the standard definition of the class Basic Parallel Processes (BPP).
Given a set Act of atomic actions, usually denoted by a, b, . . ., and a set Var

of process variables, ranged over by X, Y, . . ., the class of BPP expressions over
Act and Var is defined by the following context-free rules:

E ::= 0 | X | (a.E) | (E + E) | (E ‖ E)

where 0 denotes the empty process, X stands for a process variable, and a. ,
+ , ‖ denote the operations of action prefix (for each a ∈ Act), nondeter-

ministic choice, and parallel composition, respectively.
A BPP system ∆, also called a BPP definition, with a finite set of actions

Act(∆) and a finite set of variables Var(∆) = {X1, X2, . . . , Xk}, is a finite
family of (possibly recursive) equations:

∆ = {Xi
def
= Ei | 1 ≤ i ≤ k}

where each Ei is a BPP expression over Act(∆) and Var(∆). We stipulate that
each occurrence of a variable in Ei is guarded, i.e., within the scope of an action

4

prefix. (This guarantees that the transition system induced by the rules below
is finitely branching.)

A BPP process is a pair (E, ∆) where ∆ is a BPP system and E is a BPP
expression over Act(∆) and Var(∆). When ∆ is clear from context, we often
write just E instead of (E, ∆), and Act and Var instead of Act(∆) and Var(∆),
respectively.

The standard semantics of BPP systems is given in terms of labelled transi-
tion systems (LTSs). An LTS is a tuple (S, A,−→) where S is a set of states,
A is a set of actions, and −→⊆ S × A × S is a transition relation. We usually
write s

a
−→ s′ instead of (s, a, s′) ∈ −→ .

Any BPP system ∆ can be viewed as representing the (possibly infinite)
LTS LTS (∆), where the processes (E, ∆) are viewed as the states and where
the transition relation is induced by the following SOS (structural operational
semantics) rules:

a.E
a

−→ E

E
a

−→ E′

E + F
a

−→ E′

F
a

−→ F ′

E + F
a

−→ F ′

E
a

−→ E′

E ‖ F
a

−→ E′ ‖ F

F
a

−→ F ′

E ‖ F
a

−→ E ‖ F ′
(1)

E
a

−→ E′

X
a

−→ E′
((X

def
= E) ∈ ∆)

Example 1. For the following BPP system:

X1 = ((a.X1) ‖ (b.(X1 + (a.X2)))
X2 = (b.X1)

we can derive, e.g.,

X1
b

−→ ((a.X1) ‖ (X1 + (a.X2)))
a

−→ (X1 ‖ (X1 + (a.X2)))
a

−→ (X1 ‖ X2), or

X1
b

−→ ((a.X1) ‖ (X1 + (a.X2)))
a

−→ ((a.X1) ‖ (X1 ‖ (b.(X1 + (a.X2))))), etc.

2.2. Bisimilarity

We now recall the classical (interleaving) bisimulation equivalence on labelled
transition systems, which is then induced for BPP processes.

Given an LTS (S, A,−→), a relation R ⊆ S × S is a bisimulation if for each
(s, t) ∈ R the following two conditions hold:

• if s
a

−→ s′ for some a, s′, then there is some t′, such that t
a

−→ t′ and
(s′, t′) ∈ R;

• if t
a

−→ t′ for some a, t′, then there is some s′, such that s
a

−→ s′ and
(s′, t′) ∈ R.

5

States s, t are bisimulation equivalent (bisimilar), written s ∼ t, if there is
a bisimulation R containing (s, t). The relation ∼ is called the bisimulation
equivalence or bisimilarity [32]. Note that a bisimulation R need not be an
equivalence but ∼ is an equivalence.
Two BPP processes E, E′ of a given system ∆ are bisimilar if they are bisimilar
when viewed as states in the labelled transition system LTS(∆).

We note that we can also naturally compare processes (E, ∆1), (F, ∆2) of
different systems since E, F can be seen as processes of ∆ which arises by taking
the disjoint union of ∆1 and ∆2.

It is useful to recall an alternative definition of bisimilarity based on games
(cf. for example [33]). The bisimulation game on a given LTS (S, A,−→) is
played by two players — Spoiler and Duplicator ; for convenience we view Spoiler
as “him” and Duplicator as “her”. The positions in the game are pairs (s1, s2) ∈
S × S. In a position (s1, s2), Spoiler chooses i ∈ {1, 2} and a transition from

si, say si
a

−→ ti; Duplicator must respond by choosing some transition with
the same label a from the other component of the pair (s1, s2), i.e., a transition

s3−i
a

−→ t3−i . The play then continues from the position (t1, t2). If one of the
players gets stuck (i.e., there is no appropriate transition), then the other player
wins. If the play continues forever, then Duplicator wins.

Generally speaking, a strategy for a player P in a game is a (partial) function
that determines a concrete P -move for each sequence m1, m2, . . . , mk of moves
played so far after which it is P ’s turn. A strategy is a winning strategy of P if
player P wins each play when he/she uses the strategy. In what follows, by a
strategy we always mean a memory-less (positional) strategy: each prescribed
move depends only on the current position, not on the whole sequence of moves
played so far.

Proposition 2 ([33]). In the bisimulation game starting from position (s, s′):

1. Duplicator has a winning strategy iff s, s′ are bisimilar,

2. Spoiler has a winning strategy iff s, s′ are not bisimilar.

2.3. Labelled event structures, hp-bisimilarity and hhp-bisimilarity

We recall the notions of history preserving bisimilarity (hp-bisimilarity) and
hereditary history preserving bisimilarity (hhp-bisimilarity) on labelled event
structures, presenting them by means of bisimulation games. It is a variation
of definitions given in [34], [5], [17], and elsewhere.

An event structure is a tuple (E , ⊳, #) where E is a set of events, ⊳ is a
partial order on E called the causal order, and # ⊆ E × E is an irreflexive and
symmetric relation called the conflict relation. We require that {e′ | e′ ⊳ e} is
finite (the number of causes is finite for each e ∈ E), and that e#e′ and e′ ⊳ e′′

implies e#e′′. Events e, e′ are concurrent iff none of e ⊳ e′, e′ ⊳ e, e#e′ holds. A
labelled event structure, a LES in short, is a tuple S = (E , ⊳, #,Act , lab) where
(E , ⊳, #) is an event structure, Act is a set of actions, and lab : E → Act is a
labelling function.

6

By a configuration (i.e., a ‘computation state’) of an LES S =
(E , ⊳, #,Act , lab) we mean a finite set C ⊆ E which is conflict-free, i.e.,
∀e, e′ ∈ C : ¬(e#e′), and downwards closed wrt causality, i.e., ∀e, e′ : (e ∈
C ∧ e′ ⊳ e) ⇒ e′ ∈ C. We implicitly view a configuration as a labelled partial
order, i.e., a structure (C, ⊳, lab) where ⊳ and lab are inherited from S. We
refer to these structures when saying that two configurations C1, C2 of possibly
different LESs with the same action set Act are isomorphic. (An isomorphism
f : C1 → C2 is thus a bijection which respects the causal order and the la-
belling.)
There is a natural transition relation between configurations: an event e is en-
abled at C if e 6∈ C and C′ = C∪{e} is a configuration; we then write C

e
−→ C′.

We now define the hp-game and the hhp-game simultaneously.
The (h)hp-game between Spoiler and Duplicator on two LESs S1, S2 with the
same action set Act is played as follows. Positions are triples (C1, f, C2) where
C1 is a configuration of S1, C2 is a configuration of S2, and f is an isomorphism
between C1 and C2. The initial position is (∅, ∅, ∅). From the current position
(C1, f, C2), a play proceeds by the following rules.

1. Spoiler chooses i ∈ {1, 2} and an event ei enabled at Ci. Duplicator has
to respond by choosing an event e3−i which is enabled at C3−i and for
which f ′ = f ∪ {(e1, e2)} is an isomorphism between C′

1 = C1 ∪ {e1} and
C′

2 = C2 ∪ {e2} (which also entails lab(e1) = lab(e2)). The play continues
from the new position (C′

1, f
′, C′

2).

2. In the hhp-game (but not in the hp-game), Spoiler may alternatively per-
form a backtracking move: he chooses e ∈ C1 such that e is maximal in C1

(wrt the respective causal order ⊳), and removes e and f(e) (which is nec-
essarily maximal in C2) from C1 and C2, respectively. The new position
is thus (C1−{e}, f−{(e, f(e))}, C2−{f(e)}).

3. The play continues like this either forever, in which case Duplicator wins,
or until either Spoiler or Duplicator is unable to move, in which case the
other player wins.

Two LESs S1 and S2 are hp-bisimilar (hhp-bisimilar) iff Duplicator has a
winning strategy in the hp- (hhp-) game on S1, S2; we write S1 ∼hp S2 (S1 ∼hhp

S2). It is again straightforward to show that if S1 6∼hp S2 (S1 6∼hhp S2) then
Spoiler has a winning strategy; when S1 and S2 are finitely-branching, which
means that there are only finitely many enabled events at each configuration,
then Spoiler can guarantee his win within k moves for a bound k ∈ N.

Remark. It is more standard to define relations ∼hp and ∼hhp as the union of
hp-bisimulations and hhp-bisimulations, respectively. However we do not use
these notions explicitly since we prefer the game terminology in our proofs.

We note that ∼hhp is finer than ∼hp , i.e., S1 ∼hhp S2 implies S1 ∼hp S2.
Later we will recall an example showing that ∼hhp is strictly finer.
We also note that both ∼hp and ∼hhp are equivalence relations which are coarser

7

than isomorphism, i.e., they always relate isomorphic structures; two LESs S1

and S2 are deemed isomorphic, denoted S1
iso
= S2, if they have the same action

set Act and there is a bijection between their event sets that respects causality,
conflict, and labelling.
Convention. Many later notions and results are analogous for ∼hp and ∼hhp .
We thus let h range over {hp, hhp}, and we write ∼h and the h-game when
meaning that any of ‘hp’, ‘hhp’ can be substituted for ‘h’ in a given context.

2.4. BPP Processes as Process Trees

Each BPP expression E can be presented by its syntax tree, denoted by
stree(E): it is a rooted tree whose nodes are labelled with elements of {0, +, ‖}∪
Act ∪ Var . Each node labelled by + or ‖ has two children; each node labelled
by an action has one child; and each node labelled by 0 or by a variable is a
leaf.

Example 3. Figure 1 shows stree(E) with nodes u0, u1, . . . , u7 for expression
E = ((a.X1) ‖ (b.(X1 + (a.X2))) .

‖

a b

X1 +

X1 a

X2

u0

u1 u2

u3 u4

u5 u6

u7

Figure 1: Syntax tree for expression ((a.X1) ‖ (b.(X1 + (a.X2)))

Given a BPP system ∆ = {Xi
def
= Ei | 1 ≤ i ≤ k}, each BPP process (E, ∆)

naturally corresponds to its unfolded syntax tree, denoted by unf (E), which is
defined as the limit of the following process:

1. Start by taking a copy of the syntax tree stree(E) as the current tree CT .

2. Whenever there is a leaf u in CT labelled with variable Xi, replace the
singleton subtree u with a copy of stree(Ei). Take the result to be the
new CT .

The trees unf (E) naturally give rise to labelled event structures of special
kind, from which they inherit (hereditary) history-preserving bisimilarity and

8

other concepts. For convenience we treat a broader class of trees and the corre-
sponding “tree-like event structures”.

A process tree T is a (possibly infinite) rooted tree equipped with a labelling
lab : V → {0, +, ‖} ∪ Act where V is the set of nodes of T ; we stipulate the
following conditions hold:

• each node of T labeled with 0 is a leaf (it has no children);

• each node labeled with an action (element of Act) has at most one child.

A node u is called an action node iff lab(u) ∈ Act ; we refer to the set of
action nodes of T by actnodes(T); a node v with lab(v) = + is called a choice
node.

Notation for trees. We typically use u, v, . . . to refer to the nodes of a given
rooted tree T ; root(T) denotes its root. We write u ∈ T to say that u is a node
of T . By tree(u), where u ∈ T , we denote the (full) subtree of T rooted in the
node u.
The set of immediate successors, or children, of u is denoted by children(u).
When |children(u)| = 1 we use child(u) to denote the only child of u. When
|children(u)| = 2 we use child1(u) and child2(u) to identify each of the two
children of u.
By ⊳ we denote the tree-order on the nodes: v ⊳ v′ iff v lies on the path from
root(T) to v′ ; we assume v ⊳ v. If v ⊳ v′, v 6= v′, then v is a predecessor of v′ and
v′ is a successor of v. We note that for any two nodes u1, u2 such that u1 6⊳ u2,
u2 6⊳ u1 there is a unique node v such that u1 ∈ tree(v1), u2 ∈ tree(v2) for two
different children v1, v2 of v; such v is called the closest common predecessor of
u1, u2. Note that v is necessarily labeled either by + or ‖. (The tree-order ⊳

will be used as a causal order in labelled event structures associated to process
trees as described in the following subsection.)

2.5. Labelled Event Structures associated with Process Trees

For a process tree T , labelled by actions from Act , the labelled event structure
associated to T is the tuple

LES(T) = (actnodes(T), ⊳, #,Act, lab)

where the events are the action nodes of T , the causal order ⊳ and the labelling
lab are induced by the tree-order and the labelling in T , respectively, and the
conflict relation # on actnodes(T) is defined as follows:

u1#u2 iff u1 6 ⊳ u2, u2 6 ⊳ u1, and the closest common predecessor of
u1, u2 is a choice node (with label +).

The LESs associated with process trees are called the tree-like labelled event
structures.

Remark. The axioms of event structures are easily seen to be satisfied. We also
note that if two action nodes u1, u2 are concurrent (they are causally unrelated
and non-conflicting) then their closest common predecessor is labelled with ‖.

9

(Hereditary) history-preserving bisimilarity is naturally carried over to pro-
cess trees and BPP processes:

T1 ∼h T2 iff LES(T1) ∼h LES(T2),
E1 ∼h E2 iff LES(unf (E1)) ∼h LES(unf (E2)).

A process tree T naturally inherits also other concepts from LES(T); we thus
use the terms “a configuration C of T ”, “an action node u is enabled in C”, etc.

Remark. Our notion of configurations and enabledness is consistent with the
interleaving semantics of Section 2.1 in the following sense: any concrete deriva-
tion E

a1−→ E1
a2−→ E2

a3−→ · · ·
an−→ En according to the SOS rules (1)

corresponds to a configuration C of n action nodes of unf (E), labelled by
a1, a2, . . . , an.

We note that isomorphic process trees generate isomorphic LESs; we can
thus view process trees as unordered, in the sense that the children of a node
can be considered as unordered. It is also easily derivable for BPP processes and
both ∼hp and ∼hhp that operations ‖ and + are commutative and associative,
and 0 is neutral for both ‖ and + .

The following observation allows us to remove the 0-labelled nodes (in fact,
leaves) of a process tree T . Such nodes have no impact on LES(T) and they
were introduced only to accommodate the unfoldings of BPP processes easily.
Similarly we can get rid of the nodes labelled with + or ‖ which are (or ‘become’)
superfluous in the sense that they have at most one child.

Observation 4. Given a process tree T , LES(T)
iso
= LES(T ′) for any T ′ arising

from T by a sequence of the following operations:

• remove a leaf v such that lab(v) ∈ { 0, +, ‖ },

• if v is a node with lab(v) ∈ {+, ‖ } and v′ is the only child of v, replace
tree(v) with tree(v′).

Convention. It will be sometimes convenient to handle forests of process trees
instead of single trees. By LES(F) for a forest F we mean LES(par (F)) where
par(F) is the tree resulting from F by adding a fresh node as the root, labelled
with ‖, and taking the roots of the trees in F as its children.

We finish this subsection by recalling an example from [34] which demon-
strates that hhp-bisimilarity is strictly finer than hp-bisimilarity even on a very
restricted class of BPP processes, where each action occurrence is followed by
‘.0’. (Later we call such processes depth-1 processes.)

Example 5. We show two variable-free BPP processes E, F over actions a, b, c;
the action occurrences are indexed just for their identification. We omit some
unnecessary parentheses, using associativity of + and the usual rule that a.

binds more tightly than ‖ and +.
E = (a1.0 ‖ (b1.0 + c1.0)) + ((a2.0 + c2.0) ‖ b2.0) + (a3.0 ‖ b3.0)

10

F = (a4.0 ‖ (b4.0 + c4.0)) + ((a5.0 + c5.0) ‖ b5.0)
E ∼hp F : the only promising moves for Spoiler are a3 and b3 (in E) but

these are matched by a5 and b4, respectively.
In the hhp-game, Spoiler’s move a3 must be answered by a5 (since after a4

Spoiler immediately wins by playing c4). Then b3 must be answered by b5. But
Spoiler can now backtrack the pair of related events a3 and a5; this results in
the position which would also be obtained by playing b3 and b5 initially. In this
position Spoiler wins by playing c5. Hence E 6∼hhp F .

2.6. Computational Problems

Our main aim is to present efficient polynomial-time algorithms for the prob-
lems of deciding hp- and hhp-bisimilarity on BPP processes, i.e., for the prob-
lems specified as follows (where ∼h stands for ∼hhp or ∼hp):

Instance: BPP processes (E, ∆1) and (F, ∆2).

Question: Is (E, ∆1) ∼h (F, ∆2) ?

It is useful to note the following trivial reduction: instead of BPP processes
(E, ∆1) and (F, ∆2) we can take a BPP system ∆ given by the disjoint union
of ∆1 and ∆2, extended with two fresh variables X, Y and with definitions

X
def
= a.E and Y

def
= a.F for some action a, and then ask if X ∼h Y .

In fact, our algorithms will provide finer answers; they will partition all
subexpressions in the BPP definition ∆ wrt ∼h. The respective finer problems
bpp-hhp-bisim and bpp-hp-bisim are formally introduced in Subsection 3.2.
They will be solved by algorithms with time complexity O(n3 log n) and O(n6),
respectively.

The mentioned complexity results are related to a natural measure of the
size n of problem instances. For a BPP expression E we let size(E) be the
number of occurrences of symbols (including parentheses); we note that size(E)

also bounds the number of nodes in stree(E). The size of a definition X
def
= E is

taken to be size(E) + 2, and the size of a BPP system ∆, denoted by size(∆),
is the sum of the sizes of the definitions in ∆.

Remark. It might be more accurate to view the size of ∆ as the number of
bits needed for a natural description of ∆ but in our complexity analysis we use
the unit cost complexity model [35], i.e., we assume that operations like adding
two numbers with O(log n) bits (where n = size(∆)) take constant time, so the
difference does not matter.

3. A unified approach for deciding hhp- and hp-bisimilarity

This section shows some crucial ideas that underpin our algorithms for decid-
ing hp- and hhp-bisimilarity on BPP processes. Most of these ideas are common
for ∼hhp and ∼hp ; the constructions which are specific for each of these two cases
are described in Sections 4 and 5, respectively. Subsection 3.1 provides a general

11

fixpoint characterization of hp- and hhp-bisimilarity on tree-like LESs. In Sub-
section 3.2 we define problems bpp-hhp-bisim and bpp-hp-bisim announced in
Subsection 2.6. Subsection 3.3 describes the general scheme of our algorithms,
based on greatest fixpoint computation, and Subsection 3.4 summarizes some
technical details for the so-called depth-1 process trees, a basic concept used in
Sections 4 and 5.

3.1. Fixpoint characterizations of hp-bisimilarity and hhp-bisimilarity

For an event e in an LES S we define future(e) as the LES arising by re-
stricting S to the event domain {e′ | e ⊳ e′, e′ 6= e}. Informally speaking, our
characterization will exploit the fact that if a configuration C of a tree-like LES
S contains e then the ‘behaviour’ of future(e) is not affected by the ‘rest’ of S.

We say that an event e of (E , ⊳, #) is a depth-1 event iff there is no e′ 6= e

such that e′ ⊳ e; in other words, it is an event enabled at configuration ∅. We
will consider the depth-1 h-games (on LESs S1,S2), which arise by the following
restriction imposed on Spoiler’s moves: he is only allowed to choose depth-1
events in clause (1) of the definition in Section 2.3.

To ease notation, we now view each tree-like LES S as if it had a ‘fictive
event’ ε (a ‘causal root’) and we stipulate future(ε) = S. When considering
the (usual) h-game on tree-like LESs, we view each position (C1, f, C2) as also
satisfying ε ∈ C1, ε ∈ C2, f(ε) = ε. Given a position (C1, f, C2), for each e ∈ C1

(including e = ε) we define
(Ce

1 , fe, Ce
2)

as follows: Ce
1 is the restriction of C1 to the depth-1 events in future(e), Ce

2 is the
restriction of C2 to the depth-1 events in future(f(e)), and fe is the restriction of
f to Ce

1 (which is necessarily an isomorphism between Ce
1 and Ce

2). (Ce
1 , fe, Ce

2)
is thus a position in the depth-1 h-game played on future(e), future(f(e)).

Observation 6. In the h-game on tree-like S1,S2, every move of Spoiler from
(C1, f, C2) corresponds to a move from position (Ce

1 , fe, Ce
2) in the depth-1 h-

game on future(e), future(f(e)) for a unique e ∈ C1 (this holds also for the
backtracking moves in the hhp-game). Duplicator has at her disposal precisely
those responses (when Spoiler moved forward) which she has in the mentioned
depth-1 h-game.

Given a binary relation R over (the class of) tree-like LESs, the

depth-1 h-expansion of R, denoted Fh(R),

is defined by: (S1,S2) ∈ Fh(R) iff Duplicator has a winning strategy in the
depth-1 h-game on (S1,S2) which moreover guarantees that in each (reachable)
position (C1, f, C2) we have future(e) R future(f(e)) for all e ∈ C1. We note
that Fh is monotonic, and we can thus apply the classical fixpoint theory.

Theorem 7. Relation ∼h on the class of tree-like LESs is the greatest fixpoint
of Fh (both for h = hp and h = hhp).

12

e1

e2 e3

e4

e5 e6

e′1

e′2 e′3

e′4

e′5

S1 S2

e1

e2

e3

e4

e′1

e′2

e′3

e′4

S3 S4

Figure 2: Examples of (non tree-like) LESs not satisfying Theorem 7

Proof. It is sufficient to show that ∼h is the greatest post-fixpoint of Fh.
First we show that ∼h⊆ Fh(∼h): If Duplicator applies her winning strategy
on tree-like S1 ∼h S2 (in the usual h-game) then in each reachable position
(C1, f, C2) we must have future(e) ∼h future(f(e)) for each e ∈ C1; otherwise
Spoiler could obviously apply his winning strategy for future(e) 6∼h future(f(e))
and win.

Now we assume R ⊆ Fh(R) and show R ⊆∼h. For each pair of LESs from
R Duplicator fixes a winning strategy in the respective depth-1 h-game which
also guarantees future(e) R future(f(e)) for each reachable position (C1, f, C2)
and each e ∈ C1. (This is possible since R ⊆ Fh(R).) Her strategy in the
(usual) h-game on S1 R S2, starting from position (∅, ∅, ∅) (which is deemed to
be ({ε}, {(ε, ε)}, {ε}) can be easily deduced from Observation 6. To each move
by Spoiler corresponding to his move from position (Ce

1 , fe, Ce
2) in the depth-

1 h-game on future(e), future(f(e)) she answers according to the strategy she
fixed for this depth-1 h-game; this is possible since she keeps the invariant that
future(e) R future(f(e)) for all e ∈ C1. �

Remark. Theorem 7 holds for all LESs that satisfy the following condition: if
e and e′ are concurrent and e′ ⊳ e′′ then e and e′′ are concurrent too (causality
preserves concurrency). One may easily check that this condition implies that
the causality relation ⊳ is a forest.

Example 8. Theorem 7 fails in general, as shown by two simple examples in
Figure 2. All events are labelled with the same action a, arrows represent
causality relation ⊳ and the dashed line represents conflict relation #. The
depicted pairs of LESs are clearly not hp-bisimilar: S1 6∼hp S2, S3 6∼hp S4, as

13

Spoiler wins by playing e′1, e′4, e′3 in S2 in the first case, and by playing e1, e2,
e3, e4 in S3 in the second one; but they are in the greatest fixpoint of Fh (both
for h = hp and h = hhp).

3.2. Partitioning the nodes of a BPP definition

We now formulate the finer problems bpp-hhp-bisim, bpp-hp-bisim an-
nounced in Subsection 2.6.

Let ∆ = {Xi
def
= Ei | 1 ≤ i ≤ k} be a BPP definition; we use Act for Act(∆).

We assume that the defining expressions E1, E2, . . . , Ek are avail-
able as a forest, denoted by forest(∆), of k disjoint syntax trees
stree(E1), stree(E2), . . . , stree(Ek) (recall Example 3 in Subsection 2.4).
The nodes of (the trees in) forest(∆) which are labelled by non-variable
symbols are called the nodes of BPP definition ∆:

Nodes(∆) = {α | α is a node of forest(∆) with lab(α) ∈ Act ∪ {+, ‖,0}} .

Each α ∈ Nodes(∆) naturally represents a subexpression of some defining
expression Ei in ∆ (which is not a single variable); we denote this subexpression
by Eα. Every Eα can be viewed as a BPP process, and we can thus carry over
the notions for BPP processes to Nodes(∆). For example, we write unf (α) for
unf (Eα), and α ∼h β whenever Eα ∼h Eβ . We also write LES(α) when meaning
LES(unf (α)).

We now define our central computational problems.
bpp-hhp-bisim (for h = hhp) and bpp-hp-bisim (for h = hp):

Input: A BPP system ∆ .

Output: The partition of Nodes(∆) into equivalence classes of ∼h, denoted
by Ph(∆).

Note that Xi ∼h α where α = root(stree(Ei)). Thus the problems from Sub-
section 2.6 are indeed subsumed by bpp-hp-bisim and bpp-hhp-bisim though
we have not included variable occurrences in Nodes(∆).

For complexity analysis we note that the cardinality of Nodes(∆) coincides
with the number of occurrences of symbols from Act ∪ {+, ‖,0} in ∆, and so it
is bounded by n = size(∆). The size of forest(∆) is thus O(n).

Convention. For simplicity we define size(T) for a finite tree T as the num-
ber of its nodes. In our algorithms we assume that (the syntax trees of) BPP
expressions are represented by flexible tree-like data structures (with pointers).
We tacitly use the fact that an expression can be parsed and that the corre-
sponding data structure can be constructed in time O(ℓ) where ℓ is the length
of the expression.

3.3. A general scheme for solving bpp-hp-bisim and bpp-hhp-bisim

The fixpoint characterization captured by Theorem 7 in Subsection 3.1 sug-
gests to use an adaptation of the standard greatest fixpoint computation. Let R0

denote the relation containing all pairs (S1,S2) of tree-like LESs, and consider

14

the sequence R0,R1,R2, . . . , where Ri+1 = Fh(Ri) for Fh being the depth-1
h-expansion function (defined before Theorem 7). The sequence is decreasing
in the sense that Ri+1 refines Ri, and obviously we have ∼h⊆ Ri (and hence
iso
= ⊆ Ri) for all Ri.

Now given a BPP definition ∆, let us consider the restrictions of Ri to the
finite set

NLES = {LES(α) | α ∈ Nodes(∆)} .

We thus get a sequence Q0,Q1,Q2, . . . of the equivalence relations on NLES such
that Qi = Ri ∩ (NLES× NLES).

We note that for each (depth-1) action node u in unf (α), where α ∈
Nodes(∆), we have that tree(child (u)) is isomorphic to unf (β) for some
β ∈ Nodes(∆). Hence for each depth-1 event e in LES(α) we have that
future(e) is isomorphic to LES(β) for some β ∈ Nodes(∆). Relation Qi+1 =
Ri+1 ∩ (NLES × NLES) is thus fully determined by relation Qi. This means
that the sequence Q0,Q1,Q2, . . . stabilizes, i.e., Qj = Qj+1 = . . . for some
j ≤ |Nodes(∆)|, thus reaching ∼h on NLES. If Pi denotes the partition on
Nodes(∆) induced by Qi (i = 0, 1, 2, . . .), we get Pj = Pj+1 = Ph.

This reasoning suggests an algorithm scheme computing P0,P1,P2, . . . suc-
cessively. To make this more precise, we introduce further definitions.

We recall that Nodes(∆) is the set of nodes in forest(∆) which are labelled
by non-variable symbols. The subset of action nodes is denoted by

ActNodes(∆) = {α ∈ Nodes(∆) | lab(α) ∈ Act(∆)}.

It is a bit unpleasant that α ∈ Nodes(∆) can have a child node u labelled with a
variable (u is thus a leaf) though variables do not appear as labels in unf (α). To
handle this technical problem, we imagine that a leaf labelled with Xi is, in fact,
a pointer to root(stree(Ei)), which belongs to Nodes(∆) due to our assumption
that variables in ∆ are guarded. We thus adapt the notation

child (α), child 1(α) and child2(α) on Nodes(∆):

if the respective result in forest(∆) is a node u labelled with Xi then we deem
it as replaced with root(stree(Ei)). Note that we can thus have child (α) = α;

e.g., when X
def
= a.X .

Recalling the suggested scheme of computing the sequence P0,P1,P2, . . .

of partitions on Nodes(∆), we observe that Pi+1 can be computed from Pi as
follows:

for each action node α we integrate the (equivalence) class
[child (α)]Pi

into the label of α, and solve the respective depth-1
games.

To formalize this, we first define ∆L, for an (action nodes) relabelling
L : ActNodes(∆) → A, to be the BPP system ∆L with forest(∆L) arising from
forest(∆) by changing the label of each α ∈ ActNodes(∆) to L(α).

15

For a partition P of Nodes(∆) we define the relabelling
L(P) : ActNodes(∆) → Act(∆) × P so that

L(P)(α) = (lab(α), [child (α)]P) .

∆L(P) can be viewed as imposing the following constraint on Duplica-
tor’s moves in the depth-1 h-game on α1, α2 ∈ Nodes(∆) (i.e., on
LES(unf (α1)), LES(unf (α2))): whenever Spoiler plays an action node u, Dupli-
cator must respond with a node u′ which has the same label as u and, moreover,
belongs to the same class of partition P .

Let ∼1
h denote the equivalence on LESs such that S1 ∼1

h S2 iff Duplicator
has a winning strategy in depth-1 h-game played on S1,S2; equivalence ∼1

h is
extended to process trees, BPP processes, and elements of Nodes(∆) in the
obvious manner. Let P1

h denote the partition of Nodes(∆) induced by ∼1
h.

Assuming effective procedures for computing P1
h (for both h = hhp and h = hp),

the problems bpp-hhp-bisim and bpp-hp-bisim can thus be solved by means
of the following scheme; here PART-NODES is a program variable representing a
partition of Nodes(∆) (initialized to the coarsest, i.e. one-class, partition).

PART-NODES := {Nodes(∆)}
repeat

PART-NODES := P1
h(∆L(PART-NODES))

until a fixpoint PART-NODES = P1
h(∆L(PART-NODES)) is reached

Ph(∆) := PART-NODES

(2)

The body of the cycle is obviously performed less than n times where n =
size(∆). Hence, to obtain a polynomial-time algorithm for deciding ∼h on
BPP it is sufficient to construct a polynomial-time algorithm for deciding ∼1

h.
The approaches for computing P1

h(∆) will differ for h = hhp and h = hp; the
algorithms will be described in Sections 4 and 5. Nevertheless, in both cases
we use the notion of depth-1 trees; these are introduced and explored in the
following subsection.

3.4. Depth-1 trees

The depth-1 action nodes of a process tree T are the nodes corresponding
to depth-1 events in LES(T). (Thus all predecessors of a depth-1 action node
are labelled by + or ‖.) A process tree T is a depth-1 tree iff all action nodes
of T are leaves (which also means that all action nodes of T are depth-1 action
nodes).

Observation 9. There is no causal dependency between (different) events in
LESs associated to depth-1 trees.

The depth-1 tree corresponding to a process tree T , denoted dot(T), is ob-
tained from T by removing all successors of each depth-1 action node.

We observe that deciding ∼1
h on (general) process trees can be viewed as

deciding ∼h on the corresponding depth-1 trees:

16

Observation 10. For any process trees T1, T2 we have T1 ∼1
h T2 iff dot(T1) ∼h

dot(T2).

For α ∈ Nodes(∆) we define dot(α) as dot(unf (α)). Since variables in the
definitions in ∆ are guarded, dot(α) is finite and can be constructed as follows
(recall the construction of unf (α) from Subsection 2.4):

1. Take a copy of stree(Eα) as the current tree CT .

2. Replace the leaves of CT labelled with variables with the corresponding
right hand sides (i.e., leaf u labelled with Xi is replaced with a copy of
stree(Ei)). Let CT ′ be the resulting tree.

3. In CT ′ remove all successors of depth-1 action nodes.

The construction implies the bound in the following proposition.

Proposition 11. Given a BPP system ∆ with size(∆) = n, we have
size(dot(α)) < n2 for each α ∈ Nodes(∆).

A corollary is that for obtaining polynomial-time algorithms solving bpp-

hhp-bisim and bpp-hp-bisim it is sufficient to have polynomial-time algorithms
for deciding ∼hhp and ∼hp on finite depth-1 trees.

It is technically convenient to deal with depth-1 trees that are of certain
restricted form, which are called normalized depth-1 trees. Formally, a depth-1
tree is normalized if

• either it is trivial, which means that it is a singleton tree labelled with 0
(its associated LES is empty),

• or it has no 0-labelled nodes and each node labelled with + or ‖ has at
least two children (and thus the set of all its action nodes coincides with
the set of all its leaves).

It follows from Observation 4 that each finite process tree can be easily
changed to become normalized without affecting the associated LES. In fact,
the corresponding modifications can be performed directly on ∆. We say that a
BPP system ∆ is normalized if the only occurrences of 0 in (equations of) ∆ are
those in subexpressions of the form a.0 where a ∈ Act . A natural transformation
of a BPP system ∆ into a normalized ∆′ can be described as follows:

Starting with ∆, repeat the following two steps until no change oc-
curs:

• If there is a subexpression of the form 0 + E , E + 0 ,
0 ‖ E , or E ‖ 0 , replace it by E.

• If there is an equation X
def
= 0 , remove it and replace

each occurrence of X in the other equations by 0.

17

Obviously, size(∆′) ≤ size(∆) and the transformation can be done in time
O(n2) (or even O(n) if an efficient implementation is used). We can naturally
view Nodes(∆′) as a subset of Nodes(∆), and observe that LES(α) remains unaf-
fected for each α ∈ Nodes(∆′). (Each node β ∈ Nodes(∆) which is removed by
this transformation either has an empty event structure or is naturally mapped

to some node α ∈ Nodes(∆′) such that LES(α)
iso
= LES(β).)

Observation 12. For a normalized ∆, each dot(α) (α ∈ Nodes(∆)) is normal-
ized.

Convention. In the rest of the paper, we always assume that BPP systems
are normalized and that depth-1 trees are finite and normalized.

We use Dots(∆) to denote the set of depth-1 trees obtained from ∆, i.e.,

Dots(∆) = {dot(α) | α ∈ Nodes(∆)} .

To construct all trees in Dots(∆), we could use the construction described before
Proposition 11, successively for all α ∈ Nodes(∆). Nevertheless, this would
lead to a lot of unnecessary repetitive computation since any proper subtree
T1 of any T ∈ Dots(∆) is obviously isomorphic to some T ′ ∈ Dots(∆) (where
size(T ′) < size(T)).

This observation suggests the following (more efficient) procedure that con-
structs all trees in Dots(∆) using a bottom-up approach. The procedure also
equips each node u of a tree in Dots(∆) with (a pointer to) the corresponding
(BPP definition) node

node∆(u) ∈ Nodes(∆)

such that tree(u) and dot(node∆(u)) are isomorphic.
Construction of the depth-1 trees in Dots(∆):
Start with all (data structures) dot(α) as undefined.

1. For each node α with lab(α) ∈ ({0} ∪ Act) construct (and thus define)
dot(α) as a single node u labelled by lab(α), with node∆(u) = α.

2. Repeat the following step until dot(α) is defined for each α ∈ Nodes(∆):

Take some α ∈ Nodes(∆) (with lab(α) ∈ {+, ‖}) such that dot(α) is
undefined but dot(α1) and dot(α2) for α1 = child1(α), α2 = child 2(α),
have been already constructed, and do:

(a) Construct dot(α) by creating a fresh node u and two (fresh) copies
T1, T2 of dot(α1), dot(α2), respectively, and putting child1(u) =
root(T1), child2(u) = root(T2). Put node∆(u) = α.

(b) Since Ti (i ∈ {1, 2}) is a copy of dot(αi), each node v ∈ Ti is naturally
mapped to image(v) ∈ dot(αi). The mapping node∆ on Ti is also
inherited from dot(αi): put node∆(v) = node∆(image(v)).

(c) For each v ∈ T1 put neighbour (v) = α2, and for each v ∈ T2 put
neighbour (v) = α1.

18

Remark. The ‘pointers’ image and neighbour are used in the algorithm in Sec-
tion 5, and only for action nodes; moreover, neighbour (v) plays a role only when
lab(α) = ‖. Nevertheless, it makes no harm to define these pointers for all nodes.

We highlight the following properties of node∆:

Observation 13. For all α ∈ Nodes(∆) and u ∈ dot(α):

1. tree(u) is isomorphic to dot(node∆(u));

2. if lab(u) ∈ {+, ‖} then tree(child i(u)) is isomorphic to
dot(child i(node∆(u)), for i ∈ {1, 2}.

It is easy to check that the above described construction of Dots(∆) can
be done in time O(n3) (where n = size(∆)). The following proposition is also
straightforward; it summarizes what we presuppose for our complexity analysis
later on.

Proposition 14. There is an algorithm which performs the following tasks (1)
and (2) in time O(n2), and tasks (3) and (4) in time O(n3).

1. Order the elements of Nodes(∆) into a sequence α1, α2, . . . , αN , where
N = |Nodes(∆)|, such that size(dot(αi)) ≤ size(dot(αj)) whenever i < j.

2. For i = 1, 2, . . . , N : if lab(αi) ∈ Act then attach a pointer from αi to
child (αi); if lab(αi) ∈ {+, ‖} then attach pointers from αi to child1(αi)
and child2(αi).

3. Construct Dots(∆), i.e., all trees dot(αi) for i = 1, 2, . . . , N .

4. Integrate into the construction of each dot(αi) the pointers image(u) and
neighbour (u), for all u ∈ actnodes(dot(αi)), as demonstrated above.

Our algorithm for computing Phhp(∆) will assume an initial computing
phase which comprises tasks (1) and (2). The initial phase of the algorithm
for computing Php(∆) will additionally comprise tasks (3) and (4). In fact, we
will only use the lists of actnodes(dot(αj)) for each j = 1, 2, . . . , N , accompa-
nied by the pointers image(u) and neighbour (u), but the idea of an explicit
construction of the whole trees dot(αj) does not increase the overall running
time. The structure of the depth-1 trees that we need to consider, while succes-
sively refining the partition of Nodes(∆), will never change; the algorithms will
only be updating the labelling of the action nodes.

We finish by examining the transitions, i.e., the (forward) moves in the h-
game, on depth-1 trees; we describe them in a form useful for Section 5 and
(partly) for Section 4.

We recall that the configurations of a depth-1 tree T correspond to the
subsets of actnodes(T) with no two conflicting nodes (since the action nodes
are causally unrelated in depth-1 trees). Hence u ∈ actnodes(T) is enabled in a
configuration C iff u 6∈ C and u is not in conflict with any u′ ∈ C.

19

We extend the notion of enabledness to subtrees of T . For v ∈ T we say that
tree(v) is enabled in C if each u ∈ actnodes(tree(v)) is enabled in C; tree(v) is a
maximal tree enabled in C if it is enabled in C and there is no v′ 6= v such that
v′ ⊳ v and tree(v′) is enabled in C. By

en-treesT (C) (or en-trees(C) when T is clear from context)

we denote the set of trees, i.e., the forest, containing all maximal trees enabled
in C. We note that en-treesT (C) = {T } for C = ∅.

Let us consider how we can compute en-treesT ({u}) where u ∈ actnodes(T);
we denote en-treesT ({u}) as res(T, u) (the result of performing u in T).

• If T = {u} then res(T, u) = ∅.

• If lab(root(T)) = + and u ∈ tree(v) for v ∈ children(root(T)) then
res(T, u) = res(tree(v), u).

• If lab(root(T)) = ‖ and u ∈ tree(v) for v ∈ children(root(T)) then
res(T, u) = res(tree(v), u) ∪ {tree(v′) | v′ ∈ (children(root(T))−{v}) }.

Let us now consider a configuration C in T where en-trees(C) =

{T1, T2, . . . , Tk}. For any move C
u

−→ C′ and the tree Tj such that u ∈
actnodes(Tj) we have

en-trees(C′) = (en-trees(C) − {Tj}) ∪ res(Tj , u) .

Remark. As there is no proper causality in depth-1 trees, ∼hp on such trees
is essentially the (interleaving) bisimilarity between configurations, which are
viewed as states of the induced labelled transition system. We also note that
the number of configurations of a depth-1 tree T may be exponential wrt size(T).
We return to this issue in Section 5.

4. Deciding hhp-bisimilarity on BPP in O(n3 log n)

In this section we show a polynomial-time algorithm for bpp-hhp-bisim.
We also demonstrate that hp- and hhp-bisimilarity coincide on the so-called
simple BPP processes, a usual normal form when interleaving equivalences are
considered.

Our algorithm for bpp-hhp-bisim follows the scheme (2) from Section 3.
We thus concentrate on constructing P1

hhp(∆) or, more generally, on deciding
hhp-bisimilarity on (normalized) depth-1 trees. We recall that all leaves in such
trees are action nodes while all other nodes are labelled with + or ‖.

Convention. We tacitly ignore the trivial trees (i.e., the singleton trees
labelled with 0) since deciding if T1 ∼hhp T2 is trivial when one of T1, T2 is
trivial.

We say that a depth-1 tree T is in
“

+

‖

”

-alternating form if the following
conditions hold:

20

• each node labelled with + has two or more children but none of them is
labelled with + ,

• each node labelled with ‖ has two or more children but none of them is
labelled with ‖ .

Proposition 15. There is a polynomial-time algorithm transforming any

depth-1 tree T into a tree T ′ in the
“

+

‖

”

-alternating form such that LES(T)
iso
=

LES(T ′).

Proof. It suffices to realize that when lab(u) = lab(v) = + for v ∈ children(u)
then we can remove v (with its adjacent edges) and include children(v) into
children(u) (by adding the appropriate edges); similarly we handle the case
lab(u) = lab(v) = ‖. �

We say that a depth-1 tree T is in

the TCF form, i.e., the trivial choice free form,

if it is in the
“

+

‖

”

-alternating form and the subtrees rooted in the children of
a choice node are pairwise non-isomorphic. (We refer to the usual notion of
isomorphism between unordered labelled trees.)

Proposition 16. There is a polynomial-time algorithm which transforms a
depth-1 tree T into a depth-1 tree tcf (T) in the TCF form such that tcf (T) ∼hhp

T and size(tcf (T)) ≤ size(T).

Proof. Recalling the standard polynomial-time algorithms for solving tree iso-
morphism (see, e.g., [35]), it is clear that we can use the bottom-up approach
(from leaves to the root) to transform a depth-1 tree T in the

“

+

‖

”

-alternating
form into the TCF form. We note that when a choice node with only one child
arises, we can just replace it with this child. The rest follows from Proposi-
tion 15 and the construction in its proof.
�

Lemma 17. Let T, T ′ be depth-1 trees in the TCF form. Then T ∼hhp T ′ iff
T and T ′ are isomorphic.

This crucial lemma thus suffices for establishing the existence of a
polynomial-time algorithm for bpp-hhp-bisim; Subsection 4.2 suggests an ef-
ficient implementation.

Remark. Lemma 17 does not hold for hp-bisimilarity (i.e., when ∼hhp is replaced
with ∼hp); cf. Example 5.

21

4.1. Proof of Lemma 17

One implication is trivial: if T and T ′ are isomorphic then obviously T ∼hhp

T ′. It thus remains to show that if T, T ′ are any depth-1 trees in the TCF form
which are not isomorphic then Spoiler has a winning strategy in the hhp-b game
on T, T ′; we denote such a strategy as (root(T), root(T ′))-strategy.

We proceed by induction on the sum size(T) + size(T ′). We thus assume
that the statement of Lemma holds for all T1, T

′
1 with size(T1) + size(T ′

1) ≤ ℓ,
and we show that there is a (u0, u

′
0)-strategy (a winning strategy of Spoiler) for

the roots u0 = root(T), u′
0 = root(T ′) of two (fixed) non-isomorphic trees T, T ′

in the TCF form with size(T) + size(T ′) = ℓ + 1.
We first prove the following claim.

Claim 18. If one of T, T ′, say T , contains a non-root node v with lab(v) ∈
{+}∪Act such that there is no v′ in the other tree (in T ′ in our case) for which

tree(v)
iso
= tree(v′) then Spoiler has a winning (u0, u

′
0)-strategy.

Proof. Let us assume such v ∈ T . Spoiler can obviously play a nonempty
sequence of moves in T so that he reaches a configuration C in T such that
en-trees(C) = {tree(v)}. Duplicator has to answer by a nonempty sequence of
moves in T ′, and the play thus reaches a position (C, f, C′) (if Duplicator has
not lost so far). We now deal with all possibilities for en-trees(C′).

1. en-trees(C′) = ∅: Spoiler wins since at least one action node (a leaf of
tree(v)) is enabled in C.

2. en-trees(C′) = {tree(v′)} for some v′ ∈ T ′: since tree(v) and tree(v′)
are non-isomorphic and size(tree(v))+ size(tree(v′)) < size(T)+ size(T ′),
Spoiler can follow by using his winning (v, v′)-strategy whose existence is
guaranteed by the induction hypothesis.

3. en-trees(C′) contains at least two trees: Let T1 be the tree
par (en-trees(C′)) (cf. the Convention after Observation 4 in Subsec-
tion 2.5) and let T ′

1 = tcf (T1) (cf. Prop. 16). The tree T ′
1 obviously

has the root labelled with ‖; therefore T ′
1 is not isomorphic to tree(v)

(where lab(v) ∈ {+} ∪ Act) and size(tree(v)) + size(T ′
1) < size(T) +

size(T ′) . Hence the induction hypothesis implies that Spoiler has a win-
ning (v, root(T ′

1))-strategy; he can apply (the analogue of) this strategy
to win from the current position (C, f, C′) in the hhp-b game on (T, T ′).

�

We thus further assume that our fixed T, T ′ do not satisfy the assumption
of Claim 18 (i.e., each non-root action node and each non-root choice node in
T has an isomorphic ‘counterpart’ in T ′, and vice versa).

We now consider all possible values of lab(u0) and lab(u′
0) (up to symmetry);

recall that T = tree(u0) and T ′ = tree(u′
0).

22

• Both lab(u0) and lab(u′
0) are actions:

Since T, T ′ are non-isomorphic, we have lab(u0) 6= lab(u′
0); then Spoiler

can play any of u0, u
′
0 and wins.

• lab(u0) = a, lab(u′
0) = ‖:

Spoiler can perform a sequence of two (forward) moves in T ′; this can not
be done in T .

• lab(u0) = a, lab(u′
0) = +:

All action nodes in tree(u′
0) have label a (otherwise Claim 18 would apply),

and u′
0 has at least two children with non-isomorphic subtrees. One of

these children is thus labelled by ‖ and Spoiler wins as in the previous
case.

• lab(u0) = +, lab(u′
0) = ‖:

Since u0 has at least two children (with non-isomorphic subtrees), there
is some u1 ∈ children(u0) such that tree(u1) and tree(u′

0) are non-
isomorphic, and so Spoiler has a winning (u1, u

′
0)-strategy. This strategy

starts with some move v.

If v ∈ tree(u1) then Spoiler can start with v in the game from
(tree(u0), tree(u′

0)), and the play can thus evolve exactly as when Spoiler
uses (u1, u

′
0)-strategy.

So let us suppose that v ∈ tree(u′
0) and let u′

1 be the node in children(u′
0)

such that v ∈ tree(u′
1). Spoiler can use the following strategy on

(tree(u0), tree(u′
0)): He starts with some u ∈ tree(u1) and Duplicator

answers with some u′ ∈ tree(u′
0); let u′

2 be the node in children(u′
0) for

which u′ ∈ tree(u′
2). There are several cases:

1. u′ = v (and thus u′
2 = u′

1): the play can further evolve exactly as
when Spoiler uses the (u1, u

′
0)-strategy.

2. u′
2 6= u′

1: Spoiler plays v in tree(u′
1), Duplicator answers with some

move in tree(u1), Spoiler backtracks the pair (u, u′), and the play can
again evolve as when Spoiler uses the (u1, u

′
0)-strategy.

3. u′
2 = u′

1 but u′ 6= v: Spoiler plays some u′′ ∈ tree(u′
3) for some u′

3 ∈
children(u′

0) such that u′
3 6= u′

1; Duplicator answers with some move
in tree(u1), and Spoiler backtracks the pair (u, u′). The situation is
now the same as in case (2) (one performed move in tree(u1) and one
performed move in tree(u′

3) where u′
3 6= u′

1), and Spoiler wins again.

• lab(u0) = +, lab(u′
0) = +:

Since the subtrees rooted in the children of u0 are pairwise non-isomorphic
and the subtrees rooted in the children of u′

0 are pairwise non-isomorphic,

23

we can assume that some u1 ∈ children(u0) has the property that tree(u1)
is non-isomorphic to each tree(u′), u′ ∈ children(u′

0); if necessary, we could
interchange u0 and u′

0 to achieve this. (This follows from the assumption
that T, T ′ are non-isomorphic.)

If lab(u1) ∈ Act then Spoiler can play u1 and obviously wins. (There is
no remaining (forward) move in T but there will be in T ′ after Duplicator
responds.)

So we assume lab(u1) = ‖ and let Spoiler use the following strategy on
(tree(u0), tree(u′

0)): He plays some u ∈ tree(u1), and Duplicator answers
with some u′ ∈ tree(u′

1) where u′
1 ∈ children(u′

0). If lab(u′
1) ∈ Act

then Spoiler wins by making another move in tree(u1). We thus assume
lab(u1) = lab(u′

1) = ‖.

We recall that Spoiler has a winning (u1, u
′
1)-strategy; the strategy starts

with some move v. We assume v ∈ tree(u1) (the case v ∈ tree(u′
1) is

similar):

1. If v = u, the play can evolve as when Spoiler uses the (u1, u
′
1)-

strategy.

2. If u and v belong to different subtrees rooted in the children of u1,
Spoiler plays v, Duplicator answers with some move in tree(u′

1), and
Spoiler backtracks the pair (u, u′); the play can further evolve as
when Spoiler uses the (u1, u

′
1)-strategy.

3. If u and v belong to the same subtree rooted in a child of u1, Spoiler
plays some u′′ in a subtree rooted in another child of u1, Duplicator
answers with some move in tree(u′

1), Spoiler backtracks move (u, u′),
and the situation is now as in the case (2).

• lab(u0) = ‖, lab(u′
0) = ‖:

Each node u ∈ children(u0) ∪ children(u′
0) is labelled by an element of

{+} ∪ Act and has an isomorphic ‘counterpart’ u′ (tree(u)
iso
= tree(u′))

in the other tree (since we assume that Claim 18 does not apply); this
also holds for u ∈ children(u0) ∪ children(u′

0) with the biggest size of
tree(u). This implies that there must be a pair u1 ∈ children(u0) and

u′
1 ∈ children(u′

0) for which tree(u1)
iso
= tree(u′

1); for v ∈ tree(u1)∪tree(u′
1),

let isom(v) denote the respective ‘isomorphic’ node in the other tree.

Since T, T ′ are not isomorphic, the trees T1 = T − tree(u1) and T ′
1 = T ′−

tree(u′
1) (transformed to the TCF form if necessary) are non-isomorphic

and smaller than T, T ′; so Spoiler has a winning strategy in the hhp-b game
on (T1, T

′
1). Spoiler can use this strategy in the game on (T, T ′), ignoring

the possible moves in tree(u1) and tree(u′
1). As long as Duplicator does

not use tree(u1) and tree(u′
1) for responses, everything goes smoothly (for

Spoiler). Let us now consider that Spoiler has played v ∈ T − tree(u1)
and Duplicator responds with v′ ∈ tree(u′

1) (the case of Spoiler playing in

24

T ′− tree(u′
1) and Duplicator responding in tree(u1) is symmetric). Spoiler

now performs v1 = isom(v′) (∈ tree(u1)). If Duplicator again responds
with some v′1 ∈ tree(u′

1) then Spoiler plays v2 = isom(v′1), etc. Since
the trees are finite, Duplicator eventually responds with some v′m ∈ T ′ −
tree(u′

1). Spoiler then continues as if his move v was responded by v′m in
the game on (T1, T

′
1). (However, in the actual game on (T, T ′), the current

position (C1, f, C2) is such that f(v) = v′, f(v1) = v′1, . . . , f(vm) = v′m.)
Thus Spoiler’s strategy is to apply his strategy for (T1, T

′
1) whenever the

last Duplicator’s move was in T1 or T ′
1, and to play an ‘isomorphic move’

otherwise.

An attention must be payed when the Spoiler’s strategy on (T1, T
′
1)

prescribes to backtrack by removing the pair (v, v′m); we note that he
can do a series of backtracking moves, removing the pairs (vm, v′m),
(vm−1, v

′
m−1),. . . , (v1, v

′
1),(v, v′). This is always possible since all action

nodes in depth-1 trees are maximal wrt the causal dependency. �

Remark. Lemma 17 allows to deduce various decomposition properties of (depth-
1) BPP processes wrt ∼hhp , such as those given in [25]. Here we only mention
a cancellation property: E ‖ E1 ∼hhp E ‖ E′

1 implies E1 ∼hhp E′
1.

4.2. An efficient implementation

In this subsection we describe an efficient algorithm which partitions
Nodes(∆) wrt ∼hhp .

In the description of the algorithm we use the following notation for mul-
tisets. A multiset M over a set P , i.e., an element of M(P), is a mapping
M : P → N. We write M1 ∪ M2 or M1 + M2 for the union of multi-
sets: (M1+M2)(p) = M1(p)+M2(p). The carrier of a multiset M is the set
set(M) = {p | M(p) ≥ 1}. This notation is also used in Section 5.

Theorem 19. There is an algorithm solving bpp-hhp-bisim (i.e., computing
Phhp(∆) for a given BPP system ∆) in time O(n3 log n).

We apply the partition-refinement scheme (2) from Section 3. Since we get
less than n refinements, where n = size(∆), the next lemma proves the above
theorem. The lemma assumes a preliminary computation phase, comprising
tasks (1), (2) in Proposition 14.

Lemma 20. Let ∆ be a BPP system where size(∆) = n. Partition P1
hhp(∆)

can be computed in time O(n2 log n).

Proof. We assume a fixed BPP system ∆ such that size(∆) = n and
|Nodes(∆)| = N (N < n); further we write just Nodes instead of
Nodes(∆). We also assume that the elements of Nodes are organized in a
sequence α1, α2, . . . , αN with ascending size(dot(αj)), and that the access to
child1(α), child 2(α) takes constant time.

25

We now describe an algorithm that processes all αj ∈ Nodes in the order
j = 1, 2, . . . , N , attaching a number class(αj) from {1, 2, . . . , N} to each of
them.
Any i in the range of class will represent (the ∼hhp-class of) a depth-1 tree Ti in
the TCF form, and Ti, Ti′ will be non-isomorphic (and thus not hhp-bisimilar)
for i 6= i′.
We will also keep the property that if class(αj) is set to i then dot(αj) ∼hhp Ti

(i.e., Ti is the TCF form of dot(αj)). Thus dot(αj) ∼hhp dot(αk) iff class(αj) =
class(αk).
The algorithm maintains a variable last , initiated to 0, whose value means that
the numbers 1, 2, . . . , last have been already used in the range of class . We
use rlab(i) ∈ Act ∪ {+, ‖} to denote the label of root(Ti) and succtrees(i) to
represent a multiset over the set {1, 2, . . . , i−1} determining how many times
each T1, T2, . . . , Ti−1 appears as a subtree of Ti rooted in children(root(Ti)).
We now describe processing αj ; this is performed after α1, α2, . . . , αj−1 have
been processed, and thus also after child1(αj) and child 2(αj) have been pro-
cessed when lab(αj) ∈ {+, ‖}. It is straightforward to verify that the processing
maintains the above mentioned desired properties.

1. We first compute the values rlab(αj) and succtrees(αj) as follows:

• If lab(αj) ∈ Act then we put rlab(αj) = lab(αj) and succtrees(αj) =
∅.

• If lab(αj) = ‖ then we put rlab(αj) = ‖ and calculate succtrees(αj)
as follows (using auxiliary multiset variables y, z):

– If rlab(class(child 1(αj))) = ‖ then y := succtrees(child 1(αj));
otherwise y := {class(child 1(αj))}.

– If rlab(class(child 2(αj))) = ‖ then z := succtrees(child2(αj));
otherwise z := {class(child 2(αj))}.

– succtrees(αj) := y + z.

• If lab(αj) = + then we proceed as follows:

– If rlab(class(child 1(αj))) = + then y := succtrees(child1(αj));
otherwise y := {class(child 1(αj))}.

– If rlab(class(child 2(αj))) = + then z := succtrees(child 2(αj));
otherwise z := {class(child 2(αj))}.

– If |set (y + z)| > 1 then
rlab(αj) := + and succtrees(αj) := set (y + z);

otherwise, when set (y + z) is a singleton {i},
rlab(αj) := rlab(i) and succtrees(αj) := succtrees(i).

2. If the computed (rlab(αj), succtrees(αj)) equals to (rlab(i), succtrees(i))
for some i, 1 ≤ i ≤ last , then class(αj) := i. Otherwise we perform
last := last +1, class(αj) := last , rlab(last) := rlab(αj), succtrees(last) :=
succtrees(αj).

26

The multiplicity of each element in succtrees(αj) is less than size(dot(αj))
and thus less than n2 (recalling Proposition 11). Hence each such multiplicity
can be represented by using O(log n) bits when written in binary.
Step (1), i.e., computing rlab(αj) and succtrees(αj), can thus be done in time
O(n log n) (or O(n) when we use the unit cost comlexity model).
In step (2) the algorithm needs to find the corresponding i in {1, 2, . . . , last}
for the computed rlab(αj) and succtrees(αj), or to conclude that there is no
such i. One way to implement this step efficiently is to maintain a binary tree B
where each i ∈ {1, 2, . . . , last} has a corresponding branch which is a binary
description of the triple (rlab(i), succtrees(i), i) (when read from the root to the
leaf); each branch thus has length O(n log n). Finding if a branch in B starts
with the description of (rlab(αj), succtrees(αj)), and reading i if yes, and adding
a new branch if not, can be done in time O(n log n).
Hence processing each αj , j ∈ {1, 2, . . . , N} (N < n), is done in time O(n log n),
and thus the overall time of the algorithm is in O(n2 log n). �

4.3. Simple BPP

We now focus on BPP processes in a (‘Greibach’) normal form which is usu-
ally used when (interleaving) bisimilarity is considered. We call such (‘normal
form’) processes simple BPP processes, SBPP in short [22]. (They have been
also introduced in [2], under the name BPPg.) Following [22], we define SBPP
expressions by the grammar:

P ::= X | S | P1 ‖ P2

where S stands for an initially sequential expression given by the following
grammar:

S ::= 0 | a.P | S1 + S2 .

Thus SBPP restricts the mixture of choice and parallel composition: general
summation is replaced by guarded summation. In particular, this excludes pro-
cesses such as (P1 ‖ P2) + P3.

An SBPP system ∆ is a BPP system {Xi
def
= Pi | 1 ≤ i ≤ k} where all Pi

are SBPP expressions (over Act(∆) and Var(∆)). An SBPP process is a pair
(P, ∆) where ∆ is an SBPP system and P is an SBPP expression over Act(∆)
and Var(∆).

We now show that hp-bisimilarity coincides with hhp-bisimilarity on SBPP.
This implies that when non-interleaving equivalences are considered, SBPP pro-
cesses form a strictly smaller class than BPP processes.

In view of the characterizations from Section 3, it is sufficient to explore
depth-1 SBPP trees, which correspond to depth-1 SBPP expressions, described
by the following syntax:

P ::= 0 | S | P1 ‖ P2 S ::= a.0 | S1 + S2 .

Let us analyze how tcf (T) (from Proposition 16) for a depth-1 SBPP tree T

may look like. We say that T is a factor if it is a singleton tree (i.e., an action

27

node), or lab(root(T)) = + and all u ∈ children(root(T)) are action nodes with
pairwise different labels. We can now easily verify that tcf (T) for a depth-1
SBPP tree T is either a factor, or lab(tcf (T)) = ‖ and the subtrees rooted in
children(root(tcf (T))) are factors.
It is now straightforward to show the following analogue of Lemma 17.

Lemma 21. Let T, T ′ be depth-1 SBPP trees in the TCF form. Then T ∼hp T ′

iff T and T ′ are isomorphic (and thus iff T ∼hhp T ′).

Proof. If T, T ′ are non-isomorphic depth-1 SBPP trees in the TCF form and
T is a factor then Spoiler obviously wins : when T ′ is a factor then there is an
action a appearing in just one of T, T ′, and if lab(root(T ′)) = ‖ then a sequence
of two moves can be performed in T ′, but not in T .
In the remaining case, with lab(root(T)) = lab(root(T ′)) = ‖, we can proceed by
induction on size(T)+size(T ′) as in the proof of Lemma 17: we get an analogue
of Claim 18 in that proof and then continue as in the case lab(u0) = lab(u′

0) = ‖
there (but in a simpler manner since we have no backtracking moves to simulate).

�

The previous lemma, together with the scheme (2) from Section 3, shows
that Php(∆) = Phhp(∆) for any SBPP system ∆; this implies the following
theorem.

Theorem 22. Two SBPP processes are hp-bisimilar iff they are hhp-bisimilar.

5. Deciding hp-bisimilarity on BPP in O(n6)

Recalling the problem bpp-hp-bisim, we aim at showing a polynomial-
time algorithm which, given a BPP system ∆, constructs the partition Php

of Nodes(∆). We first show that there is such a polynomial-time algorithm,
and then we demonstrate in detail that Php can be constructed in time O(n6)
(where n = size(∆)).

In Section 3 we have presented the scheme (2) suggesting that Php can
be computed by successive refinements, starting with the one-class partition
{Nodes(∆)} and using the depth-1 hp-game for refinement. It is thus sufficient
to show a polynomial-time algorithm for deciding ∼hp on depth-1 trees.

We note that each depth-1 tree T naturally determines the

labelled transition system LTS (T) corresponding to T

where the configurations of T are states; we have C
lab(u)
−→ C′ in LTS (T) when

C
u

−→ C′ in T . LTS (T) is finite, with possibly exponentially many states wrt
size(T), and is acyclic (we do not have any ‘backtracking moves’ here). We have
already mentioned the obvious connection to the (interleaving) bisimilarity ∼,
captured by the following proposition.

28

Proposition 23. Given two depth-1 trees T1, T2, we have T1 ∼hp T2 iff the
configuration C1 = ∅ of T1 is bisimilar with C2 = ∅ of T2 (in the disjoint union
of LTS (T1) and LTS (T2)).

(Nontrivial normalized) depth-1 trees naturally correspond to normalized
depth-1 BPP processes defined by

E ::= a.0 | E + E | E ‖ E .

Each (normalized) depth-1 BPP process E is obviously normed, i.e., from each
E′ that is reachable from E (E′ is derived from E by the SOS rules (1) in Sec-
tion 2) we can reach (a process equivalent to) 0. The existence of a polynomial-
time algorithm for hp-bisimilarity on depth-1 trees thus follows from the results
for bisimilarity on normed BPP processes [28, 31].

Remark. It was shown in [31] that bisimilarity can be decided in time O(n3)
on normed BPP processes, assuming the processes are in ‘Greibach normal
form’; as already discussed in Subsection 4.3, such a form is the usual form
in the interleaving setting. Nevertheless, transforming the general form BPP
processes considered in this paper into this form would incur a further increase
of the exponent, and the overall complexity bound for bpp-hp-bisim achieved by
a direct application of the published results and scheme (2) from Section 3 would
be O(n9). Moreover, no real insight into the specific case of hp-bisimilarity on
BPP processes would be gained in this manner.

In what follows, we provide a self-contained algorithm which implements the
approach outlined above by using various optimization steps based on a deeper
insight. It allows to derive the better upper bound O(n6).

Recalling LTS (T) for a depth-1 tree T , it is convenient to view a state,
i.e. a configuration, C as the forest en-treesT (C) (defined in Subsection 3.4);
the initial state ∅ thus corresponds to {T }. The transitions from a state s =
{T1, T2, . . . , Tm} correspond to the action nodes in the trees Tj, j = 1, 2, . . . , m.

For u ∈ actnodes(Tj) we have s
u

−→ s′ where s′ = (s − {Tj}) ∪ res(Tj , u); this

corresponds to s
lab(u)
−→ s′ in LTS (T).

We now recall that our primary goal is to show how to partition Nodes(∆)
wrt ∼hp , which comprises partitioning the trees dot(α1), dot(α2), . . . , dot(αN)
wrt ∼hp . We observe that each state s = {T1, T2, . . . , Tm} in LTS(dot(αj))
is isomorphic, and thus (hp-)bisimilar, with the forest s∆ arising from s by
replacing each Tj with a copy of dot(node∆(root(Tj))). This reasoning naturally
suggests to represent the states of LTS(dot(αj)) (for all αj ∈ Nodes(∆)) as
multisets over Nodes(∆); each such multiset M : Nodes(∆) → N represents the
set containing precisely M(α) copies of dot(α) for each α ∈ Nodes(∆). For
u ∈ actnodes(dot(α)) where M(α) ≥ 1 we naturally define

M
u

−→ M ′ where M ′ = M − {α} +
∑

T∈res(dot(α),u)){node∆(root(T))}.

In fact, we have just described how a special Petri net N∆ can be constructed
for a given ∆ (not depending on the actual labelling of ActNodes(∆)). It is thus
useful to recall and use some Petri net terminology.

29

By a BPP-net (also called a communication-free Petri net [36]) we mean
a tuple N = (P,Tr , pre, post) where P is a finite set of places, Tr a finite
set of transitions, and pre : Tr → P and post : Tr → M(P) are functions
attaching the input place pre(t) and the multiset post(t) of output places to
each transition t (recall that M(P) denotes the set of all multisets over P). A
marking M is a multiset of places. A transition t is enabled in M if M(pre(t)) ≥
1. An enabled transition can be performed which results in M ′ = M−{pre(t)}+

post(t); we write M
t

−→ M ′. Any pair (N, λ) where N = (P,Tr , pre, post)
is a BPP-net and λ : Tr → A is a transition labelling represents a labelled

transition system LTS (N, λ) = (M(P), A,−→) where M
a

−→ M ′ iff M
t

−→ M ′

for some t ∈ Tr such that λ(t) = a.
Given a BPP system ∆ with size(∆) = n, we define the BPP-net corre-

sponding to ∆ as

N∆ = (P,Tr , pre, post), where

• P = Nodes(∆),

• Tr = {u | u ∈ actnodes(dot(α)) for α ∈ Nodes(∆)},

• pre(u) = α and post(u) =
∑

T∈res(dot(α),u)){node∆(root(T))} for the

respective α (for which u ∈ actnodes(dot(α))).

We note that |P | < n, |Tr | < n3, and that N∆ is independent of the labelling
of action nodes, i.e., N∆L = N∆ for any L : ActNodes(∆) → A (recall the
definition of ∆L in Subsection 3.3).
In fact, we have already shown the next proposition (where ∼ denotes the
interleaving bisimilarity).

Proposition 24. Given a BPP system ∆, for any L : ActNodes→ A we have
α ∼1

hp β in ∆L iff {α} ∼ {β} in LTS(N∆, λ) where λ(u) = L(node∆(u)) for
each transition u.

We also note that the BPP net N∆ is acyclic, i.e., the underlying directed
graph whose nodes are the elements of P and Tr , and which contains an edge
(p, t) iff p = pre(t) and edge (t, p) iff p ∈ post(t), is acyclic.
Recalling the pointers image(u) and neighbour (u) from Subsection 3.4, it is also
useful to observe the following.

Observation 25. For a transition u ∈ actnodes(dot(α)) of N∆:

post(u) =







∅ if α ∈ ActNodes(∆)
post(image(u)) if lab(α) = +
post(image(u)) + {neighbour(u)} if lab(α) = ‖

Subsection 5.1 shows a decision procedure for bisimilarity on acyclic BPP
nets, and Subsection 5.2 gives an efficient implementation by combining this
procedure with partition refinement according to scheme (2) in Section 3.

30

5.1. Deciding bisimilarity on acyclic BPP nets

We now briefly present the ideas from [31], in the simpler setting of acyclic
BPP nets. We consider a (fixed) acyclic BPP net N = (P,Tr , pre, post) and
a labelling λ : Tr → A. By M ∼ M ′ we denote that markings M, M ′ (multisets
over P) are bisimilar in LTS (N, λ).

A set K ⊆ Tr is a match-constraint (for (N, λ)) if the following holds:

given any markings M1, M2 such that M1 ∼ M2, if M1
t

−→ M ′
1 and M2

t′

−→ M ′
2

where λ(t) = λ(t′) and M ′
1 ∼ M ′

2 then K contains either both transitions t, t′ or
none of them. A partition T of Tr is a match-constraint-partition if each class
K of T is a match-constraint.
Any match-constraint-partition thus overapproximates the set of transition pairs
which can appear, as Spoiler’s move and Duplicator’s response, in a play of the
bisimulation game when Duplicator uses a winning strategy.
We define Tλ = {Ka | a ∈ A} where Ka = {t ∈ Tr | λ(t) = a}.

Observation 26. 1. Tλ is a match-constraint-partition.

2. Intersecting two match-constraint-partitions T1, T2 results in a match-
constraint-partition (where each class K is the intersection of some class
K1 ∈ T1 with some class K2 ∈ T2).

The idea for the algorithm is to successively refine T0 = Tλ, getting finer and
finer T1, T2, T3, . . . , until a ‘final’ partition Ti, such that Ti = Ti+1 = Ti+2 =
· · · , is reached. The refining (strengthening of the constraints) is inspired by
(changes of) the ‘distance-to-disabling’ functions, which were introduced in [20].
Given K ⊆ Tr , dK(M) represents the distance to disabling K from the marking

M ; it is defined as the length d ≥ 0 of the shortest sequence M0
t1−→ M1

t2−→

. . .
td−→ Md where M0 = M and no transition from K is enabled in Md. We

note that there is always such d since N is acyclic.

Proposition 27. If K is a match-constraint and M ∼ M ′ then dK(M) =
dK(M ′).

Proof. Suppose M ∼ M ′ and dK(M) < dK(M ′). Then Spoiler can make
dK(M) moves from M to get M1 where no t ∈ K is enabled. Duplicator has
to be able to perform dK(M) moves from M ′ to get M ′

1 where M1 ∼ M ′
1.

Necessarily, some t′ ∈ K is enabled in M ′
1; this transition can be now played by

Spoiler and there is no available transition in K for Duplicator to respond —
a contradiction with the definition of the match-constraint. �

For a marking {p} we also write dK(p) instead of dK({p}); we also use

tr(p) to denote the set {t ∈ Tr | pre(t) = p}.

We now easily verify the next proposition.

Proposition 28. 1. dK(p) = 0 if tr(p) ∩ K = ∅ ,

31

2. dK(p) = 1 + min { dK(post(t)) | t ∈ tr(p) } if tr(p) ∩ K 6= ∅ ,

3. dK(M) =
∑

p∈P M(p) · dK(p) .

Acyclicity of a BPP net N suggests a straightforward way to compute dK(p)
for all p. We can order the places into a sequence p1, p2, . . . , pm so that i > j if
there is a path from pi to pj in the underlying graph of N . Hence if pi = pre(t)
then each pj ∈ post(t) satisfies j < i.
We can then compute dK(p1), dK(p2), . . . , dK(pm) successively, using Proposi-
tion 28.

We now look at the changes of dK-functions caused by concrete transitions.
Given K ⊆ Tr , we define the function δK : Tr → Z as follows (where Z denotes
the set of all integers):

δK(t) = dK(post(t)) − dK(pre(t)) .

Observation 29. If M
t

−→ M ′ then dK(M ′) = dK(M) + δK(t).

The following proposition is a means for refining match-constraint-partitions
(recall Observation 26(2)).

Proposition 30. If K ⊆ Tr is a match-constraint then partitioning Tr ac-
cording to δK (t, t′ are in the same class iff δK(t) = δK(t′)) yields a match-
constraint-partition.

Proof. Let us assume M1 ∼ M2, M1
t

−→ M ′
1, M2

t′

−→ M ′
2, where λ(t) = λ(t′)

and M ′
1 ∼ M ′

2. Proposition 27 implies dK(M1) = dK(M2) and dK(M ′
1) =

dK(M ′
2), hence δK(t) = δK(t′). �

We say that a match-constraint-partition T is final (for (N, λ)) if for any
t, t′ in the same class of T we have λ(t) = λ(t′) and ∀K ∈ T : δK(t) = δK(t′).

Proposition 31. Let T be a final partition. Then M ∼ M ′ iff ∀K ∈ T :
dK(M) = dK(M ′).

Proof. The “⇒” implication follows from Proposition 27. It thus suffices to
show that R = {(M, M ′) | ∀K ∈ T : dK(M) = dK(M ′)} is a bisimulation.

Let us assume (M1, M2) ∈ R and M1
t

−→ M ′
1; let K0 be the class of T containing

t. Since dK0
(M1) = dK0

(M2) > 0, there is some t′ ∈ K0 such that M2
t′

−→ M ′
2

for some M ′
2. Since T is final, we have λ(t) = λ(t′) and ∀K ∈ T : δK(t) =

δK(t′). Recalling Observation 29, we get ∀K ∈ T : dK(M ′
1) = dK(M ′

2) and thus
(M ′

1, M
′
2) ∈ R. �

For the use in the next subsection, we finally observe the following.
We say that a labelling λ′ : Tr → A′ refines λ : Tr → A if partition Tλ′ defined
before Observation 26 is finer than Tλ.

Observation 32. If K is a match-constraint for (N, λ) then K is a match-
constraint for (N, λ′) for any λ′ refining λ.

32

5.2. An implementation of computing Php(∆)

The preceding discussion suggests the following algorithm ALG computing
Php(∆). Given a BPP system ∆, with size(∆) = n, the algorithm ALG can
construct the net N∆ = (P,Tr , pre, post) from Proposition 24. (Later we note
that the construction does not need to be done explicitly.)
The algorithm ALG uses (program) variables PART-NODES and PART-TRANS,
initialized with PART-NODES := {P} (= {Nodes(∆)}) and PART-TRANS := Tλ

where λ(u) = lab(node∆(u)).
In the beginning, all classes of PART-TRANS are unprocessed. The algorithm
ALG then repeats the following global step until all classes in (the current value
of) PART-TRANS are processed:

Global step:

1. Take an unprocessed class K in PART-TRANS and denote it as processed.

2. Compute dK(α) for each α ∈ P and δK(u) for each u ∈ Tr .

3. Refine PART-NODES according to the values dK(α).

4. Refine PART-TRANS: u and u′ in the same class are separated iff
child (node∆(u)) and child (node∆(u′)) are separated in PART-NODES or if
δK(t) 6= δK(t′).

5. Each newly arisen class K ′ of PART-TRANS is denoted as unprocessed.

The previous observations and propositions allow easily to verify the follow-
ing invariant:

• PART-TRANS is a match-constraint-partition for (N∆, λ′) where λ′(u) =
(lab(node∆(u)), [child (node∆(u))]PART-NODES), and

• if α, β are in different classes of PART-NODES then {α} 6∼ {β} in
LTS (N∆, λ′) and α 6∼hp β.

The algorithm ALG necessarily finishes with a final partition of Tr in
PART-TRANS; the final value of PART-NODES is the required Php.
We now recall a general fact, which bounds the number of the performed global
steps.

Proposition 33. Let U be a non-empty finite set, and let U1,U2, . . . be a se-
quence of partitions of U such that each Ui+1 is a refinement of Ui. Then
the total number of different (nonempty) classes in all these partitions is less
than 2|U |.

Proof. By induction on |U |. The case |U | = 1 is trivial, so suppose |U | > 1.
Wlog we can assume U1 = {U} and U2 = {U1, . . . , Uk} where k > 1. For each
i = 1, 2, . . . , k we have |Ui| < |U | and thus the projections of U2,U3, . . . on Ui

33

yield at most (2|Ui| − 1) different classes (by the induction hypothesis). So the
total number of different classes in U1,U2,U3, . . . is at most

1 +

k
∑

i=1

(2|Ui| − 1) = 1 + 2

k
∑

i=1

|Ui| − k = 1 + 2|U | − k < 2|U |

�

Corollary 34. Given ∆ with size(∆) = n, the algorithm ALG performs less
than n3 global steps.

We finish by showing that the algorithm ALG can do each global step in time
O(n3). We assume the preliminary phase comprised by Proposition 14; this
includes task (4) which enables to avoid constructing N∆ explicitly. Computing
dK and δK will be straightforward due to Observation 25.
The steps (3) and (4) (of the global step) can be surely done in O(n3): we
just note that for each α ∈ Nodes, each u ∈ Tr and each K ⊆ Tr we have
0 ≤ dK(α) < n2 and −1 ≤ δK(u) < n2, so we can use the bucket sort with O(n2)
buckets when we do the refinements.
It remains to show that step (2) (i.e., attaching the value dK(α) to each place α

and the value δK(u) to each transition u) can be done in O(n3). This is achieved
by processing α1, α2, . . . , αN successively; each αj is processed as follows:

• for each u ∈ actnodes(dot(αj)) we compute dK(post(u)):

– if lab(αj) ∈ Act then dK(post(u)) := 0,

– if lab(αj) = + then dK(post(u)) := dK(post(image(u))),

– if lab(αj) = ‖ then
dK(post(u)) := dK(post(image(u))) + dK(neighbour (u)),

• dK(αj) is computed:

– if actnodes(dot(αj)) ∩ K = ∅ then dK(αj) := 0,

– otherwise dK(αj) = 1 + min{dK(post(u)) | u ∈ actnodes(αj)},

• for each u ∈ actnodes(dot(αj)) we compute
δK(u) := dK(post(u)) − dK(αj) .

The algorithm ALG thus processes less than n nodes (places) αj , each having
less than n2 transitions u ∈ actnodes(dot(αj)); we thus derive the following
proposition and then the main theorem.

Proposition 35. The algorithm ALG performs a preliminary phase in O(n3)
and then less than n3 global steps, each taking time O(n3).

Theorem 36. There is an algorithm solving bpp-hp-bisim (i.e., computing
Php(∆) for a given BPP system ∆) in time O(n6).

34

References

[1] R. Milner, Communication and Concurrency, Prentice Hall, 1989.

[2] S. Christensen, Decidability and decomposition in process algebras, Ph.D.
thesis, Dept. of Computer Science, University of Edinburgh, UK (1993).

[3] R. Mayr, Process rewrite systems, Information and Computation 156 (1-2)
(2000) 264–286.

[4] J. Srba, Roadmap of Infinite Results, Vol. 2: Formal Models and Semantics,
World Scientific Publishing Co., 2004.

[5] R. v. Glabbeek, U. Goltz, Equivalence notions for concurrent systems and
refinement of actions, in: Proc. MFCS’89, Vol. 379 of LNCS, 1989, pp.
237–248.

[6] L. Aceto, Relating distributed, temporal and causal observations of simple
processes, Fundamenta Informaticae 17 (4) (1992) 369–397.

[7] I. Castellani, Bisimulations for concurrency, Ph.D. thesis, University of
Edinburgh (1988).

[8] P. Darondeau, P. Degano, Causal trees, in: Proc. ICALP’89, Vol. 372 of
LNCS, 1989, pp. 234–248.

[9] A. Kiehn, A note on distributed bisimulations, unpublished draft (1999).

[10] I. Castellani, Process algebras with localities, in: [37], Chapter 15, 2001,
pp. 945–1046.

[11] L. Aceto, History preserving, causal and mixed-ordering equivalence over
stable event structures, Fundamenta Informaticae 17 (1992) 319–331.

[12] S. Fröschle, Decidability of plain and hereditary history-preserving bisim-
ulation for BPP, in: Proc. EXPRESS’99, volume 27 of ENTCS, 1999.

[13] S. Lasota, Decidability of performance equivalence for basic parallel pro-
cesses, Theoretical Computer Science 360 (2006) 172–192.

[14] R. Gorrieri, M. Roccetti, E. Stancampiano, A theory of processes with
durational actions, Theoretical Computer Science 140(1) (1995) 73–94.

[15] A. Joyal, M. Nielsen, G. Winskel, Bisimulation from open maps, Informa-
tion and Computation 127 (1996) 164–185.

[16] S. Fröschle, T. Hildebrandt, On plain and hereditary history-preserving
bisimulation, in: MFCS’99, Vol. 1672 of LNCS, Springer-Verlag, 1999, pp.
354–365.

[17] M. Jurdziński, M. Nielsen, J. Srba, Undecidability of domino games and
hhp-bisimilarity, Information and Computation 184 (2003) 343–368.

35

[18] S. Fröschle, The decidability border of hereditary history preserving bisim-
ilarity, Information Processing Letters 93 (6) (2005) 289–293.

[19] J. Srba, Strong bisimilarity and regularity of Basic Parallel Processes is
PSPACE-hard, in: Proc. STACS’02, Vol. 2285 of LNCS, 2002.

[20] P. Jančar, Bisimilarity of Basic Parallel Processes is PSPACE-complete, in:
Proc. LICS’03, IEEE Computer Society, 2003, pp. 218–227.

[21] L. Jategaonkar, A. R. Meyer, Deciding true concurrency equivalences on
safe, finite nets, Theoretical Computer Science 154 (1996) 107–143.

[22] J. Esparza, A. Kiehn, On the model checking problem for branching time
logics and basic parallel processes, in: CAV’95, Vol. 939 of LNCS, Springer-
Verlag, 1995, pp. 353–366.

[23] K. Sunesen, M. Nielsen, Behavioural equivalence for infinite systems—
partially decidable!, in: ICATPN’96, Vol. 1091 of LNCS, Springer-Verlag,
1996, pp. 460–479.

[24] P. Jančar, Z. Sawa, On distributed bisimilarity over Basic Parallel Pro-
cesses, in: Proc. AVIS’05, 2005.

[25] S. Fröschle, S. Lasota, Decomposition and complexity of hereditary his-
tory preserving bisimulation on BPP, in: Proc. CONCUR’05, Vol. 3653 of
LNCS, Springer-Verlag, 2005, pp. 263–277.

[26] S. Fröschle, Composition and decomposition in true-concurrency, in:
V. Sassone (Ed.), Proc. FOSSACS’05, Vol. 3441 of LNCS, Springer, 2005,
pp. 333–347.

[27] S. Fröschle, Decidability and coincidence of equivalences for concurrency,
Ph.D. thesis, University of Edinburgh (2004).

[28] Y. Hirshfeld, M. Jerrum, F. Moller, A polynomial time algorithm for de-
ciding bisimulation equivalence of normed Basic Parallel Processes, Math-
ematical Structures in Computer Science 6 (1996) 251–259.

[29] S. Lasota, A polynomial-time algorithm for deciding true concurrency
equivalences of Basic Parallel Processes, in: Proc. MFCS’03, Vol. 2747
of LNCS, Springer-Verlag, 2003, pp. 521–530.

[30] S. Fröschle, S. Lasota, Normed processes, unique decomposition, and com-
plexity of bisimulation equivalences, in: Proc. Infinity’06, ENTCS, Elsevier,
2006, to appear.

[31] P. Jančar, M. Kot, Bisimilarity on normed Basic Parallel Processes can
be decided in time O(n3), in: R. Bharadwaj (Ed.), Proceedings of the
Third International Workshop on Automated Verification of Infinite-State
Systems – AVIS 2004, 2004.

36

[32] D. Park, Concurrency and automata on infinite sequences, in: P. Deussen
(Ed.), Theoretical Computer Science: 5th GI-Conference, Karlsruhe, Vol.
104 of LNCS, Springer-Verlag, 1981, pp. 167–183.

[33] C. Stirling, Bisimulation, model checking and other games, notes for Math-
fit Workshop on Finite Model Theory, University of Wales, Swansea (Jul.
1996).
URL http://www.dcs.ed.ac.uk/home/cps/mfit.ps

[34] M. Bednarczyk, Hereditary history preserving bisimulation or what is the
power of the future perfect in program logics, Technical report, Polish
Academy of Sciences, Gdańsk (1991).

[35] A. Aho, J. Hopcroft, J. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley Publishing Co., 1974.

[36] J. Esparza, Petri nets, commutative context-free grammars, and basic par-
allel processes, Fundamenta Informatica 31 (1) (1997) 13–25.

[37] J. Bergstra, A. Ponse, S. Smolka eds, Handbook of Process Algebra, Else-
vier, 2001.

37

