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Abstract

We present a general method for providDB-hardness of problems related to formal verification of one-counter
automata. For this we show a reduction of tha SUNSAT problem to the truth problem for a fragment of (Pres-
burger) arithmetic. The fragment contains only special formulas with one free variable, and is particularly apt for
transforming to simulation-like equivalences on one-counter automata. In this way we show that the membership
problem for any relation subsuming bisimilarity and subsumed by simulation preorfd€xlisrd (even) for one-
counternets(where the counter cannot be tested for zero). We also $hwhardness for deciding simulation
between one-counter automata and finite-state systems (in both directions), and for the model-checking problem
with one-counter nets and the branching-time temporal logic EF.
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1. Introduction

In concurrency theory, process is typically defined to be a state inteansition system, which is a
triple T = (S, 2, —) whereS is a set ofstates, X is a set ofactionsand— C § x X2 x S is atransition

relation. We write s - ¢ instead of(s, a, r) € —, and we extend this notation in the natural way to
elements of*. A stater is reachable from a state, writtens —* ¢, iff s X ¢ for somew € I*.

“This paper is based on results which previously appeared in [11,15].

* Corresponding author. Fax: +44-1792-295-708.

E-mail addressesPetr.Jancar@vsbh.cz (P. dan), tony@fi.muni.cz (A. K&era), F.G.Moller@swansea.ac.uk (F. Moller),
Zdenek.Sawa@vsb.cz (Z. Sawa).

1 Supported by the Grant Agency of the Czech Republic, Grant No. 201/03/1161.

0890-5401/$ - see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0890-5401(03)00171-8



2 P. Jartar et al. / Information and Computation 188 (2004) 1-19

The study of transition systems has a long and illustrious history in the guise of automata theory. A
great many classes of automata have been studied extensively, particularly in terms of the languages
which they describe. However, automata have found greater importance recently as process generators
rather than as language generators; they are now more often used to describe the behaviour of computing
systems rather than for describing the syntactic structure of languages.

Still, the standard classes of automata are finding their place in the study of system behaviours. For
example, context-free grammars form the basis of the Basic Process Algebra BPA of Bergstra and Klop
[3] as well as the Basic Parallel Process algebra BPP of Christensen [5]; these are both well-studied sub-
languages of the full Process Algebra PA [3]. Although most analyses in practice are carried out on finite
state system models, these wider classes of automata have found various applications. In particular, BPA
and pushdown automata (state-extended BPA) have been used for dataflow analysis of recursive proce-
dures, with particular applications to optimizing compilers [7]. This study has recently been extended to
one-counter BPA [4].

In this paper we consider processes generatednaycounter automata, nondeterministic finite-
state automata operating on a single counter variable which takes values fromithe $611, 2, . . .}.

Formally this is a tupled = (Q, X, §=, 87, gqo) where Q is a finite set otontrol states, > is a finite set
of actions,

5=:0x2—P(Qx{01) and
87 : 0 x2— PO x{-101}

are transition functions (where’P(M) denotes the power-set @f), andgp € Q is a distinguished
initial control states= represents the transitions which are enabled when the counter value is zero, and
8~ represents the transitions which are enabled when the counter value is pasisvaone-counter
net if and only if for all pairs(q, a) € Q x X we have that= (g, a) € §” (g, a).
To the one-counter automatof we associate the transition systéim = (S, 2, —), where S =
{p(n) : p € Q,n € N} and— is defined as follows:

a . n=0, (q,i)e€dé(p,a),or
p() = qn+i) i {n >0, (q,i) € (p,a).

Note that any transition increments, decrements, or leaves unchanged the counter value; and a decre-
menting transition is only possible if the counter value is positive. Also observe that whked the
immediate transitions gf(n) do not depend on the actual valuenofinally note that a one-counteet

can in a sense test if its counter is nonzero (that is, it can perform some transitions only on the proviso
that its counter is nonzero), but it cannot test in any sense if its counter is zero. For ease of presentation,
we understandinite-statesystems (corresponding to transition systems with finitely many states) to be
one-counter nets wheé& = §~ and the counter is never changed. Thus, the parfg oéachable from

p(i) andp(j) are isomorphic and finite for alf € Q andi, j € N.

Remark 1. The class of transition systems generated by one-counter nets is the same (up to isomor-
phism) as that generated by the class of labelled Petri nets with (at most) one unbounded place. The
class of transition systems generated by one-counter automata is the same (up to isomorphism) as that
generated by the class of realtime pushdown automata (i.e. pushdown automata svitansttions)

with a single stack symbol (apart from a special bottom-of-stack marker).
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The equivalence-checkingpproach to the formal verification of concurrent systems is based on the
following scheme: the specificatigh(i.e., the intended behaviour) and the actual implementdtioira
system are defined as states in transition systems, and then it is showratitat areequivalent There
are many ways to capture the notion of process equivalence (see, e.g., [23]); haiveutationand
bisimulationequivalence [19,21] are of special importance, as their accompanying theory has found its
way into many practical applications.

Given a transition systerfi = (S, 2, —), asimulation is a binary relatiorR C S x S satisfying the
following property: whenevegts, 1) € R,

if s > s’ thent > ¢/ for somet’ with (5", ') € R.

s is simulated by ¢, written s C ¢, iff (s,7) € R for some simulationk; ands and: are simulation
equivalent, writtens >~ ¢, iff s C ¢ and¢ C s. The union of a family of simulation relations is clearly
itself a simulation relation; hence, the relation being the union of all simulation relations, is in fact
the maximal simulation relation, and is referred to asshmilation preorder. A characteristic property

is thats C ¢ iff the following holds: ifs > s’ thens = ¢/ for somer’ with s’ C 7.

A bisimulation is a symmetric simulation relation, an@ndr arebisimulation equivalent, or bisim-
ilar, writtens ~ ¢, if they are related by a bisimulation.

Simulations and bisimulations can also be used to relate statif$avénttransition systems; formal-
ly, we can consider two transition systems to be a single one by taking the disjoint union of their state
sets.

Let P and Q be classes of processes. The problem of deciding whether a given psock#sis
simulated by a given proces®f Q is denoted byP C Q; similarly, the problem of deciding i and¢
are simulation equivalent (or bisimilar) is denoted®y~ O (or P ~ Q, respectively). The classes of all
one-counter automata, one-counter nets, and finite-state systems are dentteghdF, respectively.

In the model-checkingpproach to formal verification, one defines the desired properties of the im-
plementation as a formula in a suitable temporal logic, and then it is shown that the implementation
satisfies the formula. There are many temporal logics which can be classified according to various aspects
(see, e.g., [6,22] for an overview). The simplest (branching-time and action-based) temporal logic is
Hennessy-Milner logic (HML) [19]. The syntax is given by

du=true | G1ADP2 | =P | (a)®

Herea ranges over a countable alphabet of actions. Given a transition systermS, ~, —) and an
HML formula &, we inductively define theenotation of @, denoted[ @], which is the set of all states
of T where the formuldolds

[true]l = S
[P1 A P2l = [[P2] N [P2]]
[—2] =S -2

[@)@]={seS|TFteS:s>tAtel[P]}

As usual, we write = @ instead of € [@]. The operator dual ta:) is [a] defined byja]® = —(a)—.
The other propositional connectives are introduced in the standard way.

The logic EF is obtained by extending HML with tlgreachability) operator. Its semantics is defined
as follows:
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[00] = {seS|IteS:s—>tAtel[o]}

The formula{ @ can be phrased “thefexists aFuture state such thakt holds”; this justifies the “EF”
acronym. The dual operator tpis [J, defined byl(1® = =()—®. The logic EF can also be seen as a
natural fragment of CTL [6].

The state of the arfThe N' C A problem was first considered in [1], where it was shown that if
two one-counter net processes are relateddmgesimulation, then they are also related by a semilinear
simulation (i.e. a simulation definable in Presburger arithmetic), which suffices for semidecidability
of the positive subcase, and hence decidability (the negative subcase being semidecidable by standard
arguments.) A simpler proof was given later in [12] by employing certain “geometric” techniques which
allow you to conclude that the simulation preorder (over a given one-counter net) is itself semilinear.
Moreover, it was shown there that tbeC A problem is undecidable. The decidability of tHe~ A
problem was demonstrated in [8] by showing that the greatest bisimulation relation over the states of a
given one-counter automaton is also semilinear. The relationship between simulation and bisimulation
problems for processes of one-counter automata has been studied in [10] where it was shown that one
can effectively reduce certain simulation problems to their bisimulation counterparts by applying a tech-
nigque proposed in [16]. The complexity of bisimilarity-checking with one-counter automata was studied
in [14], where the problemV' ~ A is shown to be&eoNP-hard and the problem efeakbisimilarity [19]
between\V and.F processes evedP-hard; moreover, the problep ~ F was shown to be solvable in
polynomial time. Complexity bounds for simulation-checking were given in [15], where it was shown
that the problemgV’ = F and F = N (and thus alsgV' ~ F) are inP, while A C F and A >~ F are
coNP-hard (and solvable in exponential time). As for model-checking, we can transfer upper complexity
bounds from the results which were achieved poshdown processebecaused can be seen as a
(proper) subclass of pushdown automata (cf. Remark 1). Hence, model-checking with logics like EF,
CTL, CTL* [6], or even the modajli-calculus [13], is decidable in exponential time for one-counter
automata processes [24]. However, the techniques for lower complexity bounds do not carry.4ver to
Another simple observation is that model-checking for HML ahgrocesses is iR. This is because
the (in)validity of a given HML formula® in a states depends only on those states which are reachable
from s along a path consisting of at mastransitions, wherd is the nesting depth of th@) operator
in @. Since the number of states which are reachable from a given one-counter automata pcess
is clearly polynomial ind and the size of the underlying one-counter automaton, we can easily design
a polynomial time model-checking algorithm. (It contrasts with other models like BPA or BPP where
model-checking HML iSPSPACE-complete [17].)

Our contribution.We generalize the technique used in [14] for establishing lower complexity bounds
for certain equivalence-checking problems, and present a general method for sbéwiragdness of
equivalence-checking and model-checking problems for one-counter automata. (TH2RJa6§con-
sists of those languages which are expressible as a difference of two languagE&frand is generally
conjectured to be larger than the unior\#® andcoNP. Section 2.2 contains further commentsa.)

The “generic part” of the method is presented in Section 2, where we define a simple fragment of

Presburger arithmetic, denoted OCL (“One-Counter Logic”) which is

¢ sufficiently powerful so that satisfiability and unsatisfiability of boolean formulas are both polynomi-
ally reducible to the problem of deciding the truth of formulas of OCL, which implies that this latter
problem isDP-hard (Theorem 3); yet
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¢ sufficiently simple so that the problem of deciding the truth of OCL formulas is polynomially reduc-
ible to various equivalence-checking and model-checking problems (thus providing the “application
part” of the proposed method). The reduction is typically constructed inductively on the structure of

OCL formulas, thus making the proofs readable and easily verified.

In Section 3.1 we apply the method to the<> N problem where- is any relation which subsumes
bisimilarity and is subsumed by simulation preorder (thus, besides bisimilarity and simulation equiva-
lence also, e.g., ready simulation equivalence or 2-nested simulation equivalence), sbBviiaginess
of these problems (Theorem 6). In particular, we improvecthdP lower bound for theV' ~ A problem
established in [14]. In Section 3.2 we concentrate on simulation problems between one-counter and fi-
nite-state automata, and prove thet F, F C A, andA ~ F are allDP-hard (Theorem 8). Section 3.3
is devoted to the complexity of model-checking with one-counter processes. As already mentioned, the
model-checking problem for HML and one-counter automata processe®isVile show that model-
checking with the logic EF is already intractable: iti®-hard even for processes of one-counter nets
and afixedEF formula (Theorem 11). In practice, temporal formulas are usually quite small; hence, the
fact that the EF formula can be fixed provides stronger evidence of computational intractability. Finally,
in Section 4 we draw some conclusions and present a detailed summary of known results.

2. The OCL fragment of arithmetic

In this section, we introduce a fragment of (Presburger) arithmetic, denoted OCL (“One-Counter
Logic”). We then show how to encode the problems of satisfiability and unsatisfiability of boolean
formulas in OCL, and thus deduBdP-hardness of the truth problem for (closed formulas of) OCL. (The
name of the language is motivated by a relationship to one-counter automata which will be explored in
the next section.)

2.1. Definition of OCL

OCL can be viewed as a certain set of first-order arithmetic formulas. We shall briefly give the syntax
of these formulas; the semantics will be obvious. Since we only consider the interpretation of OCL
formulas in the standard structure of natural numbérthe problem of deciding the truth of a closed
OCL formula is well defined:

Problem. TRUTHOCL
INSTANCE: A closed formulaQ € OCL.
QUESTION: Is Q true ?

Letx andy range over (first-orderariables A formulaQ € OCL can have at most one free variable
x (i.e., outside the scope of quantifiers); we shall wgter) to indicate the free variable (if there is one)
of Q; that is, QO (x) either has the one free variableor no free variables at all.

For a numbek € N, we let[k] stand for a special term denotikgvhich we can think of as a unary
representation of. In this way, we require that the size of the representatidnof a numberk be on
the order ofk rather than Irk.



6 P. Jartar et al. / Information and Computation 188 (2004) 1-19

The formulasQ of OCL are defined inductively as follows; at the same time we inductively define
their size (keeping in mind the unary representatiof%gdj:

0 sizg Q)
@ x=0 1
(b) Tk7]x (“k dividesx”; k>0) k+1
(c) T[k1tx (“k does notdivide:”; k>0) k41 _
(d) Q1(x) A Qa(x) siz€Q1) +sizgQ2) + 1
(e) Q1(x)V Qa(x) o siz€ Q1) + sizgQ2) + 1
H 3Fy<x:Q0'(y) (xandy distinct) sizg Q') +1
(@ Vx:0'(x) sizg Q') +1

We shall need to consider the truth value of a form@la) in a valuation assigning a numbere N

to the (possibly) free variable; this is given by the formula[r/x] obtained by replacing each free
occurrence of the variabkein Q by n. Slightly abusing notation, we shall denote this®@g:). (Symbols
like i, j, k, n range over natural numbers, not variables.) For example(if) is the formulady < x :
((B]y) A (2ty)), thenQ(5) is true whileQ(2) is false; and ifQ(x) is a closed formula, then the truth
value of Q (n) is independent of.

2.2. DP-hardness of RuTHOCL

Recall the following problem:

Praoblem. SAT—UNSAT
INSTANCE: A pair (¢, ¥) of boolean formulas in conjunctive normal form (CNF).
QUESTION: Is it the case thap is satisfiable whilg) is unsatisfiable ?

This problem iDP-complete, which corresponds to an intermediate level in the polynomial hierarchy,
harder than bot] andII} but still contained ir= andI1f (cf., e.g., [20]). Our aim here is to show that
SAT-UNSAT is polynomial-time reducible toRUTHOCL . In particular, we show how, given a boolean
formulag in CNF, we can in polynomial time construct a (closed) formula of OCL which claimsgthat
is satisfiable, and also a formula of OCL which claims th& unsatisfiable (Theorem 3).

First we introduce some notation. Lér(¢) = {x1, ..., x;;} denote the set of (boolean) variables in
¢. Furthermore, letr; (for j>1) denote theith prime number. For eveny € N define the assignment
v, : Var(e) — {true, falsg by

true, if 7 |n,

vn(xj) = {false, otherwise.

Note that for an arbitrary assignmentthere exists am € N such thatv, = v; it suffices to take
n = II{r; : 1<j<m andv(x;)=true}. By ||¢||, we denote the truth value gfunder the assignment

Lemma2. There is a polynomial-time algorithm which, given a boolean fornguila CNF, constructs
OCL-formulasQ, (x) and Q,, (x) such that both siz&,) and siz¢Q,,) are in O(l¢|®), and such that
for everyn e N

Qy(n) is true iff 0, (n) is false iff| ¢ ||, = true.
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Proof. LetVar(p) = {x1, ..., x,}. Given aliterak (that is, a variable; or its negatiorx ;), define the
OCL-formulaQ(x) as follows:

Ox;(x) = [7;]|lxandQx;(x) = [7;]1x.

Clearly, Q¢ (n) is true iff Qz(n) is false iff ||£],, = true.
e FormulaQ,(x) is obtained fromy by replacing each literal with O, (x).

Itis clear thatQ,, (n) is true iff | ¢, = true.
° Formula@w(x) is obtained fromp by replacing each, v, and¢ with v, A, andQz(x), respectively.

It is readily seen tha@w (n) is true iff |||, = false
It remains to evaluate the size ¢f, and Qp. Here we use a well-known fact from number theory
(cf., e.g., [2]) which says that,, is in O(m?). Hencesiz& Q,) is in O(|p|?) for every literalt of ¢. As
there areD(|y|) literal occurrences an@(|¢|) boolean connectives ip, we can see thatizgQ,,) and
sizgQ,) are indeed irO(|g[?). O

We now come to the main result of the section.

Theorem 3. Problem SAT-UNSAT is reducible in polynomial time toTRUTHOCL. Therefore
TRUTHOCL is DP-hard.

Proof. We give a polynomial-time algorithm which, given an instarigey) of SAT-UNSAT, con-
structs a closed OCL-formul@, with siz& Q) in O(|¢|® + |¥|3), such thatQ is true iff ¢ is satisfiable
andyr is unsatisfiable.

Expressing the unsatisfiability @f is straightforward: by Lemma 2/ is unsatisfiable iff the OCL-
formula

Vx 1 Qy(x)

is true. Thus, leD- be this formula.

Expressing the satisfiability ap is rather more involved. Leg = w172 - - - ,,,, WhereVar(p) =
{x1,...,xn}. Clearly, ¢ is satisfiable iff there is some < g such that|¢]||,, = true. Hencey is sat-
isfiable iff the OCL-formuledy < x : Q,(y) is true for any valuation assigning some: g to x.

As it stands, it is unclear how this might be expressed; however, we can observe that the equivalence
still holds if we replace the condition > g” with “i is a positive multiple of”. In other wordsg is
satisfiable iff for every € N we have that either= 0, org{i, or there is some < i such thatQ,(n)
is true. This can be written as

Vx : x =0V (fmltx V-V [my]tx) V Iy <x: Qy(y)

We thus letQ1 be this formula.
Hence,(p, V) is a positive instance of thea8—UNSAT problem iff the formula

Q0=011N02

is true. To finish the proof, we observe tisitg Q) is indeed inO(|¢|2 + |¥[3). O
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2.3. TRUTHOCL is inIT}

The conclusions we draw for our verification problems are that theyp&bard, as we reduce the
DP-hard problem RUTHOCL to them. We cannot improve this lower bound by much using the reduc-
tion from TRUTHOCL , as RUTHOCL is in IT5. In this section we sketch the ideas of a proof of this
fact.

Theorem 4. TRUTHOCL is in IT5.

Proof. We start by first proving that for every formul@(x) of OCL there is ad with 0 < d <
25249) such thatQ(i) = Q(i — d) for everyi > 25789) Hence,¥x : Q(x) holds iff Vx < 25242
Q(x) holds. (Note thavx < 25799) : Q(x) is not a formula of OCL.)

We prove the existence dffor every formulaQ (x) by induction on the structure @ (x). If Q(x) is
x = 0then we can také = 1; and if Q(x) is [k] | x or [k]1x then we can také = k.

If Q(x)is Q1(x) A Q2(x) or Q1(x) Vv Q2(x), then we may assume by the induction hypothesis the
existence of the relevadi for Q1 andd; for Q2. We can then také = d1d> to give the desired property
that Q(i) = Q(i — d) for everyi > 25789)

If Q(x)is3dy <x:Q'(y) (x andy distinct) then by the induction hypothesis there id"awith
0 < d < 25782 sych thatQ' (i) = Q'(i — d') for everyi > 257%2") |t follows that if Q' (i) is true for
somei, then it is true for some < 2512€Q) < 2siZ€0) (recall thatsize Q) = siz Q') + 1). Furthermore,
if Q’(i) is true for some thenQ(;) is true for everyj > i; on the other hand, i©’(;) is false for every
i,thenQ(j) is false for everyj. Thus we can také = 1.

If Q(x)isVy: Q'(y), thenx is not free inQ’(y), so the truth value of (i) does not depend arand
we can takel = 1. N

Next we note that every OCL-formul@(x) can be transformed into a formufa(x) (which need not
be in OCL) in (pseudo-)prenex form

(Vx1 < Zsize{Ql)) oo (Vg < 25ize(Qk))
@y1 <z0) - @ye <z)F (1,0 Xk Y1 -5 Ye)

where

o Vx; : Q;(x;)is asubformula oD (x);

e eachz; € {x1, ..., xx, V1, e ees Yie1hs and

o F(x1,...,Xk, ¥1,...,ye) IS aA, v-combination of atomic subformulas ¢f(x).

This can be proved by induction on the structure@fx). The only case requiring some care is
the case wher®(x) is of the form3y < x : Q'(y), becausélyVz : P(y, z) andVz3y : P(y, z) are not
equivalent in general, but they are in our casez agver depends om due to restrictions in OCL.
Note that the size 0D (x) is polynomial insiz& Q) (assuming that$?e2y . 257800 gre encoded
in binary).

We can construct an alternating Turing machine which first uses its universal states to assign all possi-
ble values (bounded as mentioned above)to. ., x, then uses its existential states to assign all possi-
ble values to, ..., y¢, and finally evaluates (deterministically) the formiax1, ..., xx, v1, ..., Yo).

It is clear that this alternating Turing machine can be constructed so that it works in time which is
polynomial insizg Q). This implies the membership oRDTHOCL in H‘z’. O
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3. Application to one-counter automata problems

As we mentioned above, the language OCL was designed with one-counter automata in mind. The
problem TRUTHOCL can be relatively smoothly reduced to various verification problems for such auto-
mata, by providing relevant constructions (“implementations”) for the various cases (a)-(g) of the OCL
definition, and thus it constitutes a useful tool for proving lower complexity bouD&sh@ardness) for
these problems. We shall demonstrate this forthe> N problem, wheres is any relation satisfy-
ing that~ C <> C C, and then also for thel C F, F C A, and A >~ F problems, and finally for the
problem of model checking for the logic EF owkT processes.

For the purposes of our proofs, we adopt a “graphical” representation of one-counter automata as
finite graphs with two kinds of edges (solid and dashed ones) which are labelled by pairs of the form
(a,i) € ¥ x {—1,0, 1}; instead of(a, —1), (a, 1), and(a, 0) we write simply—a, +a, anda, respec-
tively. A solid edge fromp to ¢ labelled by(a, i) indicates that the represented one-counter automaton
can make a transitiop(n) — ¢(n + i) wheneveri > 0 orn > 0. A dashededge fromp to ¢ labelled

by (a, i) (Wherei must not be-1) represents a zero-transitipii0) —> ¢(i). Hence, graphs representing
one-counter nets do not contain any dashed edges, and graphs corresponding to finite-state systems use
only labels of the form(a, 0) (remember that finite-state systems are formally understood as special
one-counter nets). Also observe that the graphs cannot represent non-decrementing transitions which
are enableanly for positive counter values; this does not matter since we do not need such transitions

in our proofs. The distinguished initial control states are indicated by black circles.

3.1. Results for one-counter nets

In this section we show that, for any relatien satisfying~ C < C C, the problem of deciding
whether two (states of) one-counter nets are-inis DP-hard. We first state an important technical
result, but defer its proof until after we derive the desired theorem as a corollary.

Proposition 5. There is an algorithm which, given a formu@ = Q(x) € OCL as input halts after
O(sizg Q)) steps and outputs a one-counter net with two distinguished control gtated p’ such that
for everyn € N we have
e if Q(n) is true thenp(n) ~ p’(n);
o if Q(n) isfalse therp(n) Z p’(n).

(Note that ifQ is a closed formulathen this implies thap(0) ~ p’(0) if Q is true andp(0) Z p’(0)
if Q is false)

Theorem 6. For any relation< such that~ C <> C C, the following problem i®P-hard:

INSTANCE: A one-counter net with two distinguished control stgbesnd p’.

QUESTION: Is p(0) < p'(0)?

Proof. Given an instance of RUTHOCL , i.e., aclosedformula Q € OCL, we use the (polynomial-
time) algorithm of Proposition 5 to construct a one-counter net with the two distinguished control states

pandp’. If Qistrue, therp(0) ~ p’(0), and hencep(0) <> p’(0); and if Q is false, therp(0) Z p’(0),
and hence(0) & p/'(0). O
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Proof of Proposition 5. We proceed by induction on the structure@f For each case, we construct an
implementationi.e., a corresponding one-counter &y with two distinguished control statgsand
p’. In each case we demonstrate that the two bi-implications

pm)Cp'(n) < Q) < pn) ~pn

hold for eachn € N. (We are only required to prove implications for Proposition 5; however, the stronger
bi-implications arise with no added difficulty.)

Constructions are sketched by figures which use our notational conventions; the distinguished control
states are denoted by black dots (the left pnthe right onep’). It is worth noting that we only use two
actionsa andb, in our constructions.

(@) Q(x) = (x = 0): The following provides a suitable construction:

o)

That this construction suffices is readily verified:
pMEpP(n) < n=0 < ph) ~p'm.
(b,c) O(x) =Tk]|x or Q(x)=T[k]{x, wherek>0: GivenJ € {0,1,2,...,k—1}, let R;(x) =
((x modk) € J). We shall show that the formulR; (x) has an associated implementation in our
sense; taking/ = {0} then gives us the construction for case (b), and taking {1, ..., k—1}
gives us the construction for case (c).
An implementation folR ; (x), where for the point of illustration we haved e J butQ, 3, k—1 ¢
J, looks as follows:

q3
In this picture, each nodg has an outgoing edge leading to a “dead” state; this edge is lalselled
if i € Jand labelled-bif i ¢ J. Itis straightforward to check that the proposed implementation
for R;(x) is indeed correct:
p(n)C p'(n) < mmodk) e J < phn) ~ p'(n).
(d) Q(x) = Q1(x) A Q2(x): We can assume by induction that implementatiofyg, and N, for
Q1(x) andQ2(x), respectively, have been constructd is then constructed fromvy, andNg,
as follows:
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The dotted rectangles represent the graphs associat¥g,t@nd Ny, (only the distinguished
control states are depicted). Verifying the correctness of this construction is straightforward:
p(n) E p'(n) <= pg,(n) E py, (n) A po,(n) E py,(n)

"L 01(n) A Qa(n) = Q(n)
induction

S p,(n) ~ plp, (n) A po,(n) ~ py,(n)
& pm)~p'm
(e) O(x) = Q1(x) v Q2(x): As in case (d), the construction uses the inductively assumed implemen-
tations forQ1(x) and Q2(x); but the situation is slightly more involved in this case:
/

p P

In this constructionp andp’ are identical apart from the transiti(pn—a> po- Thus, to show either
p(n) C p'(n) or p(n) ~ p’(n) it is necessary and sufficient to show that the transifom) 5
po(n) can be matched either by (n) 5 p1(n) (which in turn is true iff the transitiompg(n) 5
po.(n) can be matched by the transitipa(n) - P, (m)), or by p'(n) % po(n) (Which in turn

is true iff the transitionpg(n) 4 Po,(n) can be matched by the transitiga(n) 2 p/QZ(n)). If

Q1(n) is true then the transitiop’(n) 5 p1(n) works, and ifQ»(n) is true then the transition
p'(n) = p2(n) works; if neither is true (that i@ (n) is false) then neither transition works.
This reasoning underlies the following argument.
p(n) E p'(n) <= po(n) C p1(n) V po(n) C pa(n)
& po,(n) E py, () V po,(n) E py,(n)

induction

— Q1(n) Vv Qa(n) = Q(n)
"EE" po,(n) ~ Pl (1) V po,(n) ~ ply, (n)
<= po(n) ~ p1(n) vV po(n) ~ p2(n)
< pm) ~p'n)
(H Q) =3y <x:Qi(y) (wherex, y are distinct): We use the following construction involving
the inductively assumed implementation @ (x):
p 4
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In this constructionp andp’ are identical apart from the transitiqm—a> po- Thus, to show either
p(n) C p'(n) or p(n) ~ p'(n) it is necessary and sufficient to show that the transipom) 5
po(n) can be matched either y(n) > p1(n—1) (which in turn is true iff the transitiopo(n) —
p(n—1) can be matched by the transitipa(n—1) — p’(n—1)), or by p’(n) — pa(n) (which in
turn is true iff the transitiog(n) 4 po,(n) can be matched by the transitipa(r) S p/Ql(n)).

If Q1(n) is true then the transitiop’(n) = p2(n) works, and ifQ1(i) is true for some < n

then the transitionp’ (n) = p1(n—21) works; if neither is true (that isQ (n) is false) then neither
transition works.

This reasoning underlies the following argument, which is carried out by a further induction on
n € N; that is, in the case where> 0 we assume thai(n—1) C p'(n—1) < Q-1 <

p(n—=1) ~ p'(n—1).

P E p'(n) = (n=0 A po(w) C pi(n=1)) v po() = p2(n)
<— (>0 A pn—-1)C p/(n—1)> V po,(n) E p/Ql(n)

EE (120 A 3y <n—1:01(0)) V Q11 = Q)
'Mn n>0 A p(n—1) ~ p’(n—l)) V po,(n) ~ p/Ql(n)

— n>0 A po(n) ~ pl(n—l)) V po(n) ~ pa2(n)
= pm)~p'n

(@) ©Q =Vx: Q1(x): The following provides a suitable construction involving the inductively

assumed implementation f@r (x):

That this construction suffices is readily verified:

p() E p'(n) <= Vx:pg,(x) E py, (%)
B v 01(x) = Q)
B Va1 pgy () ~ plp, ()
& pm)~p'(n)

For anyQ € OCL, the described construction terminates afi&siz€ Q)) steps, because we add only

a constant number of new nodes in each subcase except for (b) and (c), where @& addw nodes
(recall that the size ofk] isk + 1). [
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3.2. Simulation problems for one-counter automata and finite-state systems

Now we establistDP-hardness of thed C F, F C A, and A ~ F problems. Again, we use the
(inductively defined) reduction fromRUTHOCL ; only the particular constructions are now slightly
different.

By animplementatiorwe now mean a 4-tupleA, F, F’, A") whereA, A’ are one-counter automata,
and F, F’ are finite-state systems; the role of distinguished states is now played by the initial states,
denoted; for A, f for F, f' for F’, andq’ for A’. We again first state an important technical result, and
again defer its proof until after we derive the desired theorem as a corollary.

Proposition 7. There is an algorithm whictgivenQ = Q(x) € OCL as input halts afterO(siz€ Q))
steps and outputs an implementatioh F, F’, A’) (whereg, f, f’, andg’ are the initial control states
of A, F, F’, and A’, respectively such that for every € N we have

Q(n)istrueiffg(n) C fiff f' = q'(n).
(Note that ifQ is a closed formulathen this implies thatQ is true iff ¢(0) C f iff f' C ¢’(0).)

Theorem 8. ProblemsA C F, F C A, and A >~ F are DP-hard.

Proof. Recalling that RUTHOCL is DP-hard,DP-hardness of the first two problems readily follows
from Proposition 7.

DP-hardness of the third problem follows from a simple (general) reductioA of 7 to A ~ F:
given a one-counter automatdnwith initial stateg, and a finite-state systemwith initial state /', we
first transformF to Fy by adding a new statg and transitionfy R f, and then creatd, by taking
(disjoint) union ofA, F1 and addingfi - ¢, wherefi is the copy off1 in A1. Clearlyg(n) C f iff
filn) = f1. O

Proof of Proposition 7. We proceed by induction on the structure@f For each case, we construct an
implementation(A, F, F’, A’) with distinguished stateg, f, f’ andq’, respectively. In each case we
demonstrate that the two bi-implications

gmC f < 0m) < f'EqMm
hold for eachn € N. In the constructions we use only two actionsaindb; this means that a state with

non-decreasing andb loops isuniversal i.e., it can simulate every state.
(@) Q0 = (x = 0): A straightforward implementation looks as follows:

q I q'
of 4
-a a a:
S

A F F’ A’

The validity of this implementation is readily verified:
g C f & n=0 < f'Cqm
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(b,c) O =Tkl|x or Q = [k]tx, wherek>0: GivenJ € {0,1,2,...,k—1}, let R;(x) = ((x mod
k) € J). We shall show that the formul&; (x) has an associated implementation in our sense;
taking J = {0} then gives us the construction for case (b), and talling {1, ..., k—1} gives us
the construction for case (c).
An implementation forR; (x), where for the point of illustration we haved e J but 0,3, k—1
¢ J, looks as follows:

fo=f q0=4q'

VE!
A F F’ A
In this picture, nodef; has ab-loop in F, and node;; has an outgoing dashededge inA’, iff
i € J.ltis straightforward to check that the proposed implementatio®far ) is indeed correct:
gqmC f < @mmodk)eJ = f Cq'n)

(d) O(x) = Q1(x) A Q2(x): The elements of the implementation o, Fop, Fé, A’Q) for O can be
constructed from the respective elements of the implementation31fo0» (assumed by induc-
tion): Ag from Ag, andAg,; Fo from Fp, andFo,; Fy, from F;, andF, ;andAj, from A},
andA/QZ. All these cases follow the schema depicted in the following figure:

Verifying the correctness of this construction is straightforward:
qn) E f <= q0,(n) E fo, Aqo,(n) E fo,

"L 01(n) A Q2(n) = Q(n)
induction

= fo, Eqp, M A fp, Eqp,m)
— [fEq'm)
(e) O(x) = Q1(x) Vv Q2(x): Asin case (d), the constructions use the inductively assumed implemen-
tations forQ1(x) and Q2(x); they are as follows:
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Verifying the correctness of this construction is straightforward:

g E f < qmC fivaq@n) C f2
— q0,(n) E fo,Vq0,(n) E fo,

" 01(n) v Qa(n) = Q)
induction

/ / / /
f/Ql E /qu(n) \i sz/E qu(n)
— [f1Eqi(n)V f] Eg5(n)
— f'Cqm
M O(&) =3y <x:Qi1(y) (wherex, y are distinct): We use the following constructions involving
the inductively assumed implementations 7(x):

We demonstrate the validity of this construction using a further induction @N; that is, in the
case where > 0 we assume that(n—1) C f < Qn—-1) < f'Cq'(n-1).

G E f < qon) E f1V a0 C f2
= (120 A g-D T ) Va0, E fo,
EE (120 A 3y <n—1:01(0)) v 01(m) = Q)
" (020 A f1Eq'(1=D) V [, E ap,(n)
e (120 A f{Cgi-D) v f{ T ghm)
—= [fEqm

() O =Vx: Q1(x): The following provides a suitable construction involving the inductively
assumed implementations for (x):
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That this construction suffices is readily verified:
qn) E f < Vx:q0,(x) E fo,

EL vx: 01(x) = Q)
induction Vx f,Ql C q,Ql(x)

— [f'Eqnm
For any Q € OCL, the described construction terminates afftisizg Q)) steps, because we add
only a constant number of new nodes in each subcase except for (b) and (c), where @¢kadd
new nodes. [J

3.3. Model-checking the logic EF for one-counter nets

We prove that the model-checking problem for the logic EF Ahdrocesses iDP-hard, even for a
fixed EF formula. We start with the following proposition:

Proposition 9. There is an algorithm whiclgivenQ = Q(x) € OCL as input halts afterO(siz€ Q))
steps and outputs a one-counter net with a distinguished gtated an EF formula®, such that for
everyk € N we have

Q(k)istrueiffg(k) = @¢.

The constructed EF formuldy, is not yet fixed; actually, it is not clear if the proof of Proposition 9 can
be modified so that it returns the same EF formula for evgry OCL. However, it is quite straightfor-
ward to modify the construction so that it produces the same EF formula for all t(hes®CL which
can be obtained by applying the construction of (the proof of) Theorem 3 to some ingiance of
SAT—-UNSAT . Thus we obtain

Proposition 10. Let Q be an OCL formula which can be obtained by applying the construction of
Theorem3. There is a(fixed EF formula® and an algorithm which, give® on input halts after
O(sizg Q)) steps and outputs a one-counter net with a distinguished gtatech that for every € N

we have

Q) istrueiffg(n) = @.

Theorem 11. The model-checking problem for the logic EF akdprocesses i®P-hard, even for a
fixed EF formula

Proof of Proposition 9. We proceed by induction on the structure@®f All steps are easy to verify and
do not require detailed comments.

(@ 0=@x=0:
q

®o = alfalse
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(b,c) Q =Tk |x or Q = [k]1x, wherek>0:
q90 = 4

® o = Olblfalse or ®p = LI(b)true
(d,e) Q(x) = Q1(x) A Q2(x) or Q(x) = Q1(x) V Q2(x)

(I)Q = [CI]CI)Q1 A [b]CI)Q2 or CDQ = (a)CDQl \% (b)CDQZ
H Ox) =3y <x:Q01(y) (wherex, y are distinct):

Do = )Py,
Herec is a fresh (i.e., previously unused) action.
(@) O =Vx: 01(x):

+a,—a

AN : P = Olc]Py,
Again, c is a fresh action. [J

Proof of Proposition 10. Note that the algorithm of Theorem 3 produces OCL formulas with an “almost
fixed” structure: foragiveninstance, 1) of SAT-UNSAT, itbasically plugs the andys (inaslightly mod-
ified form) into a fixed template. Therefore, we justneed to modify the steps (d,e) of the previous algorithm.
(de) () Qx) = Vi1 Pi(x) v \/;{:1 Nj(x) whereu + v > 2, and everyP; andN; is of the form

[ki1]x andrk;] fx, respectively.

PPl N E Ny Dy = (@)@p v (b)Dy
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(ii)

(iii)

(iv)
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Here®p = ([blfalseand @y = O(b)true are the (fixed) formulas constructed fBr(x) and
N (x), respectively. Also note that if, e.gi,= 0, then the node in the above graph has no
a-successors, but the formuda, keeps its form.

0(x) = N Pi(x) A /\3:1 N, (x) whereu 4+ v > 2, and everyP; andN; is of the form
[k;1]x and (kﬂ {x, respectively. We construct the same net as in (i) andbut [a]Pp A
(b]Dy.

Q(x) = Ri(x)V---V R,(x) wherem > 2 and everyR;(x) is a conjunction of the form
discussed in (ii).

q
[ ]
PR
o -
Ry R Dy = (a)Pr

Here®r = [a]®p A [b]Py is the (fixed) formula constructed f@; (x).

O(x) = Ri(x) A--- A Ry (x) wherem > 2 and everyr; (x) is a disjunction of the form dis-
cussed in (i). We construct the same net as in (iii) andiyit= [a]Pr where®g = (a)Pp Vv
(b) @y is the (fixed) formula constructed f&; (x).

4. Conclusions

Intuitively, the reason why we could not lift tH2P lower bound to some higher complexity class (e.qg.,
PSPACE) is that there is no apparent way to implement a “step-wise guessing” of assignments which
would allow us to encode, e.g., thea®problem. The difficulty is that if we modify the counter value,
we were not able to find a way to check that the old and new values encode “compatible” assignments
which agree on a certain subset of propositional constants. Each such attempt resulted in an exponential
blow-up in the number of control states.

Known results about equivalence-checking with one-counter automata are summarized in the fol-
lowing table where rows correspond to different equivalences, respectively, preorddedtes weak
bisimilarity) and columns correspond to different pairs of checked systems.

A< A N o N A< F N o F
~ decidable [8] decidable [8] iR [14] in P[14]
DP-hard DP-hard
R undecidable [18] undecidable [18] EXPTIME in EXPTIME
DP-hard [14] DP-hard [14]
~ undecidable [12] decidable [1,12] EXPTIME in P [15]
DP-hard DP-hard
C undecidable [12] decidable [1,12] EXPTIME in P[15]
DP-hard DP-hard
- undecidable [12] decidable [1,12] EXPTIME in P[15]

DP-hard DP-hard
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The EXPTIME upper bound of problemg ~ F, N ~ F, AC F, FC A, andA >~ F is due to
the fact that all of the mentioned problems can be easily reduced to the model-checking problem with
pushdown systems (see, e.g., [9,16]) and the modaliculus which iEXPTIM E-complete [24].
Known results for model-checking of one-counter automata can be summarized as follows:
e The model-checking problem for HML and processes is iR.
e Model-checking with any logic which subsumes the logic EF and which is subsumed by the modal
u-calculus (it applies to, e.g., EF, CTL, CTLu-calculus) isDP-hard and irEXPTIME. The lower
complexity bound holds even for a fixed formula.
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