Equivalence Checking of Non-Flat Systems Is
EXPTIME-hard*

Zden&k Sawa,

Dept. of Computer Science, FEI,
Technical University of Ostrava,
17. listopadu 15,

CZ-708 33 Ostrava, Czech Republic
Zdenek.SawaQvsb.cz

Abstract. The equivalence checking of systems that are given as a com-
position of interacting finite-state systems is considered. It is shown that
the problem is EXPTIME-hard for any notion of equivalence that lies
between bisimulation equivalence and trace equivalence, as conjectured
by Rabinovich (1997). The result is proved for parallel composition of
finite-state systems where hiding of actions is allowed, and for 1-safe
Petri nets. The technique of the proof allows to extend this result easily
to other types of ‘non-flat’ systems.

Key words: equivalence checking, finite-state systems, complexity

1 Introduction

One problem that naturally arises in the area of automatic verification of systems
is the problem of equivalence checking. This problem can be stated as follows:
given two descriptions of labelled transition systems, decide if the systems behave
equivalently.

Many different types of equivalences were proposed in the literature, and some
of the most prominent were organized by van Glabbeek [10] into linear time —
branching time spectrum. All these equivalences lie between bisimulation equiv-
alence (which is the finest of these equivalences) and trace equivalence (which is
the coarsest).

We call a finite transition system that is given explicitly a flat transition system.
A non-flat system is a system given as a composition of interacting flat systems.
The set of global states of a non-flat system can be exponentially larger than
the sum of sizes of its parts. This phenomenon is known as a state explosion and
presents the main challenge in the design of efficient algorithms for verification
of non-flat systems.

* This work was sponsored by the Grant Agency of the Czech Republic, Grant
No. 201/03/1161

2 Zdenék Sawa

Overview of existing results. Rabinovich [6] considered a composition of finite-
state systems that synchronize on identical actions and where some actions may
be ‘hidden’ in the sense that they are replaced with invisible 7 actions. He
proved that equivalence checking is PSPACE-hard for such systems for any re-
lation between bisimilarity and trace equivalence, and that the problem is EX-
PSPACE-complete for trace equivalence. He also mentioned that the problem is
EXPTIME-complete for bisimilarity and conjectured that the problem is in fact
EXPTIME-hard for any relation between bisimilarity and trace equivalence.

Laroussinie and Schnoebelen [5] approved the Rabinovich’s conjecture for all
relations that lie between bisimilarity and simulation preorder. The non-flat sys-
tems, used in their proof, synchronize on identical actions and do not use hiding.
It is not possible to extend their result to all equivalences between bisimilarity
and trace equivalence, because for example trace equivalence can be decided in
PSPACE for this model, as was proved in [8]. See also [9] for results for other
types of ‘trace-like’ equivalences and non-flat systems. Other type of non-flat sys-
tems are 1-safe Petri nets. See [4] for some results concerning them, in particular,
deciding of bisimilarity is EXPTIME-complete for 1-safe Petri nets.

Our contribution. The Rabinovich’s conjecture is approved in this paper for all
relations between bisimilarity and trace preorder, not only for relations between
bisimilarity and simulation preorder. We show that equivalence checking is EXP-
TIME-hard for any such relation if the considered model is a parallel composition
of finite-state systems with hiding, the model for which Rabinovich formulated
his conjecture in [6].

To simplify the proof, a new auxiliary model called reactive linear bounded au-
tomaton (RLBA) is introduced in this paper. Reactive linear bounded automata
can be easily modeled by different types of non-flat systems, for example by
parallel compositions of finite-state systems with hiding, or by 1-safe Petri nets.
The EXPTIME-hardness result is shown for RLBA first, and then it is extended
to other types of non-flat systems that are able to model RLBA.

From the construction in the proof we also obtain a simpler proof of the result,
shown in [7], that equivalence checking is PTIME-hard for flat systems for every
relation between bisimilarity and trace preorder.

Overview of the paper. Section 2 contains some necessary definitions. The out-
line of the proof is presented in Section 3. Reactive linear bounded automata are
introduced in Section 4, together with the description how they can be trans-
formed into other non-flat systems. The proof of PTIME-hardness of equivalence
checking in case of flat systems is presented in Section 5. The construction in this
proof forms a base of the more complicated construction described in Section 6
where we show that equivalence checking is EXPTIME-hard for reactive linear
bounded automata.

Acknowledgements. T would like to thank P. Schnoebelen for drawing my at-
tention to equivalence checking of non-flat systems, and P. Janéar for fruitful
discussions and comments.

Equivalence Checking of Non-Flat Systems Is EXPTIME-hard 3

2 Basic Definitions

2.1 Labelled Transition Systems

A labelled transition system (LTS) is a tuple T = (S, A, —) where S is a set of
states, A is the finite set of actions, and —C S x {AU{7}} x S is a transition
relation where 7 € A is a special invisible action. We write s —— s’ instead
of (s,a,s') €—. Only finite-state LTSs where S is finite are considered in this
paper.

An LTS T = (S, A,—) where S, A and — are given explicitly is called flat
system (FS) and the size |T| of FS T is |S| + |A| +| — |.

More complicated LTSs can be created from FSs by parallel composition and
hiding. In the parallel composition a visible action a is executed iff every LTS
that has a in its alphabet executes it. Invisible actions are not synchronized,
that is, when an LTS executes the invisible action 7, other LTSs do nothing.
Formally, the parallel composition Ty || --- || T of LTSs Ti,...,T, where T; =
(Si, Ai,—;) for each i € I where I = {1,...,n}, is the LTS (S, A, —) where
S=8x+++x8, A=A U---UA,, and (s1,...,8,) — (s,...,s") iff either

— a € A and for every i € I:if a € A;, then s; — s!, and if a ¢ A;, then
s; = s},
— a =7 and for some i € I is s; — s} and s; = s for each j € I such that

j#i.

Tuples from S; x --- x S, are called global states. In this paper only binary syn-
chronizations are needed, where any a € A belongs to at most two different A4;.

Hiding of actions removes a set of visible actions from the alphabet of an LTS and
relabels corresponding transitions with the invisible action 7. Formally, hide B in
T1, where 77 is an LTS (S1, 41, —1) and B C A;, denotes the LTS (5, 4, —)
where S = 51, A= A; — B, and s —= s’ iff there is some a' € (A; U {7}) such

that s — s’ and eithera g Banda=a' or o’ € Band a = 7.

A parallel composition with hiding (PCH) is an LTS T given in the form hide B
in (T1 || -+ || Tn) where T1,..., T, are FSs. The size |T| of PCH T is |T1|+-- -+
|Tal + |B].

Other type of non-flat systems are 1-safe Petri nets. A labelled net is a tuple
N = (P,T,F,)), where P and T are finite sets of places and transitions, F C
(S xT)U (T x S) is the flow relation, and X\ : T — A is a labelling function
that associates to each transition ¢ a label A(t) taken from some given set of
actions A. Pairs from F' are called arcs. We identify F' with its characteristic
function (P x T) U (T x P) — {0,1}. A marking is a mapping M : P — N.
A labelled Petri net is a pair N = (N, M) where N is a labelled net and M,
is the initial marking. A transition ¢ is enabled at a marking M if M(p) > 0

4 Zdenék Sawa

for every p such that (p,t) € F. If t is enabled in M, then it can fire and its
firing leads to the successor marking M' which is defined for every place p by
M'(p) = M(p) + F(t,p) — F(p,t). Given a € A, we denote by M —% M’ that
there is some transition ¢ such that M enables transition ¢, the marking reached
by the firing of ¢ is M', and \(t) = a. A Petri net is I-safe if M (p) < 1 for every
place p and every reachable marking M.

Let T = (S, A,—) be an LTS. A trace from s € S is any w = a1 ...a, € A*
such that there is a sequence sg, s1,...,8, € S where sg = s and s;_1 iy s
for every 1 < i < n. The set of all traces from s is denoted Tr(s). States s, s’
are in trace preorder, written s Ty, §', iff Tr(s) C Tr(s'). States s,s’ are trace
equivalent iff s Ty, s' and s' Ty, s.

A bisimulation over 7 is any relation R C S x S satisfying the following two
conditions for each s,t € S such that sRt:

— if s =% &' for some s, then ¢t — ¢' for some ¢’ such that s'Rt’, and
— if t %5 ¢ for some ¢, then s —» s’ for some s’ such that s'R¢t'.

(It is said that s — s’ is matched by t == t', resp. t — t' by s —s s'.) States
8,8 are bisimilar, written s ~ §', iff there exists some bisimulation R such that
sRs'.

Let R be some binary relation defined over states of LTSs, such that s ~ s’
implies sRs’, and sRs' implies s Ty, s', i.e., ~C R CLy,. The problem FS-EQgp
is defined as:

INSTANCE: An FS 7 and its two states s and s'.
QUESTION: Is sRs' ?

the problem PCH-EQg as:

INSTANCE: A PCH T and its two global states (s1,...,sp) and (s,...,sh).
QUESTION: Is (81,...,8,) R(8],.--,80) ?

and the problem PN-EQg as:

INSTANCE: A labelled net A with two markings M, M', such that (N, M)
and (N, M') are 1-safe Petri nets.
QUESTION: Is MR M'?

The main results of the paper show that Fs-EQp is PTIME-hard, and PCH-EQp
and PN-EQg are EXPTIME-hard for any R satisfying ~C R CLy,.

2.2 Alternating Graphs

In the proof of PTIME-hardness of FS-EQyr we show a logspace reduction from
the Alternating Graph Problem (AGP) that is known to be PTIME-complete, see
for example [2]. The definition of this problem follows.

Equivalence Checking of Non-Flat Systems Is EXPTIME-hard 5

An alternating graph is a directed graph G = (V, E,t) where V is a finite set of
nodes, E CV x V is a set of edges, and ¢t : V — {A,V} is a labelling function
that partitions V into sets Vx and V4, of disjunctive and conjunctive nodes. The
set of successors of a node v, i.e., the set {v' € V | (v,v") € E}, is denoted by
a(v).

The set of successful nodes W is the least subset of V' with the property that if
a node v is conjunctive and all nodes from o (v) are in W, or disjunctive and at
least one node from o(v) is in W, then v also belongs to W. AGP is the problem
whether a given node is successful:

INSTANCE: An alternating graph G = (V, E,t) and a node v € V.
QUESTION: Is v successful?

Let P(V) be the power set of V. Notice that W is the least fixed point of a
function f : P(V) — P(V) where for U C V is v € f(U) iff either v € V and
(Vv € o(v) :v' € U),orv e Vy and (F' € o(v) : v’ € V).

Let us have a node that has no successors. If this node is conjunctive, it is
called an accepting node, and otherwise it is called a rejecting node. Notice that
accepting nodes are always successful, rejecting nodes are never successful, and
that W is nonempty iff G' contains at least one accepting node.

2.3 Alternating Linear Bounded Automata

In the proof we use a logspace reduction from a well known EXPTIME-complete
problem that is called ALBA-ACCEPT in this paper. It is a problem of deciding if a
given alternating linear bounded automaton accepts a given word. Its definition
follows, see [1] for further details.

A linear bounded automaton (LBA) is a tuple A = (Q, X, I,0,90;qacc> Grej)s
where @ is a set of control states, X' is an input alphabet, I" is a tape alphabet,
0 C (Q—{qaces qrej }) X I'xQ@xI'x{—1,0,+1}is a set of transitions, o, gaces grej €
@ are an initial, accepting and rejecting state. The alphabet I" contains left and
right endmarkers F and .

A configuration of A is a triple a = (g, w,?) where ¢ is the current state, w =
a1as ...a, is the tape content, and 1 < ¢ < |w| is the head position. Only
configurations where w = Fw'- and endmarkers do not occur in w' are allowed.
The size |a| of a is |w|. A configuration o/ = (¢',w',i') is a successor of a =
(¢, w,17), written a4a’ (or just a F o' when A is obvious), iff (¢,a,q',a’,d) € 4,
w contains a on position 4, ' = i+d, and w’ is obtained from w by writing a’ on
position ¢. Endmarkers may not be overwritten, and the machine is constrained
never to move left of the F nor right of the H. Notice that when « + o', then
|a| = |a'|. The initial configuration for an input w € X* is a;ni (w) = (go, FwH, 1).
A configuration is accepting iff ¢ = gacc, and rejecting iff ¢ = gre;.

An alternating LBA (ALBA) is an LBA extended with a function ! : @ — {A, V}
that labels each state as either conjunctive or disjunctive. We extend [to con-

6 Zdenék Sawa

figurations in an obvious manner and so also configurations are labeled as con-
junctive and disjunctive. A configuration is successful iff it is either accepting, or
disjunctive with at least one successful successor, or conjunctive with all succes-
sors successful. An ALBA A accepts an input w € X* iff oy (w) is successful.

The problem ALBA-ACCEPT is defined as:

INSTANCE: An ALBA A and a word w € X*.
QUESTION: Does A accept w?

Notice that there is a close relationship between AGP and ALBA-ACCEPT. A com-
putation of an ALBA can be viewed as an alternating graph where successful
nodes correspond to successful configurations. The size of this graph can be ex-
ponentially larger than the size of the corresponding instance of ALBA-ACCEPT.

3 Outline of the Proof

Reactive linear bounded automata (RLBA) are introduced in Section 4 and it is
shown that they can be modeled by other types of non-flat systems, in particular
by PCH and by 1-safe Petri nets. An RLBA is similar to a usual LBA, but is
intended to generate an LTS, not to accept or reject an input. The equivalence
checking problem where the instance is an RLBA and two of its configurations
is denoted RLBA-EQg; in this paper.

The main technical result of the paper shows that RLBA-EQy is EXPTIME-hard
for any relation R satisfying ~C R CLy,. From this follows EXPTIME-hardness
of equivalence checking for every model that is able to model an RLBA.

To show EXPTIME-hardness of RLBA-EQgr, we present a logspace reduction
from ALBA-ACCEPT. The construction in the proof is based on a simpler con-
struction that can be used to show PTIME-hardness of FS-EQg. This simpler
construction is presented in Section 5, where we show a logspace reduction from
AGP to the complement of FS-EQy that works for any R such that ~C R CLy,.
The basic idea is to construct an LTS with two distinguished states s, s’, such
that s Z;,. s’ if the answer to the original problem is YES, and s ~ s’ otherwise.
The same construction can be used for every R, because s [Z;. s’ implies that
not sRs’, and s ~ s' implies sRs’. The same idea was also used for example
in [3] and [6]. We can conclude that the complement of FS-EQg is PTIME-hard
for any R, and so also FS-EQg is PTIME-hard because PTIME is closed un-
der complement. PTIME-hardness of FS-EQr was already proved in [7], but the
reduction presented here is simpler.

Now consider ALBA-ACCEPT, a well known EXPTIME-complete problem. A com-
putation of an ALBA can be viewed as an alternating graph, where successful
nodes correspond to successful configurations, and this allows us to ‘shift’ the
previous result ‘higher’ in the complexity hierarchy. We will construct an RLBA
that will model the LTS which we would obtain when we would apply the above
mentioned reduction to the alternating graph corresponding to the computation

Equivalence Checking of Non-Flat Systems Is EXPTIME-hard 7

of the ALBA. Moreover, logarithmic space will be sufficient for the construction
of this RLBA from the instance of ALBA-ACCEPT.

4 Reactive Linear Bounded Automata

Reactive linearly bounded automata are introduced in this section. A reactive
linear bounded automaton (RLBA) is like a usual LBA, but it has special control
states, called reactive states, where it can perform actions from some given set
of actions A. Only the control state is changed after performing such actions,
neither the tape content nor the head position is modified. The other control
states are called computational and RLBA performs steps as a usual LBA in
them. Each such step is represented as the invisible action 7.

Formally, an RLBA is a tuple B = {Q, I}, 4, A,l,—}, where the meaning of @,
I" and § is the same as in a usual LBA, A is the finite set of actions, the function
l:Q — {r,c} partitions @Q into sets @), and Q. of reactive and computational
states, and —C Q, X (AU{7}) x @Q is the transition relation (we write ¢ — ¢'
instead of (g, a,¢') €—). It is also required that if (¢, b, ¢',b’,d) € § then ¢ € Q..
The definition of a configuration and a successor relation is the same as for a
usual LBA.

An RLBA B generates an LTS T(B) = (5, A, —), where S is the set of config-
urations of B, and (q,w,i) —= (¢',w’,i') iff either ¢ € Q., (g, w,i) - (¢',w',i")
anda=T7,0or q€Q,,q —=¢,w=w andi=7

For each R, such that ~C R CL,;,., we can define the problem RLBA-EQgx:

INSTANCE: An RLBA B and its two configurations «, ' of size n.
QUESTION: Is aRa'?

An RLBA with a configuration of size n can be easily modeled by various non-flat
systems, as two following lemmas show.

Lemma 1. There is a logspace reduction from RLBA-EQg to PCH-EQg.

Proof. Let us have an RLBA B and two its configurations of size n. We construct
a PCH T of the form hide B in (T, || T1 || --- || 7») which models the LTS
generated by B. In particular, 7. models the control unit, and 71, ..., 7, model
the tape cells of B. A state of 7. represents the current control state and head
position, and a state of 7; represents the symbol on the i-th position of the tape.

Let I = {1,...,n} be the set of all possible positions of the head. For each i € T
is T; = (Si, Ai, —;) where S; = I', A; = {(b,V',i) | b,b' € I'}, and —»; contains

transitions b % ¥ for each b,b' €I

In 7. = (Se; Ac, —¢) is S = {{g,@) |[¢€ Q,i€ [} and A, = AU AU ---UA,
(w.l.o.g. we can assume that AN.A; = 0 for each i € I). To — . we add for each

8 Zdenék Sawa

(¢,b,¢',b',d) € § and i € I, such that i+d € I, a transition (g, 7) (M) {¢',i+d),
and for each ¢ € Q,, ¢ € Q, a € (Act U {r}) and i € I where ¢ — ¢' we add a
transition (g,i) — (¢',4).

The set Bin T is defined as A; U- - -UA,,. Each configuration a = (¢,a1as - - - ay, 1)
has a corresponding global state g(a) = ({(g,%),a1,as,.-.,a,). As can be easily
checked, @ =% o in B iff g(a) - g(o’) in T, and so aRa/ in B iff g(a)Rg(a)
for any R such that ~C R CLCy,. It is obvious that 7 can be constructed from
B in a logarithmic space. O

Lemma 2. There is a logspace reduction from RLBA-EQr to PN-EQg.

Proof. Let us have an instance of RLBA-EQp, i.e. an RLBA B and two of its con-
figurations of size n. We construct a labelled net as follows. Let I = {1,...,n}.
The set of places will be QU {(a,i) |ae I ie I} UI.

For each (¢,b,q',b',d) € 6 and i € I where ¢ € Q. and i +d € I we add a
transition ¢ = (g,b,¢',b',4,% + d) labelled with 7 together with incoming arcs
(g,t), ({b,7),t), and (4,t), and outgoing arcs (t,q'), (¢, (s’,4)), and (¢,i + d).

For each ¢,q' € Q and a € (AU {r}) where ¢ € Q, and ¢ = ¢’ we add a new
transition ¢ = (g, a, ') labelled with a together with an incoming arc (g,t) and
an outgoing arc (t,q').

For a configuration a = {q, a1az - - - an, i} we define a corresponding marking M,
where M, (p) =11if pis g, i, or (a;, j) where j € I, and M,(p) = 0 otherwise. It
is easy to check that a - o iff M, = M. O

5 Construction for Flat Systems

A logspace reduction from AGP to the complement of FS-EQy, is presented in this
section. For a given alternating graph G = (V, E,t) with a distinguished node =
we construct a corresponding LTS Tg = (5, A, —) with two distinguished states
8,8 € S such that s [Zy, ' if z is successful, and s ~ s’ otherwise.

The set of states S is V. For each v € V' we define a set of corresponding actions
Act(v). If v € Vp, then Act(v) = {(v)}, and if v € V4, then Act(v) = {(v,7) |
1 <i < |o(v)|}. The set of actions A is (J, ¢y Act(v). We assume w.l.o.g. that
successors of each node are ordered in some fixed order. The i-th successor of v
where i € {1,...,|o(v)|} is denoted by o;(v).

The transition relation contains transitions of three types:

1. v 5% 4 for each v € V and a € A such that a ¢ Act(v).

2. v %% o for each v € Vv and i€ {1,...,|o(v)|} where v' = o;(v).

3. v o for each v € V,u € VA and w' € V such that u' € o(u).

Equivalence Checking of Non-Flat Systems Is EXPTIME-hard 9

We may assume w.l.o.g. that G contains at least one rejecting node z. The
instance of FS-EQp then consists of 7 and states z and x, where x is the
distinguished node from the instance of AGP.

Proposition 3. Ifv € V is not successful then z ~ v.

Proof. Tt is sufficient to show that {(z,v) | v € (V — W)} U Id is a bisimulation
(Id denotes the identity relation {(v,v) | v € V}). Let us consider some pair
(z,v) where v € (V —W), and a transition v — v'. This transitions is either of:

— type 1 and then it is matched by z = z of type 1, because Act(z) = § and
S0 7z —» z for every a € A,

— type 2 and then v € V5, and because v is unsuccessful, each v’ € o(v) is also
unsuccessful, and so v — v’ is matched by z — 2z,

— type 3 and then it can be matched by z = v’ of type 3.

Now consider a transition of the form z — 2'. It is of:

— type 1 and then 2’ = z and either a & Act(v), and z — z is matched by
v —= v of type 1, or a € Act(v) and there are two possibilities:
e if v € V4, then each v' € o(v) is unsuccessful since v is unsuccessful, and
S0 z —» z can be matched by v = v' of type 2,
e if v € V), then there is at least one unsuccessful v' € (v), and so z — 2
can be matched by v — v’ of type 3,
— type 2, but this is not possible as Act(z) = 0,
— type 3 and it can be matched by v == 2’ of type 3. O

Proposition 4. There is w € A* such that if v € V is successful, then w &
Tr(v).

Proof. As W can be computed as the least fixed point of f, we can define a
sequence Wy C Wy C W, C --- of subsets of W where Wy =) and W1 = f(W;)
for i > 0. For each v € W there is some least i such that v € W;. This 4 is denoted
rank(v). Let m = |W|, and let vy, va,. .., v be the nodes in W ordered by their
rank, i.e., if i < j then rank(v;) < rank(vj).

Let us consider a word wy, = @mam—1 ---a1 where a; = (v;) if v; € Vj, and if
v; € Vy then a; = (v;, k) where we choose k such that v' = oy (v;) is successful
and rank(v') < rank(v;) (obviously there is at least one such v'). We show that
wp, € Tr(v) for any successful node v. In particular, for each i < m we show
that w; = a;ai—1---a1 € Tr(v;) if j < i. We proceed by induction on i and in
the proof we use the following simple observation: w; & Tr(v) iff for each v’ such
that v =5 v’ is wi—1 & Tr(v').

The base case (7 = 0) is trivial. In the induction step we consider ¢ > 0 and show
that the proposition holds for every v; where 1 < j <.

10 Zdenék Sawa

If v; € Wy then a; = (v;, k). Any transition of the form v; iy o is either of
type 1, and then v' = v; and j < ¢, and by induction hypothesis w; 1 ¢ Tr(v'),
or of type 2, and then v' = oy (v;), so v' is successful and rank(v') < rank(v),
and by induction hypothesis w;_1 ¢ Tr(v').

Tf v; € V then a; = (v;). Any transition of the form v; — ' is either of type 1,
and then v = v; and j < 4, and by induction hypothesis w;—1 ¢ Tr(v'), or of
type 3, and then v' € o(v;) and so v’ is successful and rank(v') < rank(v;), so
by induction hypothesis w;_1 ¢ Tr(v'). O

Notice that z — z for each a € A, because Act(z) = 0, and so Tr(z) = A*.
From this and Proposition 4 we have that z 4, z if x is successful. On the other
hand, from Proposition 3 we have that z ~ z if z is not successful, and so the
described construction is correct.

The described reduction can be obviously performed in a logarithmic space. Since
the problem AGP is PTIME-complete and PTIME is closed under complement,
we obtain the following result:

Lemma 5. FS-EQp is PTIME-hard for any R such that ~C R CLCy,.

6 Construction for Non-Flat Systems

The description of the reduction from ALBA-ACCEPT to the complement of
RLBA-EQp consists of several steps that are summarized in the following figure
where FS-EQg, and RLBA-EQpx, denote the complements of FS-EQp and RLBA-EQg:

ALBA-ACCEPT ©) . RIBA-EQg
(A, wo) LOGSPACE red. - (B)
&) ~ (5

- - - — — —

4

AGP @ = FSEQp _ __ _____ » FS-EQp
(G) LOGSPACE red. (Ta) (T4)

The reduction (1) from AGP to FS-EQg can be applied to the alternating graph
G 4 that corresponds (2) to the ALBA A in the instance of ALBA-ACCEPT. We
obtain an LTS T4. From the instance of ALBA-ACCEPT we construct (3) a RLBA
B that models T4 in the sense, that after we apply a certain kind of transforma-
tion (4) to T4, we obtain an LTS T bisimilar (5) with B. It will be proved that
the transformation (4) preserves some important properties, in particular, states
that were bisimilar are bisimilar after the transformation, and states that were

Equivalence Checking of Non-Flat Systems Is EXPTIME-hard 11

not in trace preorder are not in trace preorder after the transformation. Bisimilar-
ity (5) implies that the same is true for corresponding configurations of B, from
which the correctness of the construction (3) follows. The EXPTIME-hardness
of RLBA-EQp, implies the EXPTIME-hardness of RLBA-EQg, since EXPTIME is
closed under complement.

The rest of the paper is devoted to the description of a logspace reduction from
ALBA-ACCEPT to RLBA-EQp.

Let an ALBA A = (Q, X, T, 9, 4o, ace, grej) With a word wy € X* be an instance
of ALBA-ACCEPT. We can assume that transitions in § are ordered and that this
ordering determines the order of successors of a configuration. For simplicity
we can assume w.l.o.g. that each configuration of A, which is not accepting nor
rejecting, has exactly two successors, and that 1(gaec) = A and I(gre) = V.
Let Conf be the set of all configurations of A of size n = |wg| + 2, and let
Confx, Conf,, and Conf,.; be the sets of conjunctive, disjunctive, and rejecting
configurations of size n, respectively. Notice that any configuration reachable
from ap = an; (wo) is of size n.

The ALBA A has a corresponding alternating graph Ga = (V, E,t), where
V = Conf, (a,a') € E iff a F o, and t(a) = l(a) for each o € Conf. Notice
that a configuration « is successful in A iff the node « is successful in G4, and
that A accepts w iff the node «aq is successful.

When we apply the logspace reduction described in Section 5 to G 4 with a node
ag, we obtain the LTS T4 = (54, A4, —>4), where S4 = Conf, Act(a) = {{a)}
for each o € Confa, Act(a) = {(a,) | i € {1,2}} for each a € Conf, — Conf,.;,
Act(a) = 0 for each a € Confrej, Aa = Uqe gons Act(@), and — 4 contains the
following transitions for each a € Conf:

1. a =54 a for each z € (A4 — Act(w)),

2. «a (a—’l>>A o' if a € Confy, and o is the i-th successor of a,

3. «a @)A B' for each 8 € Confa and 8’ € Conf such that 8+ §'.

Let ay; € Conf.; be some rejecting configuration. The states ar,; and ag
are the two distinguished states with the property, that if A accepts wp, then
Orej Lir 0, and ouej ~ o otherwise.

An RLBA B = (@Qp,I'B,08,AB,l5,— p) that in some sense ‘models’ T4 will
be constructed. The RLBA B will be described only informally, but it should be
clear from this description how to construct it. In fact B models an LTS that
we obtain from T4 by a transformation illustrated in Figure 1.

Figure 1 shows only transitions going from one state, but the same transfor-
mation is performed for all states and transitions. In this simplified example is
A = {a,b,c,d}. At first, the non-deterministic choice is postponed. Notice that
that a new state is added for each action in A4. Next, each action from A4 is
replaced by sequence of actions from some ‘small’ alphabet Ag. In our example
is Ap = {0,1} and a, b, ¢, d are replaced with 00, 01, 10 and 11. Invisible actions

12 Zdenék Sawa

2/ p| b\ b

Fig. 1. The transformation performed on T4

representing non-deterministic choice are replaced with sequences of 7 actions
of some fixed length m (in our example m = 3). This kind of transformation is
described more formally in the next subsection.

Configurations of A can be written as words in an alphabet A = (Q x I') U T,
where occurrence of the symbol from () x I' denotes the position of the head
(there must be exactly one such symbol in the word). A word from A* corre-
sponding to a configuration « is denoted by desc(a). Actions from Act(a) are
replaced with sequences of actions corresponding to desc(a) in B. In particular,
Ap = Ay U{1,2} where Aq = A —{(qrej,a) | a € I'}. Actions from {1,2} are
used to identify a successor of a disjunctive configuration.

B has a tape with two tracks, denoted track 1 and 2, respectively. A current
state a of Ty is is stored as a word desc(a) on track 1. B also needs to store
information about the label of a transition that 74 performs. The configuration
from the label of the transition is stored on track 2. Formally this means that
I's = (A x A)U {F,}. See Figure 2 for an example:

Fig. 2. An example of a configuration of the RLBA B

As mentioned above, a transition of T4 labelled with an action from Act(B) is
represented in B as a sequence of transitions. Each such sequence start and ends
in a configuration where track 1 contains the current state a of 74 and where
the head of B points to the first symbol of desc(a), i.e., it is on position 2. The
contents of track 2 is not important, since it will be overwritten. The sequence of
transitions of B corresponding to one transition of 74 has two phases (denoted
as phase 1 and phase 2):

Equivalence Checking of Non-Flat Systems Is EXPTIME-hard 13

1. An actions representing symbols of desc(3) are performed one by one and
the corresponding symbols are stored on track 2. The head of B goes from
left to right.

2. One of the possibilities is chosen non-deterministically (possibilities depend
on some properties of a and S that are described below, information about
these properties can be kept in the control unit of B):

(a) The head of B moves back to the left endmarker without changing any-
thing.

(b) A chosen successor of 3 is stored on track 1 while the head returns back
to the left endmarker. This involves copying of track 2 to track 1 with
the necessary modifications on positions where 8 and its successor differ.

The three following steps are performed for each symbol a of desc(8) during
phase 1:

— the symbol from track 1 is read into the control unit,
— an action a is performed, and remembered in the control unit,
— a is written on track 2 and the head moves to the next cell.

This means that actions Tar are performed for each symbol a. Phase 1 ends
when the right endmarker - is reached. If 5 € Conf,, then phase 1 includes also
an action a € {1,2} identifying a successor of 8. This number is stored in the
control unit of B.

The possible choices at the start of phase 2 depend only on whether a = 3,
and on the type of § (if it is accepting, conjunctive or disjunctive). This in-
formation can be stored in the control unit of B. To find out if @ = f, notice
that we can compare symbols on tracks 1 and 2 during phase 1. The possible
non-deterministic choices are the following: if 8 is disjunctive, the successor of
B that was chosen at the end of phase 1 can be stored on track 1, and if 3 is
conjunctive, the non-deterministically chosen successor of 8 can be stored on
track 1. The choice (a), i.e., to keep track 1 intact, is possible only when a # 3.
Notice that if § is accepting, there are no successors of 8 and so there are no
transitions possible when a = 3.

B can be constructed in such a way that only valid configurations can be written
on track 2 during phase 1, and some fixed number m of steps is always performed
during phase 2, where m € O(n). In particular, we can put m = 2n + 4, because
two steps are needed to copy one symbol from track 2 to track 1, and we need
two additional steps to modify track 1 to reflect one step of A. We also need
additional steps at the beginning and at the end of phase 2.

6.1 Decomposition of Transitions

In this subsection we describe the transformation performed on 74 more formally
and we show that it preserves some important properties of the original LTS.

14 Zdenék Sawa

Let us have an LTS T = (5, 4, —), a set of actions A’, some positive integer
m and a mapping h : 4 — A such that h(a) is not prefix of h(a') if a # a'. Let
H = {h(a) | a € A} and let Pref(H) be the set of all prefixes of words from H.

We can construct a new LTS 7' = (5§, A", —') where S’ = {(s,w) | s € S,w €
Pref(H)} U {(s,i) | s € S,0 < i < m}, where we identify the the states (s, 0)
and (s,e) (i.e., (s,0) and (s,e) are the same state), and where —' contains
transitions:

— (s,w) = (s,wa) for each s € S, w € A™ and a € A’ such that wa €
Pref (H),

— (s,w) = (s',m — 1) for each s,s' € S and a € A such that s — s’ and
h(a) = w
— (s,)—)(si—l)foreachseSand0<i<m.

For each state s € S in T there is a corresponding state (s,e) € S' in 7.

Lemma 6. For each s,s' € S: if s ~ &', then (s,e) ~ (s',¢), and if s Uy, ¢,
then (s,e) L (s',€).

Proof (sketch). To prove the first part of the lemma, it is sufficient to show that
R = {(<S7w>7<t7w)) | s~twe Pref(H)} U {((S,Z), <tai>) | s~t,0<i< m} is

a bisimulation.

To prove the second part, let us define a mapping h : A* = A™ such that
h(e) = e, and h(aw) = h(a)7™h(w). By induction on |w| we can show that for
every s € S and w € A* is w € Tr(s) iff h(w) € Tr((s,e)).

If s Z4 s’ then there is some w € A* such that w € Tr(s) and w & Tr(s"). This
implies that h(w) € Tr((s,e)) and h(w) & Tr({s',e)). O

6.2 Correctness of the Construction of the RLBA

Theorem 7. The problem RLBA-EQp is EXPTIME-hard for any R such that
~C R CLy.

Proof. Let us return to the construction of B and consider the corresponding 7 4.
We define a mapping h : A4 — A} such that h({e)) = Tar177as7 - -- Ta, for
a € Confy, and h({a,i)) = Ta177as7...Tan7i for a € Confy, — Confyej, where
desc(a) = ajas - --an. We apply the transformation described in the previous
subsection with h and m = 2n + 4 to T4, and we obtain 7T}. It is straightforward
to create a bisimulation that relates configurations of B and states of 7.

States are; and ap from T4 correspond to a rejecting, resp. initial, configuration
of A. If A accepts w, then ayej Zir ap in Ta, and so {arej,€) Zir (@0,€) in Ty,
and if A does not accept w, then aye; ~ ap in T4 and (@re;,€) ~ (ao,€) in Ty

Equivalence Checking of Non-Flat Systems Is EXPTIME-hard 15

by Lemma 6. The same holds for the corresponding configurations of B. This
shows that the described construction is correct.

RLBA B with two configurations can be constructed from an instance of ALBA-
ACCEPT in a logarithmic space, since it is obvious that some fixed number of
pointers pointing to symbols in the instance would be sufficient for the con-
struction. The problem ALBA-ACCEPT is EXPTIME-complete and EXPTIME
is closed under complement. O

So from Theorem 7 and Lemmas 1 and 2 we obtain the main result of the paper:

Theorem 8. The problems PCH-EQp and PN-EQr, are EXPTIME-hard for any
R such that ~C R CLC,,.

References

1. AK. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the
Association for Computing Machinery, 28(1):114-133, January 1981.

2. N. Immerman. Descriptive Complezity, pages 53—54. Springer-Verlag, 1998.

3. P. Jancar. Nonprimitive recursive complexity and undecidability for petri net
equivalences. Theoretical Computer Science, 256:23-30, 2001.

4. L. Jategaonkar and A. R. Meyer. Deciding true concurrency equivalences on safe,
finite nets. Theoretical Computer Science, 154(1):107-143, January 1996.

5. F. Laroussinie and P. Schnoebelen. The state explosion problem from trace to
bisimulation equivalence. In Proc. FOSSACS’2000 (Berlin, Germany, Mar.-Apr.
2000), volume 1784, pages 192-207. Springer, 2000.

6. A.Rabinovich. Complexity of equivalence problems for concurrent systems of finite
agents. Information and Computation, 139(2):111-129, 15 December 1997.

7. Z. Sawa and P. Jancar. P-hardness of equivalence testing on finite-state processes.
In Proc. SOFSEM 2001 (Piestany, Slovak Rep., November 2001), volume 2234 of
Lecture Notes in Computer Science, page 326. Springer, 2001.

8. S. K. Shukla, H. B. Hunt, D. J. Rosenkrantz, and R. E. Stearns. On the complexity
of relational problems for finite state processes. In Proc. ICALP’96 (Paderborn,
Germany), volume 1099 of Lecture Notes in Computer Science, pages 466-477.
Springer-Verlag, 1996.

9. A. Valmari and A. Kervinen. Alphabet-based synchronisation is exponentially
cheaper. In Proc. CONCUR 2002, volume 2421 of Lecture Notes in Computer
Science, page 161. Springer, 2002.

10. R.J. van Glabbeek. The Linear Time - Branching Time Spectrum. In J.C.M.
Baeten and J.W. Klop, editors, Proceedings of CONCUR ’90, Theories of Con-
currency: Unification and Extension, volume 458 of Lecture Notes in Computer
Science, pages 278-297. Springer-Verlag, Berlin, 1990.

