Hennessy-Milner logic and temporal properties

Tarski's fixed point theorem

bisimulation as a fixed point
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@ computing fixed points on finite sets
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@ Hennessy-Milner logic with recursively defined variables
°

game semantics and temporal properties of reactive systems
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Verifying Correctness of Reactive Systems

Equivalence Checking Approach

Impl = Spec
where = is e.g. strong or weak bisimilarity.

Model Checking Approach

Impl = F
where F is a formula from e.g. Hennessy-Milner logic.

F,.G == tt | # | FANG | FVG | (aF | [a]F

Theorem (for Image-Finite LTS)

It holds that p ~ g if and only if p and g satisfy exactly the same
Hennessy-Milner formulae.
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Is Hennessy-Milner Logic Powerful Enough?

Modal depth (nesting degree) for Hennessy-Milner formulae:
o md(tt) =md(ff) =0
@ md(FAG)=md(FV G)=max{md(F), md(G)}
e md([a]F) = md({(a)F) = md(F)+1

Idea: a formula F can “see” only upto depth md(F).

Theorem (let F be a HM formula and kK = md(F))

If the defender has a defending strategy in the strong bisimulation game
from s and t upto k rounds then s |= F if and only if t |= F.

E.g., there is no Hennessy-Milner formula F that expresses reachability of
deadlock.
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Temporal Properties not Expressible in HM Logic

s = Inv(F) iff all states reachable from s satisfy F
s = Pos(F) iff there is a reachable state which satisfies F

Properties Inv(F) and Pos(F) are not expressible in HM logic.

Let Act = {a1,a2,...,an} be a finite set of actions. We define
o (Act)F 3 (a1)F V (a2)F V...V (an)F
o [Act]F & [a1]F A[as]F A ... A[an]F

Inv(F)...F A[Act]F A [Act][Act]F A [Act][Act][Act]F A ...
Pos(F)...FV (Act)F Vv (Act)(Act)F V (Act)(Act)(Act)F V ...
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Infinite Conjunctions and Disjunctions vs. Recursion

Problems
@ infinite formulae are not allowed in HM logic

@ infinite formulae are difficult to handle

What about to use recursion?
@ Inv(F) expressed by X LA [Act] X

@ Pos(F) expressed by X L rv (Act) X

Question: How to define the semantics of such equations?
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Solving Equations is Tricky

Equations over Natural Numbers (n € N)

n=2%n onesolution n=20
n=n-+1 no solution
n=1%n many solutions (every n € N is a solution)

Equations over Sets of Integers (M € 2Y)

M= ({7} nM)u{7} one solution M = {7}
M=N~M no solution
M={3}uM many solutions (every M D {3})

What about Equations over Processes?

XY @fviaX = findZC2Pcst Z=[a]duU(a)Z
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Tarski's Fixed Point Theorem (for powersets)

Given a set S, we consider its powerset 2° = {X | X C S}, partially
ordered by the set inclusion C (reflexive, transitive and antisymmetric).
A set Z C S is called a fixed point (or a fixpoint) of a function

f:25 = 2%if f(Z) = Z. A fixed point Z of f is the greatest fixed point
of f if for every fixed point Y of f we have Y C Z; Z is the least fixed
point of f if for every fixed point Y of f we have Z C Y.

A function f : 25 — 2° (mapping subsets of S to subsets of S) is
monotonic iff X C Y implies f(X) C f(Y).

Theorem (Knaster, Tarski)

Let f : 2° — 2° be a monotonic function.
Then f has the (unique) greatest fixed point Z,x
and the (unique) least fixed point Zp,,, given by:
def
Zmax = U{X C S| X CF(X)}

Zmin 2 A{X C S| f(X) C X}
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A relation of the greatest and least fixed points

Suppose f : 2° — 2° is monotonic.

Zmax = U{X CS| X CF(X)}
What is the complement of Zyax, i.€. Zmax = S — Zmax !

Zome = X [ X CFOX)} = N{X | X CF(X)} = n{Y |V CA(V)} =
ALY 1FV) S Y= n{Y [ f(Y) C V)

where f4(Y) = f(Y) (fy is the dual function to f)

We note that fy is monotonic

XCY=YCX=f(Y)CFf(X)= f(X)CF(Y) = fy(X) C f4(Y))
and thus

Observation

The complement of the greatest fixed point of f is the least fixed point of
the dual function fy4.
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Computing fixed points Min and Max for finite sets

Let £1(X) < £(X) and £7(X) < F(F771(X)) for n > 1, iie.,

F(X) = F(F(... £(X)...)).

n times

If S is finite and f : 25 — 23 is monotonic then there exist integers
M, m > 0 such that

@ Zmax = FM(S)
0 Zmin = f™(D)

Idea (for Zmin): The following sequence stabilizes

0 C F(0) C F(F(0)) C F(F(F(D))) C ---
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(Recalling of ) Definition of Strong Bisimulation

Let (Proc, Act, {-2+| a € Act}) be an LTS.

Strong Bisimulation

A binary relation R C Proc x Proc is a strong bisimulation iff whenever
(s,t) € R then for each a € Act:

o if s =2 s’ then t % t’ for some t’ such that (s, t') € R

o if t 25t then s -2 s’ for some s such that (s',t') € R.

Two processes p, q € Proc are strongly bisimilar (p ~ q) iff there exists a
strong bisimulation R such that (p, q) € R.

~ = U{R | R is a strong bisimulation}
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Strong Bisimulation as a Greatest Fixed Point

Function F : 2(Proc><Proc) — 2(Proc><Proc)
Let X C Proc x Proc. Then we define F(X) as follows:
(s,t) € F(X) if and only if for each a € Act:
o if s 25 &' then t -2 t/ for some t’ such that (s',t') € X

o if t -2 t/ then s -2 & for some s’ such that (s',t') € X.

v
Observations

@ F is monotonic
@ S is a strong bisimulation if and only if S C F(S)

Strong Bisimilarity is the Greatest Fixed Point of F

~— U{S e 2(Proc><Proc) ’ ScC .7:(5)}
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HML with One Recursively Defined Variable

Syntax of Formulae

Formulae are given by the following abstract syntax
Fe=X || f| AANR | AVFE | (aF | [aF

where a € Act and X is a distinguished variable with a definition

0 X Fx, or X "= Fx (syntax in CWB: min(X.Fx), max(X.Fx))

such that Fx is a formula of the logic (which can contain X).

How to Define Semantics?

For every formula F we define a function Of : 2Proc — 2Proc g ¢
o if S is the set of processes that satisfy X then
@ Of(S) is the set of processes that satisfy F.
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Definition of Of : 2F¢ — 2Frc (let S C Proc)

Ox(S) = S

Oux(S) = Proc

Of(S) = 0

OFl/\FQ( ) = OFI(S)QOE(S)
(S) = Or(S)UOK(S)
(5) = (a)O0r(5)
(5) = [a]Okr(9)

OF1\/F2
F
O[a]F

OF is monotonic for every formula F

51 C S = Ofr(51) C OF(S2)

Proof: easy (structural induction on the structure of F).
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Observation

Semantics

Of is monotonic on (2P™¢, C), so Of has the (unique) greatest fixed
point and the (unique) least fixed point.

| A\

Semantics of the Variable X
o If X "=° Fx then

X1 = [ {S C Proc | S C Ok (S)}-

o If X ™ £y then

[X] = (){S S Proc | Of,(S) C S}.
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Game Characterization

Intuition: the attacker claims s = F, the defender claims s |= F.

Configurations of the game are of the form (s, F)

o (s,tt) and (s, ff) have no successors

@ (s, X) has one successor (s, Fx)

@ (s, F1 A F2) has two successors (s, F1) and (s, F2)
(selected by the attacker)

(s, F1 V F2) has two successors (s, F1) and (s, F?)
(selected by the defender)

(s,[a]F) has successors (s, F) for every s’ s.t. s —— &/
(selected by the attacker)

()

(]

©

(s, (a)F) has successors (s', F) for every s’ sit. s — s
(selected by the defender)
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Who is the Winner?

Play is a maximal sequence of configurations formed according to the rules
given on the previous slide.

Finite Play
@ The attacker is the winner of a finite play if the defender gets stuck or
the players reach a configuration (s, ff).

@ The defender is the winner of a finite play if the attacker gets stuck or
the players reach a configuration (s, tt).

Infinite Play

| \,

@ The attacker is the winner of an infinite play if X is defined as
X "= Fy.

@ The defender is the winner of an infinite play if X is defined as
max

X = Fx.

A\
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Game Characterization

@ s = F if and only if the defender has a universal winning strategy
from (s, F)

@ s [~ F if and only if the attacker has a universal winning strategy
from (s, F)
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Selection of Temporal Properties

o Inv(F): X ™ F A[Act]X

min

@ Pos(F): X = FV (Act)X

o Safe(F): X "2 F A ([Act]ff V (Act)X)
o Even(F): X ™ Fv ((Act)tt A [Act]X)

o FU™G: X" GV (FA[Act]X)
o FUSG: X™ GV (FA(Act)tt A[Act]X)

Using until we can express e.g. Inv(F) and Even(F):

Inv(F)=F U" fF Even(F)=tt U° F
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Examples of More Advanced Recursive Formulae

Nested Definitions of Recursive Variables

X2 Y v (Act) X Y "= (a)tt A (Act)Y
Solution: compute first [Y] and then [X].

Mutually Recursive Definitions

X "= [a]Y Y "2 (a)X

Solution' consider a complete lattice (2P’°C 2Proc ) where

Note: In the previous case we refer to a generalization of Tarski's Theorem
which holds for all complete lattices.
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