456-358/1: Modelling and Verification (MaV)

Petr Jangar (FEI VSB-TU)

doc. RNDr Petr Jané&ar, CSc.

Katedra informatiky FEI VSB-TU
www.cs.vsb.cz/jancar

Winter 2007 /2008

Modelling and Verification (MaV)

Winter 2007,/2008

1

5
/ 29

Literature, materials

The course is based on the book
Reactive Systems: Modelling, Specification and Verification

by Luca Aceto, Anna Ingdlfsd ottir, Kim Guldstrand Larsen, Ji¥i Srba
Cambridge University Press, August 2007

The authors maintain the web-page
http://www.cs.aau.dk/rsbook/

which contains a lot of useful material. (Including the slides kindly
provided by Ji¥i Srba, which serve as a basis of presentations in our course.)

The web-page of our course is
http://www.cs.vsb.cz/jancar/M0OD-VER/mod-ver.htm

(also reachable from http://www.cs.vsb.cz/jancar
and from the KatlS-page of the course).

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 2/29

Focus of the Course

@ Study of mathematical models for formal description and analysis of
systems (programs).

@ Study of formal languages for specification of (properties of) system
behaviour.

@ Particular focus on parallel and reactive systems.

@ Verification tools and implementation techniques underlying them.

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 3/29

Overview of the Course

Transition systems and CCS.

Strong and weak bisimilarity, bisimulation games.
Hennessy-Milner logic and bisimulation.

Tarski's fixed-point theorem.

Hennessy-Milner logic with recursively defined formulae.
Timed CCS.

Timed automata and their semantics.

Binary decision diagrams and their use in verification.

e & © 6 66 ¢ ¢ ¢ ¢

Two mini projects.

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008

@ Verification of a communication protocol in CWB.
@ Verification of a real-time algorithm in UPPAAL.

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 5/29

Lectures

@ Ask/answer questions. Be active!
@ Take your own notes.

@ Read the recommended literature as soon as possible after the lecture.

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 6 /29

Tutorials/Exercise Sessions

Supervised peer learning.

Work in groups of 2 (or 3) people.

°
°
@ Print out the exercise list, bring literature and your notes.
@ Feedback from teaching assistant on your request.

0

Star exercises (*) (part of the exam).

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008

Exercise/Project-Credit (“zapolet”) and Exam

Exercise/Project-Credit (“zdpocet”):

@ participating at at least one miniproject (but participating at both is
very much desired!) and elaborating a solid respective report,

@ for each miniproject you get 10-15 points (or 0).
Exam:

@ Individual and oral (the questions will be specified later).
@ Preparation time (star exercises).

@ Maximum 70 points (necessary minimum 25).

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 8 /29

Aims of the Course

Present a general theory of reactive systems and its applications.

@ Design.
@ Specification.

@ Verification (possibly automatic and compositional).

© Give the students practice in modelling parallel systems in a formal
framework.

© Give the students skills in analyzing behaviours of reactive systems.

© Introduce algorithms and tools based on the modelling formalisms.

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 9/29

Classical View

Characterization of a Classical Program

Program transforms an input into an output.

@ Denotational semantics:
a meaning of a program is a partial function

states — states

@ Nontermination is bad!

@ In case of termination, the result is unique.

Is this all we need?

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008

Interlude: Verification of a computer program

{ x1, x2 are integers satisfying Ci: x; > 0,x >0 }

Program P
y1:=0;y2 1= xq;
{xa=ya+y A0y} ... INV
while y> > x; do (y1 1= y1 + L y2 1= y2 — X2);
=y 2=y

{Gxi=z0+2AN0<2n<x}
We want to verify: {C}P{Co} ... (specification of P)
Generated verification conditions:

{G} y1:=0;y2 := x1 {INV}
{|NV Nys > X2} yii=w1+ 1;y2 =Y — X2 {lNV}
{INVA=(y2 > x2)} 21 1= y1; 22 := yp { G2}

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008

Reactive systems

What about:
@ Operating systems?

Communication protocols?

°
@ Control programs?
@ Mobile phones?

°

Vending machines?

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 12 /29

Reactive systems

Characterization of Reactive Systems

Reactive System is a system that computes by reacting to stimuli from its
environment.

Key Issues:

@ communication and interaction

@ parallelism

Nontermination is good!

The result (if any) does not have to be unique.

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 13 /29

Analysis of Reactive Systems

@ How can we develop (design) a system that "works"?

@ How do we analyze (verify) such a system?

Even short parallel programs may be hard to analyze.

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 14 /29

Example: Peterson’s protocol

Concurrent, parallel, interactive, ‘nondeterministic’ systems,
with ongoing behaviour ...

No input-output characterization (specification) ...
Verification of ‘simple’ properties ...

Peterson'’s protocol (to avoid critical section clash)

Process A: Process B:

** noncritical region ** ** noncritical region **
flaga = true flagg := true

turn := B turn == A

waitfor waitfor

(flagg = false \V/ turn = A) (flaga = false \/ turn = B)
** critical region ** ** critical region **

flaga := false flagg := false

** noncritical region ** ** noncritical region **

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008

The Need for a Theory

We need formal /systematic methods (tools), otherwise ...

@ Intel's Pentium-Il bug in floating-point division unit
@ Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer
@ Mars Pathfinder

o ...

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 16 / 29

Classical vs. Reactive Computing

H Classical Reactive/Parallel ‘
interaction no yes
nontermination undesirable often desirable
unique result yes no
semantics || states — states ?

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 17 / 29

How to Model Reactive Systems

What is the most abstract view of a reactive system (process)?

A process performs an action and becomes another process.

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 18 / 29

Labelled Transition System

A labelled transition system (LTS) is a triple (Proc, Act,{—| a € Act})
where

@ Proc is a set of states (or processes),

@ Act is a set of labels (or actions), and

o for every a € Act, — C Proc x Proc is a binary relation on states
called the transition relation.

We will use the infix notation s —— s’ meaning that (s,s') €.

Sometimes we distinguish the initial (or start) state.

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008

Interlude: Binary Relations

Definition

A binary relation R on a set A is a subset of A x A.

RCAxA

Sometimes we write x R y instead of (x,y) € R.

Some properties of relations

@ R is reflexive if (x,x) € R for all x € A
@ R is symmetric if (x,y) € R implies that (y,x) € R for all x,y € A

@ R is transitive if (x,y) € R and (y,z) € R implies that (x,z) € R for
all x,y,ze A

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 20 / 29

Closures

Let R, R’ and R” be binary relations on a set A.

Reflexive Closure
R’ is the reflexive closure of R if and only if

QO RCR,
Q R’ is reflexive, and
© R’ is the smallest relation that satisfies the two conditions above,

which means the following:
for any relation R”, if R C R” and R” is reflexive then R’ C R".

Winter 2007/2008 21 / 29

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV)

Closures

Let R, R’ and R” be binary relations on a set A.

Symmetric Closure

R’ is the symmetric closure of R if and only if
QO RCR,
Q R’ is symmetric, and

© R’ is the smallest relation that satisfies the two conditions above.

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 22 /29

Closures

Let R, R’ and R” be binary relations on a set A.

Transitive Closure

R’ is the transitive closure of R if and only if
QO RCR,
Q R’ is transitive, and

© R’ is the smallest relation that satisfies the two conditions above.

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 23 /29

Labelled Transition Systems — Notation

Let (Proc, Act,{—2+| a € Act}) be an LTS.

we extend —— to the elements of Act*

a
= UaEAct -

—* is the reflexive and transitive closure of —
a a3,

s—and s %~

reachable states

e © © 6 ¢

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 24 /29

How to Describe LTS?
—
unknown entity known entity

rogramming language —— what (denotational) or
pres £ ansuas J how (operational) it computes
277) T Labelled Transition Systems |
CCs

Petr Jangar (FEI VSB-TU)

Modelling and Verification (MaV) Winter 2007/2008 25 /29

Calculus of Communicating Systems

Process algebra called “Calculus of Communicating Systems”.

Insight of Robin Milner (1989)

Concurrent (parallel) processes have an algebraic structure.

‘Pl‘op‘Pg‘:‘Pl op P>

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 26 / 29

Process Algebra

Basic Principle

© Define a few atomic processes (modelling the simplest process
behaviour).

© Define compositionally new operations (building more complex
process behaviour from simple ones).

© atomic instruction: assignment (e.g. x:=2 and x:=x+2)

© new operators:
@ sequential composition (Py; P,)
@ parallel composition (Py | P2)
Now e.g. (x:=1 | x:=2); xi=x+2; (x:=x-1 | x:=x+5) is a process.

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 27 /29

A CCS Process: Black-Box View

What is a CCS Process to its Environment?

A CCS process is a computing agent that may communicate with its
environment via its interface.

Interface = Collection of communication ports/channels, together with an
indication of whether used for input or output.

Example: A Computer Scientist

Process interface:

| A\

@ coffee (input port)
@ coin (output port)

@ pub (output port)

Question: How do we describe the behaviour of the “black-box”?

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008 28 /29

CCS Basics (Sequential Fragment)

@ Nil (or 0) process (the only atomic process)

@ action prefixing (a.P)

. . def
@ names and recursive definitions (=)

@ nondeterministic choice (+)

This is Enough to Describe Sequential Processes

Any finite LTS can be (up to isomorphism) described by using the
operations above.

Petr Jangar (FEI VSB-TU) Modelling and Verification (MaV) Winter 2007,/2008

29 / 29

	Organization of the Course
	Overview
	Lectures and Tutorials
	Exam and Literature

	Introduction
	Aims of the Course
	Reactive Systems
	Why Do We Need a Theory?

	Formal Models for Reactive Systems
	Motivation
	Labelled Transition System
	Binary Relations
	Notation

	Introduction to CCS
	Calculus of Communicating Systems
	Process Algebra
	CCS Intuitively

