Hybrid of search and inference: time-
space tradeoffs
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Reasoning Methods

= QOur focus - search elimination

(“guessing” assignments, reasoning by assumptions)
Branch-and-bound (optimization)
Backtracking search (CSPs)

Cycle-cutset (CSPs, belief nets)

(inference, “propagation” of constraints, probabilities, cost functions)
Dynamic programming (optimization)
Adaptive consistency (CSPs)

\ Joint-tree propagation (CSPs, belief nets) /
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/ Satisfiability: Inference vs search \

Bucket

Bucket

Bucket

Bucket

Bucket

Width w=3
Induced width w'= 3

Directional  Extension Eg

Search = O(exp(n)) /
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Bucket Elimination

Bucket(E): E#D, E#C, E+B
Bucket(D): D# A

Bucket(C): C#B

Bucket(B): B# A

Bucket(A):

Bucket(A): A#=D, A#B
Bucket(D): D+#E
Bucket(C): CB, C#E
Bucket(B): B#E
Bucket(E):

A0 OB 660 R
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DR versus DPLL: complementary properties

UNIFORM 3-CNFS DR vs. DP-backtracking
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Exact CSP techniques: complexity

Backtracking | Elimination
WOISEcase| O(exp(n)) | OCnexp( w*))
time ”
w*< n
Average better than same as
time worst-case worst-case
O( n exp( W¥))
Space n
p o) w*< n
Output one solution ggﬁg}ﬁ% >
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A cycle-cutset is a subset of nodes in an undirected graph
whose removal results in a graph with no cycles

An Instantiated variable cuts the flow of information: cuts a
cycle.

If a cycle-cutset is instantiated the remaining problem is a
tree and can be solved efficiently
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Demonstrating cycle-cutset scheme
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\_

Theorem: Algorithm cycle-cutset decomposition has
time complexity ofo((n - ¢)k“**) where n is the number
of variables, c is the cycle-cutset size and k is the
domain size. The space complexity of the algorithm is
linear.
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Recursive-search:
a linear space search guided by a tree-decomposition

\_

Given a tree network, we identify a node x_1 which, when
removed, generates two subtrees of size n/2 (approximately).

T _nis the time to solve a binary tree starting at x_1. T_n obeys
recurrence

T n=k2T n2, T 1=Kk
We get:

T _n=nk*logn +1}

Given a tree-decomposition having induced-width w* this

generalizes to recursive conditioning of tree-decompositions:
T n=nk*{w*+1} log n)

because the number of values k is replaced by the number of

tuples k"w*
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/Alternative views of recursive-
search

\

graph G, a tree-decomposition T = (X, chi,Psi) that has
induced-width w*, having diameter r (the longet path from
cluster leaf to cluster leaf, then there exists a DFS tree dfs(T)
whose depth is bounded by O(log r w*).

Proposition 2: Recursive-conditioning along a tree-
decomposition T of a constraint problem R= (X,D,C), having
induced-width w*, is identical to backjumping along the DFS
ordering of its corresponding dfs(T).

Proposition 3: Recursive-conditioning is a depth-first search
traversal of the AND/OR search tree relative to the DFS
spanning tree dfs(T).

\_

Proposition 1: Given a constraint network R= (X,D,C), having

/
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Example

\_

Consider a chain graph or a k-tree.
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Hybrid: conditioning first

Generalize cycle-cutset: condition of a subset that yield a
bounded inference problem, not necessarily linear.

b-cutset: a subset of nodes is called a b-cutset iff when the
subset is removed the resulting graph has an induced-width
less than or equal to b. A minimal b-cutset of a graph has a
smallest size among all b-cutsets of the graph. A cycle-cutset is
a 1-cutset of a graph.

Adjusted induced-width: The adjusted induced-width with of G
respect (;[lo V is the induced-width of G after the variable set V is
removed.

\_ /
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Elim-cond(b)

\

\_

Idea: runs backtracking search on the b-cutset variables and
bucket-elimination on the remaining variables.

Input: A constraint network R = (X,D,C), Y a b-cutset, d an
ordering that starts with Y whose adjusted iInduced- W|dth
along d, is bounded by b, Z = X-Y.

Output: A consistent assignment, if there is one.

ll . While {y} € next partial solution of Y found by backtracking,
o

a) z < solution found by adaptive-consistency(R_y).
B) if z is not false, return solution (y,z).

2. endwhile.

return: the problem has no solutions.

/
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Complexity of elim-cond(b)

Theorem: Given R= (X,D,C), if elim-cond(b) is
applied along ordering d when Y is a b-cutset
then the space complexity of elim-cond(b) is
O(n exp(b)), and its time complexity is O(n exp
(1Y[+b)).

\_ /
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Finding a b-cutset

Veritying a b-cutset can be done in polynomial
time
A simple greedy: use a good induced-width

ordering and starting at the top add to the b-
cutset any variable with more than b parents.

Alternative: generate a tree-decomposition,
then select a b-cutset that reduce each
cluster below b.

\_ /
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Time-space tradeoff using b-cutset

\

\_

There is no guaranteed worst-case time improvement of elim-
cond(b) over pure bucket-elimination.

The size of the smallest cycle-cutset (1-cutset), ¢_1 and the
smallest induced width, w*, obey:

c_1>= w*-1.Therefore, 1 +c_1 >= w*, where the left side of
this inequality is the exponent that determines time complexity of
elim-cond(b=1), while w* governs the complexity of bucket-
elimination.

c I-c_(i+1) >=1

1+4¢c 1>= 24Cc 2>= .. b+C b,...>= w'+c W' =w"

We get a hybrid scheme whose time complexity decreases as
its space increases until it reaches the induced-width.

/
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Example of conditioning on A

~

\_

Consider the theory:
(~CvE)AvBvCvD)(~rAvBvEVD)BvCvD)

/
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Resolveif w (x.) < b, \

condition otherwise

Input

Bucket A | / AVBVC JAVBVE )

Bucket B

Bucket

Bucket D

Bucket E V

Conditioning

; l E bound b=2
wili) =3
wrHBr=3
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DCDR(b): empirical results

Adjustable trade - off :
b<0: pure DPLL, b>w : pure DR,0<b <w’ :hybrid
Time exp(b + ¢ _b), space exp(b)

DCDR(b) on different problem
structures for b =-1. 5, and 13

L0000 3
] B DCDRi-1)
Bl DCDR(5)
] DCDR( 13)
1000 A 7
I 7
E :
= 10D 3
10 -
k Uniform 3-cnfs {4, 5)-trees (4,8)-trees j
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Hybrid, inference first:
The super cluster tree elimination

~

\_

Algorithm CTE is time exponential in the
cluster size and space exponential in the
separator size.

Trade space for time by increasing the
cluster size and decreasing the
separator sizes.

Join clusters with fat separators.

/
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Example

\_

A

C

D

E

/
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A primary and secondary tree-
decompositions
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\_

Let T be a tree-decomposition of hypergraph H. Let  Sy,5,," ", S,

be the sizes of the separators in T, listed in strictly descending
order. With each separator size §; we associate a secondary
tree decomposition 7, , generated by combining adjacent nodes
whose separator sizes are strictly greater than S ; .

Let 7 the largest set of variables in any cluster of
Note that as s | decreases, v, Increase.

Theorem: The complexity of CTE when applied to each T is
O( n exp(r_i)) time, and O( n exp( §;)) space.

/
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\ (a) (b) (c) j
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Nonseparable components: a special
case of tree-decomposition

\

A connected graph G=(V,E) has a separation node v
iIf there exist nodes a and b such that all paths
connecting a and b pass through v.

A graph that has a separation node is called
separable, and one that has none is called non-
separable. A subgraph with no separation nodes is
called a non-separable component or a bi-
connected component.

A dfs algorithm can find all non-separable
components and they have a tree structure

/
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Decomposition into
nonseparable components

Assume a constraint network having unary, binary and ternary constraints
:R={R_AD,R_AB, R_DC,R_BC,R _GF,D_G,D_F,R_EHI,R_CFE}.

(b)

(c)
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k = 1R yp. R yp. Rpc. Dyt
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Complexity

\

\_

Theorem: If R = (X,D,C) is a constraint
network whose constraint graph has
nonseparable components of at most
size r, then the super-bucket elimination
algorithm, whose buckets are the
nonseparable components, is time
exponential O(n exp(r)) and is linear in
space.

/
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Hybrids of hybrids

\

hybrid(b_1,b_2):

First, a tree-decomposition having separators bounded by b_1
is created, followed by application of the CTE algorithm, but
each cllque is processed by elim-cond(b_2). If c**_{b_2} is the
size of the maximum b_2-cutset in each clique of the b_1-tree-
decomposition, the algorithm is space exponential in b_1 but
time exponential in c**_{b_2}.

Special cases:
hybrid(b_1,1): Applies cycle-cutset in each clique.
b_1=Db_2. Forb=1, hybrid(1,1) is the non-separable components
utilizing the cycle- _cutset in each component.
The space complexity of this algorithm is linear but its time
complexity can be much better than the cycle-cutsets scheme
or the non-separable component approach alone.

/
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Case study: combinatorial circuits: benchmark \
used for fault diagnosis and testing community

Problem: Given a circuit and its unexpected output, identify faulty components.
The problem can be modeled as a constraint optimization problem and
solved by bucket elimination.

3 [[es $|EI |

= ]

N s y
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/Case study: C432 \

A circuit’s primal graph SR I
For every gate we connect Seperator size is 23
inputs and outputs 19
19 19 17] 19
17] 10) [10) 17
[0 [ m m
11] L] foof foof rof Ju] L A][2] 11 11 1]
7]
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\ /
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/Join-tree of C3540 (1719 vars) \
max sep size 89
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Secondary treeor C432
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Time-space tradeoffsTime/Space tradeoff Timeis
measured by the maximum of the separator size and the

cutset size and space by the maximum separator size.

~
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