Tree Decomposition methods

Chapter 9




A hypergraph is H=(V,S), V= {vi,..,vn}
and a set of subsets Hyperegdes:
S={S1, ..., Si'}.

Dual graphs of a hypergaph: The nodes
are the hyperedges and a pair of nodes
is connected if they share vertices in V.
The arc is labeled by the shared
vertices.

A primal graph of a hypergraph H =

(V,S) haSQ{/as its nodes, and any two
nodes are connected by an arc it they
appear in the same hyperedge.

if all the constraints of a network R are
binary, then its hypergraph is identical to
its primal graph.

(c)

(d)




The running intersection property
(connectedness): An arc can be
removed from the dual graph if the
variables labeling the arcs are shared
along an alternative path between the
two endpoints.

Join graph: An arc subgraph of the
dual graph that satisfies the
connectedness property.

Join-tree: a join-graph with no cycles
Hypertree: A hypergraph whose dual
graph has a join-tree.

Acyclic network: is one whose
hypergraph is a hyperiree.




~

Algorithm acyclic-solving applies a tree algorithm to
the join-tree. It applies directional relational arc-
consistency from leaves to root.

Complexity: acyclic-solving is O(r | log ) steps, where
ris the number of constraints and / bounds the number
of tuples in each constraint relation

/




Constraints are:
R {ABC} = R {AEF} =R {CDE} = {(0,0,1) (0,1,0)(1,0,0)}
R {ACE}={(1,1,0) (0,1,1) (1,0,1) }.

d= (R_{ACE},R_{CDE},R_{AEF},R_{ABC}).
When processing R_{ABC}, its parent relation is R_{ACE};

Rycr =W yce (Ryce ® Rype) ={(0,1,D(0,1)}
processing R_{AEF} we generate relation

Ryce =7y (Ryc ® R,p)={(OLD}

® processing R_{CDE} we generate:

* R_{ACE} = \pi_{ACE} ( R_{ACE} x R_{CDE}) = {(0,1,1)}.
A solution is generated by picking the only allowed tuple for R_{ACE},
A=0,C=1,E=1, extending it with a value for D that satisfies R_{CDE}, which is
only D=0, and then similarly extending the assignment to F=0 and B=0, to
satisfy R_{AEF} and R_{ABC}.




4 h

Dual-based recognition:

Perform maximal spanning tree over the dual graph
and check connectedness of the resulting tree.

Dual-acyclicity complexity is O(e”3)
Primal-based recognition:

Theorem (Maier 83): A hypergraph has a join-tree iff
its primal graph is chordal and conformal.

A chordal primal graph is conformal relative to a
constraint hypergraph iff there is a one-to-one
mapping between maximal cliques and scopes of
constraints.

\_ /




4 h

Check chordality using
max-cardinality ordering.

Test conformality

Create a join-tree:
connect every clique to
an earlier cligue sharing
maximal number of
variables.

\_ /




Convert a constraint problem to an acyclic-
one: group subset of constraints to clusters
until we get an acyclic problem.

Hypertree embeddlng of a hypergraph H =
(X,H) Is a hypertree X, S) s.t., for every
hinHthereish 1inS st h is included in
h 1.

This yield algorithm join-tree clustering

/




Input: A constraint problem R =(X,D,C) and its primal graph G = (X,E).
Output: An equivalent acyclic constraint problem and its join-tree: T= (X,D, {C )
1. Selectand = (x_1,...,x_n)
2. Triangulation(create the induced graph along $d$ and call it G**:)
for j=nto 1 by-1do
E < E U {(i,k)| (i,j) in E,(k,j) in E}
3. Create a join-tree of the induced graph G/*:
a. Identify all maximal cliques (each variable and its parents is a clique).
Let C_1,...,C_t be all such cliques,
b. Create a tree-structure T over the cliques:
Connect each C_{i}toa C_{j} (j <) with whom it shares largest subset of variables.
4. Place each input constraint in one clique containing its scope, and let
P_i be the constraint subproblem associated with C_i.
5. Solve P_i and let {R'} i $ be its set of solutions.
6. Return C' ={R"_1,..., {R}_t
the new set of constraints and their join-tree, T.

Size of maximal clique - 1 is the Induced width.




(c)

(b)

(a)




~

A tree-decomposition of R = (X, D, C) is a triple <T.x.¥ >
where T-—<V.E> isatree,and £ and v are sets of
functions .

For each constraint R, € C there is at least one vertex v
in T suchthat R, € w(v) and scope(R;) < y(v)

For each variable x in X, the set (V€ V Ixe ¥ (v)]
induces a connected subtree of T. (This is the
connectedness property.)

tree-width = max number of vars in a cluster
hyper-width = is max functions in a cluster

the separator of u and v: the intersection between
variables in u and v.

/




f [
t RAB *RA{" : RBE r

1 § ]
'RDF J '!RBD*RDC!R,-'!E ]




Cluster Tree Elimination (CTE) works by passing
messages along a tree-decomposition

Basic idea:
Each node sends one message to each of its neighbors

Node u sends a message to its neighbor v only when u
received messages from all its other neighbors




AV

cluster(u) =y (u) U {m(x,,u),m(x,,u),...mx,,u),m(v,u)}

Compute the message :

m(u,v) — sep(u,v) (®Riecluster(u) Ri )

/




= (D) =T p(Rp)
mpo.y(D) = HIJ(RHHMR(TJM”?{}2})
mp 3(B,C) = Tty (RppPR 7 mi 2))

my _‘sj}(B.- C)=7nzAR, BMR.-I-;”M”?(&L,_; })

MmiaafA,B) =1 5(R IR (PIm 5 5))

k M 3(A,B) = T 5(RppPIR 41) /




/ Distributed relational arc-consistency \

example
A B § Rl

The message that R2 sends to R1 is

R1 updates its relation and domains and
sends messages to neighbors

\_




4 N

"DR-ACT can be applied to the dual problem of any constraint network.

EV

hg — Wzij(Ra' > ([><:I kEne(z')h'i;))

B

D; — D;N ([x:l kEﬂe(é)Di) i
T

\ b) Constraint network/




-~

DR-AC on a dual join- graph

R




g

/ hi — m,(F; >a (pd kE'n.e(i)hi;)) (1)

lteration 1

h:  h;
B B




lteration 1




g

/ h! — ’JT;ij(Rg‘ P (D(] kene(i)hi)) (1)

lteration 2

h: ok
B B

3




/

lteration 2

Rl
Al
3
R2
A B
3
2
B A B C
R4 4 5 RS
A D BCF




/ h‘;" — ﬂ_l,-j(Rz' ] ([)c] kE'n.e(i)hi;)) (1)

vy byl
teration 3 -
3| (3] [3] [3
h:  h? R
Bl [B] Al [AB
. 5 1 R, e h:
H A
2
B A B C s s 5
W oW W R g 5 K moko T
ﬁ B A ABD BCF B ﬁ ﬁ
1] 3 6 3 1




/

lteration 3




/ h‘;" — ﬂ_l,-j(Rz' ] ([)c] kE'n.e(i)hi;)) (1)

Iteration 4 . m e
3] 3 |3
h:  h? R
; i £
3 3 1 R3 }113 h53
ACl [A

h hoh .
ﬁ i A ABD BCF Bﬁ
1 3 £
3 A

_ s & /




/

lteration 4

A B C
5 R5
BCF
3
D\6 /F
R6
DFG




/ h‘: — 'ﬂ'l,-j(Rz' > (D(] ken.e(a')hi))

R n h
lteration 5 - I pligt:
h:  h? R
B| B A A B
3 |3 3 1 R, h h;
2
B A B C 5 5
he hooon R, 4 5 K h oy s
ﬁ 5 w A B D BCF| |[B]|C ﬁ
= 3 3
D\e /F




/

lteration 5

B| A B C
R4 4 5
A D
3
D\6 /F
R
DFG




4 h

Correctness and completeness: Algorithm CTE is correct, i.e. it
computes the exact joint probability of every single variable and
the evidence.

Time complexity: O (deg x (n+N) xd "+ )

Space complexity: O (N xdsep)
where deg = the maximum degree of a node
n = number of variables (= number of CPTs)
N = number of nodes in the tree decomposition
d = the maximum domain size of a variable
w* = the induced width
sep = the separator size

\ Time and space by hyperwidth: o(n:*"), time O(N t"tw) space /







\

Adaptive consistency is a message-passing along a
bucket-tree

Bucket trees: each bucket is a node and it is
connected to a bucket to which its message is sent.

The variables are the clicue of the triangulated graph
The funcions are those placed in the initial partition




{12}

Bucket(E): E#D, E#C, E#B
Bucket(D): D# A

Bucket(C): C#B

Bucket(B): B# A

Bucket(A):

Bucket(A): A#=D, A#B
Bucket(D): D+#E
Bucket(C): CB, C#E
Bucket(B): B#E
Bucket(E):

A0 OB 660 R




Bucket G: R(G.F) —l

F(F)
Bucket F: R(FB,C) .
(a) Bucket D: R(D.4.B)
Bucket C: R(C.A) C(B,C)
\ F 2
i S ——

Bucket B: R(B,A4) B4 R) —— 5(4.B)
\ D v

Bucket 4: R(A4) ;;'{AHJ

(a) (b)




Bucket G: R( G, F}\ EF)
Bucket £ R(F B, ) E{F/,/ {;-;(B- )
Bucket D: R(D, A, B}] D4, B)

C(B.Cy % (4. B)

Bucket {i’{ A

*_\_p
Bucket B: 5{8, A) g (4. B) {E{A. BJ} _f{fi}
Bucket 4: R(.4) gi-‘” by

FD]
C(B.C)
R(D, A, B)
- {E{B. )
_ . b
2. B
B

P(A.B)




Adaptive consistency is a message-passing along a
bucket-tree

Bucket trees: each bucket is a node and it is
connected to a bucket to which its message is sent.

Theorem: A bucket-tree is a tree-decomposition

Therefore, CTE adds a bottom-up message passing to
bucket-elimination.




