
Backtracking search: look-back

Chapter 6

Look-back: backjumping
� Backjumping: Go

back to the most
recently culprit.

� Learning: constraint-
recording, no-good
recording.

Backjumping, conflict sets

� (X1=r,x2=b,x3=b,x4=b,x5=g,x6=r,x7={r,b})
� (r,b,b,b,g,r) conflict set of x7
� (r,-,b,b,g,-) c.s. of x7
� (r,-,b,-,-,-,-) minimal c.s
� Leaf deadend: (r,b,b,b,g,r)

Example

Conflict-set analysis

Gaschnig’s backjumping:
Culprit variable

� If a_i is a leaf deadend and x_b its culprit variable, then a_b is a
safe backjump destination and a_j, j<b is not.

� The culprit of x7 (r,b,b,b,g,r) is (r,b,b) � x3

Gaschnig’s backjumping [1979]

� Gaschnig uses a marking technique to compute the
culprit.

� Each variable xj maintains a pointer (latset_j) to the
latest ancestor incompatible with any of its values.

� While forward generating , keep array latest_i,
1<=j<-n, of pointers to the last value conflicted with
some value of x_j

� The algorithm jumps from a leaf-dead-end x_{i+1}
back to latest_(i+1) which is its culprit.

ia
�

Example of Gaschnig’s backjump

Properties

� Gaschnig’s backjumping implements
only safe and maximal backjumps in
leaf-deadends.

Gaschnig jumps only at leaf-dead-ends
Internal dead-ends: dead-ends that are non-leaf

Example of graph-based backjumping scenarios

� Scenario 1, deadend at x4:
� Scenario 2: deadend at x5:
� Scenario 3: deadend at x7:
� Scenario 4: deadend at x6: },{),,(

},{),,(

}{),(

}{)(

314564

314574

1544

144

xxxxxI

xxxxxI

xxxI

xxI

=

=

=

=

Graph-based backjumping

� Uses only graph information to find culprit
� Jumps both at leaf and at internal dead-ends
� Whenever a deadend occurs at x, it jumps to the most

recent variable y connected to x in the graph. If y is an
internal deadend it jumps back further to the most recent
variable connected to x or y.

� The analysis of conflict is approximated by the graph.
� Graph-based algorithm provide graph-theoretic bounds.

Ancestors and parents

� anc(x7) = {x5,x3,x4,x1}
� p(x7) =x5
� p(r,b,b,b,g,r) = x5

Internal deadends analysis

Graph-based back-jumping algorithm,
but we need to jump at internal dead-ends too

Properties of graph-based back-
jumping

� Algorithm graph-based back-jumping jumps
back at any dead-end variable as far as graph-
based information allows.

� For each variable, the algorithm maintains the
induced-ancestor set I_i relative the relevant
dead-ends in its current session.

Conflict-directed backjumping
(Prosser 1990)

� Extend Gaschnig’s backjump to internal dead-ends.
� Exploits information gathered during search.
� For each variable the algorithm maintains an induced

jumpback set, and jumps to most recent one.
� Use the following concepts:

• An ordering over variables induced a strict ordering
between constraints: R1<R2<…Rt

• Use earliest minimal consflict-set (emc(x_(i+1))) of a
deadend.

• Define the jumpback set of a deadend

Conflict-directed backjumping:
Gaschnig’s style jumpback in all deadends:

Example of conflict-directed backjumping

Properties

� Given a dead-end , the latest variable
in its jumpback set is the earliest
variable to which it is safe to jump.

� This is the culprit.
� Algorithm conflict-directed backtracking

jums back to the latest variable in the
dead-ends’s jumpback set, and is
therefore safe and maximal.

ia
�

iJ

Conflict-directed backjumping

Graph-based backjumping on DFS orderings

Graph-based backjumping on DFS ordering

� Example:d = x1,x2,x3,x4,x5,x6,x7
� Constraints: (6,7)(5,2)(2,3)(5,7)(2,7)(2,1)(2,3)(1,4)3,4)
� Rule: go back to parent. No need to maintain parent set

Complexity of graph-based backjumping on DFS ordering

� T_i= number of nodes in the And-Or search space rooted at x_i
(level m-i)

� Each assignment of a value to x_i generates subproblems:
• T_i = k b T_{i-1}
• T_0 = k

� Solution: 1+= mm
m kbT

DFS of induced graphs

Graph parameters

� C- size of a cycle-cutset
� m- depth of a dfs in any induced graph
� m_s a simple depth of a dfs tree.

� What is the relationship between these?

Learning, constraint recording

� Learning means recording conflict sets
� An opportunity to learn is when deadend

is discovered.
� Goal of learning to not discover the

same deadends.
� Try to identify small conflict sets
� Learning prunes the search space.

Look-back: constraint recording

� (x1=2,x2=2,x3=1,x4=2) IS
a dead-end

� Conflicts to record:
� (x1=2,x2=2,x3=1,x4=2) 4-

ary
� (x3=1,x4=2) binary
� (x4=2) unary

Learning algorithms

� Graph-based learning
� Deep vs shallow learning
� Jumpback learning
� Non-systematic randomized learning
� Complexity of backtracking with learning
� Look-back for SAT

Learning example

Graph-based learning algorithm

Deep learning

� Deep learning: recording all and only minimal
conflict sets

� Example:
� Although most accurate, overhead is

prohibitive: the number of conflict sets in the
worst-case:

r

r

r
2

2/
=��

�

�
��
�

�

Jumpback learning

� Record the jumpback assignment

Bounded and relevance-based learning

Bounding the arity of constraints recorded.
� When bound is i: i-ordered graph-based,i-order jumpback or

i-order deep learning.
� Overhead complexity of i-bounded learning is time and

space exponential in i.

Non-systematic randomized learning

� Do search in a random way with
interrupts, restarts, unsafe backjumping,
but record conflicts.

� Guaranteed completeness.

Complexity of backtrack-learning

The number of dead-ends is bounded by the number of
possible no-goods of size w*

Number of constraint tests per dead-end are

))((1)(
)(

1

*
*

+

=

=��
�

�
��
�

�
� dwi

dw

i

nkOk
i

n

)2()(* dwO

Complexity of backtrack-learning
(refined)

� Theorem: Any backtracking algorithm using graph-
based learning along d has a space complexity O(n
k^w*(d)) and time complexity O(n^2 (2k)^(w*(d)+1)
(book). Refined more: O(n^2 k^w*(d))

� Proof: The number of deadends for each variable is O(k^w*(d)),
yielding O(n k^w*(d)) deadends.There are at most kn values
between two sucsesive deadends: O(k n^2 k^w*(d)) number of
nodes in the search space. Since at most O(2^w*(d))
constraints are check we get O(n^2 (2k)^(w*(d)+1).

� Alternatively, if we have O(n k^w*(d)) leaves, we have k to n times
as many internal nodes, yielding between O(n k^(w*(d)+1))

� And O(n^2 k^w*(d)) nodes.

Analysis of backjumping and learning along DFS?

� Can we have a better bound than O(n^2
k^m)?

Look-back for SAT

� A partial assignment is a set of literals: sigma
� A jumpback set if a J-clause:
� Upon a leaf deadend of x resolve two clasues, one enforcing

x and one enforcing ~x relative to the current assignment
� A clause forces x relative to assignment sigma if all the

literals in the clause are negated in sigma.
� Resolving the two clauses we get a nogood.
� If we identify the earliest two clauses we will find the earliest

condlict.
� The argument can be extended to internal deadends.

Look-back for SAT

Integration of algorithms

Relationships between various
backtracking algrithms

Empirical comparison of algorithms

� Benchmark instances
� Random problems
� Application-based random problems
� Generating fixed length random k-sat

(n,m) uniformly at random
� Generating fixed length random CSPs
� (N,K,T,C) also arity, r.

The Phase transition (m/n)

Some empirical evaluation
� Sets 1-3 reports average over 2000 instances of random

csps from 50% hardness. Set 1: 200 variables, set 2: 300,
Set 3: 350. All had 3 values.:

� Dimacs problems

