
General search strategies:
Look-ahead

��������	��������	��������	��������	��������	��������	��������	��������	

The search space

� A tree of all partial solutions
� A partial solution: (a1,…,aj) satisfying all

relevant constraints
� The size of the underlying search space

depends on:
• Variable ordering
• Level of consistency posesed by the problem

Search space and the effect of ordering

Search space and the effect of ordering

Dependency on consistency level

� After arc-consistency
z=5 and l=5 are
removed

� After path-consistency
• R’_zx
• R’_zy
• R’_zl
• R’_xy
• R’_xl
• R’_yl

Dependency on consistency level

� After arc-consistency z=5
and l=5 are removed

� After path-consistency
• R’_zx
• R’_zy
• R’_zl
• R’_xy
• R’_xl
• R’_yl

The effect of higher consistency on search

Cost of node’s expansion

� Number of consistency checks for toy problem:
• For d1: 19 for R, 43 for R’
• For d2: 91 on R and 56 on R’

� Reminder:

A graph coloring problem

Backtracking search

Backtracking search

Backtracking

� Complexity of extending a
partial solution:
• Complexity of consistent

O(e log t), t bounds tuples,
e constraints

• Complexity of selectvalue
O(e k log t)

Improving backtracking

� Before search: (reducing the search space)
• Arc-consistency, path-consistency
• Variable ordering (fixed)

� During search:
• Look-ahead schemes:

• value ordering,
• variable ordering (if not fixed)

• Look-back schemes:
• Backjump
• Constraint recording
• Dependency-directed backtacking

Look-ahead: value orderings

� Intuition:
• Choose value least likely to yield a dead-end
• Approach: apply propagation at each node in the search tree

� Forward-checking
• (check each unassigned variable separately

� Maintaining arc-consistency (MAC)
• (apply full arc-consistency)

� Full look-ahead
• One pass of arc-consistency (AC-1)

� Partial look-ahead
• directional-arc-consistency

Generalized look-ahead

Forward-checking on graph coloring

Forward-checking example

Forward-checking

)(2ekOComplexity of selectValue-forward-checking at each node:

Arc-consistency look-ahead
(Gashnig, 1977)

� Applies full arc-consistency on all un-
instantiated variables following each value
assignment to the current variable.

� Complexity:
• If optimal arc-consistency is used:
• What is the complexity overhead when AC-1

is used at each node?

)(3ekO

MAC: maintaining arc-consistency
(Sabin and Freuder 1994)

� Perform arc-consistency ina binary
search tree: Given a domain X={1,2,3,4}
the algorithm assig X=1 (and apply arc-
consstency) and if x=1 is pruned, it

� Applies arc-consistency to X={2,3,4}
� If no inconsistency a new variable is

selected (not necessarily X)

Arc-consistency look-ahead:
(maintaining arc-consistency MAC)

Full and partial look-ahead

� Full looking ahead:
• Make one pass through future variables

(delete, repeat-until)

� Partial look-ahead:
• Applies (similar-to) directional arc-consistency

to future variables.
• Complexity: also
• More efficient than MAC

)(3ekO

Example of partial look-ahead

Dynamic value ordering (LVO)

Use constraint propagation to rank order the promise in non-
rejected values.

Example: look-ahead value ordering (LVO) is based of forward-
checking propagation

LVO uses a heuristic measure to transform this information to
ranking of the values

Empirical work shows the approach is cost-effective only for large
and hard problems.

MC (min-conflict), MD (min-domain) ES (expected solutions). MC
was best empirically (Frost and Dechter 1996)

Look-ahead: variable ordering

� Dynamic search rearangement (Bitner
and Reingold, 1975)(Purdon,1983):
• Choose the most constrained variable
• Intuition: early discovery of dead-ends

DVO

Example: DVO with forward checking (DVFC)

Algorithm DVO (DVFC)

Implementing look-aheads
� Cost of node generation should be reduced
� Solution: keep a table of viable domains for

each variable and each level in the tree.

� Space complexity
� Node generation = table updating)()(ekOkeO d �

)(2knO

The cycle-cutset effect

� A cycle-cutset is a subset of nodes in an
undirected graph whose removal results
in a graph with no cycles

� A constraint problem whose graph has a
cycle-cutset of size c can be solved by
partial look-ahead in time))(()2(+− ckcnO

Extension to stronger look-ahead

� Extend to path-consistency or i-consistency or
generalized-arc-consistency

Look-ahead for SAT: DPLL
(Davis-Putnam, Logeman and Laveland, 1962)

Example of DPLL

