General search strategies:
Look-ahead

Chapter 5

/

The search space

A tree of all partial solutions

A partial solution: (at,...,aj) satisfying all
relevant constraints
The size of the underlying search space
depends on:

Variable ordering

Level of consistency posesed by the problem

_

Search space and the effect of ordering

2

5.3

_.
.
- h

N “Em I IIIJ@

e’

Figure 5.1: [a) A constraint graph, (b) its search space along ordering & = (2, 7. w, 1),
and (e] its search space along ordering de = (x, w, I, 2). Hollow nodes and bars in the
search space graphs represent illegal states that may be considered, but will be rejected.

Numbers next to the nodes represent value assignments.

Search space and the effect of ordering

Root

=

After arc-consistency
z=5 and |=5 are N
removed

T

After path-consistency

R’ zx

R zy ’
Rzl '
R xy z

R’_xI /
Ryl

Figure 5.2: (a) Search space Example 5.1.1 with ordering d, after arc-consistency. (b)

Search space for ordering ds with reduction effects from enforeing path-consisteney marked
with slashes.

4 h

After arc-consistency z=5
and |1=5 are removed

After path-consistency
R’ zx
R zy
Rzl v
R xy
R xl

K R_yl

4 A

The effect of higher consistency on search

Theorem 5.1.3 Let R be a tighter network than |, where both represent the same set
af solutions. For any orderving d, any path appearing in the search graph devived from T
alsn appears in the seavch graph devived from], O

_ /

4 h

Number of consistency checks for toy problem:
Fordi: 19 for R, 43 for R’
For d2: 91 on Rand 56 on R’

Reminder:

Definition 5.1.5 (backtrack-free network) A network R is said to be backtrack-free
along ordering d if every leaf node in the corresponding search graph is a solution.

_ /

x1

red,blue,green

X7

red,blue

blue,green

x3

x4

red,green,teal

x5

X & o =) N
X 20 5 i] x
Ly L e 1] L Ly x
X, b i X
X £ L] X,
x [y i rLi
L] _\"
X 1 L

fin] x

e

i)

Figure 5.5: Backtracking search for the orderings (a) d) = #,, 19, 24, 74, 75, T, 27 and (b)
dy = T, 17,1y, T3, Tg, Ty, T7 00 the example instance in Figure 5.3, [ntermediate states are

indicated by filled ovals, dead-ends by filled rectangles, and solutions by grey ovals, The
L colors are considered in order (blue, green, red, teal), and are denoted by first letters. Bold J
lines represent the portion of the search space explored by backtracking when stopping

after the first solution. Circled numbers indicate the order in which nodes are expanded.

X b
x g
Xy I
Xy !

o)
x "uh !
©O
b

i (O b
® @@ b g

gl Ny gl 1Nl T o L N T

Q00 0]
®

(a)

g b g

(b)

g

g

procedure BACKTRACKING
Input: A constraint network P = (X, D,C).

Output: Either a sclution, or notification that the network is inconsistent.

i 1 (initialize variable eounter)
D—D; {eopy domain)
while 1 <i<mn

instantiate r; «— SELECTVALUE

if x; is null {no value was returned)
ie—i—1 {backtrack)
else
ie—i+1 {step forward)
D — Dy
end while
ifi=0
return “inconsistent”
else
return instantiated values of {zy,... 25}

end procedure

subprocedure SELECTVALUE (return a value in I)] consistent with &@;_;)

while [} is not empty
select an arbitrary element @ £, and remove a from [
if CONSISTENT(&;_1, T3 = a)
return o
end while
return null {no econsistent value)
end procedure

Complexity of extending a
partial solution:
Complexity of consistent

O(e log 1), t bounds tuples,
e constraints

Complexity of selectvalue
O(e k log 1)

Figure 5.4: The backtracking algorithm.

\

Before search: (reducing the search space)

Arc-consistency, path-consistency
Variable ordering (fixed)

During search:

Look-ahead schemes:

® value ordering,

® variable ordering (if not fixed)
Look-back schemes:

® Backjump

® Constraint recording

®* Dependency-directed backtacking

Intuition:
Choose value least likely to yield a dead-end
Approach: apply propagation at each node in the search tree
Forward-checking
(check each unassigned variable separately
Maintaining arc-consistency (MAC)
(apply full arc-consistency)
Full look-ahead
One pass of arc-consistency (AC-1)
Partial look-ahead

K directional-arc-consistency

[II]‘D['EE]'I.[[‘E GEMNERALIZED-LOOKAHEAD

Input: A constraint network P = (X, D, ()

Output: Either a solution, or notification that the network is inconsis-
tent.

Dt— Diforl <i<n (copy all domains)
i—1 (initialize variable counter)
while 1 <1< n

instantiate ¥; +— SELECTVALUE-XXX

if z; is null (no value was returned)
ie—i—1 (backtrack)
reset each D)k >4, to its value before ; was last instantiated
else
t—i+1 (step forward)
end while
ifi=I0
return “inconsistent”
else
return instantiated values of {2, z,}

end procedure

\ Figure 5.7: A common framework for several look-ahead based search algorithms. By ‘

replacing SELECTVALUE-XXX with SELECTVALUE-FORWARD-CHECKING, the forward
checking alporithim is obtained. Similarly, using SELECTVALUE- ARC-CONSISTENCY yields
an algorithm that interweaves arc-consistency and search.

Figure 5.9: Part of the search space explored by forward-checking in the example in Figure
5.3. Ouly the search space below 7, = red and 23 = blue is drawn. Dotted lines connect
values with future values that are filtered out.

Example 5.3.2 Consider again the coloring problemm in Figure 5.3, In this problem,
instantiating ¥, = red reduces the domains of x5, ¥4 and »;. Instantiating x5 = blue does
not affect any future variable. The domain of x5 includes only blue | and selecting that
value causes the domain of 7 to be empty, s0 3 = blue 1= rejected and s 5 determined
to be a deadend. See Figure 5.9. O

Forward-checking example

x1 x7
red,blue,green

blue,green

x3

red,green, leal

x5

x4

*s
r 4
1, /
’ " green

{

P Not searched
! [red N by forward
i ! checking
i)

[! /
v ored [,

i l
\ ’

‘ I byyerel

, | green

A 1
\\ %
\ ‘\
. green
Y

[Y
~ -
red [T ~ ~[blue

PTDEEE]I.[["E SELECT VALUE-FORWARD-CHECKING
while [is not empty
select an arbitrary element e € £, and remove a from £
empty-domain — false
for al k, i <k <mn
for all values bin 1
if not CONSISTENT(@,;—1. T; =0, ¥} =h)
remove b from D

end for
if [} is empty (z; = 2 leads to a dead-end)
empty-domain — true
if empty-domain (don't select a)
reset each M) ¢ < k < n to value before o was selected
else
return o
end while
return null (no consistent value)

end procedure

Figure 5.8: The sSELECTVALUE subprocedure for the forward checking alporithm.

Q)mplexity of selectValue-forward-checking at each node: O(ekz)/

_

Applies full arc-consistency on all un-
instantiated variables following each value

assignment to the current variable.
Complexity:
If optimal arc-consistency is used: O(ek>)

What is the complexity overhead when AC-1
IS used at each node?

/

~

Perform arc-consistency ina binary
search tree: Given a domain X={1,2,3,4}
the algorithm assig X=1 (and apply arc-
consstency) and if x=1 is pruned, it

Applies arc-consistency to X={2,3,4}

If no inconsistency a new variable is
selected (not necessarily X)

/

subprocedure SELECT VALUE-ARC-CONSISTENCY

while [is not empty
select an arbitrary element o € ¥, and remove a from D)
repeat
removed-value — folse
foral ji<j<mn
forallki<k<n
for each value b in 1)}
if there is no value ¢ £ I} such that
CONSISTENT(#;—,, T =8, T;=b, 1y =c)
remnove b from [V,
removed-value — true
end for
end for
end for
until removed-velue = false
if any future domain is empty (don't select a)
reset each [i < j < n, to value before o was selected
else
returm o
end while
return null (no consistent value)
end procedure

Figure 5.10: The sELECTVALUE subprocedure for arc-consistency, based on the AC-1
alporithm.

Full looking ahead:

Make one pass through future variables
(delete, repeat-until)

Partial look-ahead:

Applies () directional arc-consistency
to future variables.

Complexity: also O(ek”)
More efficient than MAC

/

4 h

Example 5.3.3 Conside the problem in Fipure 5.3 using the same ordering, of variables
and values as in Figure 5.9, Partial-look-ahead starts by considering 1 = red. Applying
directional arc-consistency from x; towards x; will first shrink the domains of xs, 74 and
w7, [when processing x,), as was the case for forward-checking, Later, when directicnal
arc-consistency processes ry (with its only value, “blue™) apainst x; (with its only value,
“blue™), the domain of x4 will becomme empty, and the value “red” for z; will be rejected.
Likewise, the value ry = Blue will be rejected. Therefore, the whole tree in Figure 5.9 will
not be visited if either partial-look-ahead or the more extensive look-ahead schemes are
used. With this level of look-ahead only the subtree below x, = green will be expanded.

x1 X7

green Not bed red,blue,green
ot searche

by forward

checking

blue,green red,green,teal

x5

/

Use constraint propagation to rank order the promise in non-
rejected values.

Example: look-ahead value ordering (LVO) is based of forward-
checking propagation

LVO uses a heuristic measure to transform this information to
ranking of the values

Empirical work shows the approach is cost-effective only for large
and hard problems.

MC (min-conflict), MD (min-domain) ES (expected solutions). MC
was best empirically (Frost and Dechter 1996)

/

-

Dynamic search rearangement (Bitner

and Reingold, 1975)(Purdon,1983):
Choose the most constrained variable
Intuition: early discovery of dead-ends

subprocedure SELECTVARIABLE

M — Milliejen L] (find size of smallest future domain)
select an arbitrary uninstantiated variable xy such that || =m
rearrange future variables so that 4 is the ith variable

end subprocedure

Figure 5.11: The subprocedure SELECT VARIABLE, which emplovs a heuristic based
the £ sats to choose the next wvariable to be instantiated.

_ /

x1 X7
red,blue,green

red,green,teal

x5

blue,green

x3

x4

Example 5.3.4 Consider again the example in Figure 5.3, Initially, all variables have
domain sizge of 2 or more. DVEFC picks 77, whose domain size is 2, and the value <
xy, blue >, Forward-checking propagation of this choice to each future variable restricts
the domains of ry, r4 and x5 to single values, and reduces the size of 7;'s domain by one.
DVEC selects x5 and assipns it its only possible value, red. Subsequently, forward-checking
causes variable x; to also have a singleton domain. The algorithm chocses xy and its only
consistent value, greem. After propagating this choice, we see that r4 has one value,
red; it is selected and assipned the value. Then z; can be selected and assigned its only
consistent value, bfuwe. Propagating this assignment does not further shrink any future
\dn:umain. Next, x5 can be selected and assigned green. The solution is then completed,

without dead-ends, by assigning, red or teal to xg. i

procedure DVFC
Input: A constraint network R = (X, 0. C)
Output: Either a solution, or notification that the network is inconsistent.

e Diforl<i<n (copy all domains)
i—1 (initialize wariable counter)
§ = Miljcjcq [P} (fnd future var with smallest domain)
Tip1 — T, [rearrange variables so that x, follows z;)
while 1 <1< n
instantiate r; +— SELECTVALUE-FORWARD-CHECKING

if =; is null (no value was returned)
reset each ' set to its value before x; was last instantiated
i—i—1 (backtrack)
else
ife <n
t—i+1 (step forward to z,)

§ = Miljcjcn [P} (fnd future var with smallest domain)
Tip1 — T, [rearrange variables so that x, follows z;)
i—i+1 (step forward to z,)
end while
ifi=0
return “inconsistent”
else
return instantiated values of {x,... . z,}
end procedure

Figure 5.12: The DVFC algorithum. It uses the SELECTVALUE-FORWARD-CHECKING sub-
procedure given in Fig, 5.8.

Cost of node generation should be reduced

Solution: keep a table of viable domains for
each variable and each level in the tree.

Space complexity o)
Node generation = table updating o,k = o)

A cycle-cutset is a subset of nodes in an
undirected graph whose removal results
In a graph with no cycles

A constraint problem whose graph has a
cycle-cutset of size ¢ can be solved by
partial look-ahead in time o - c)x“?)

/

-

~

_

Extend to path-consistency or i-consistency or
generalized-arc-consistency

Definition 5.3.7 (general arc-consistency) Given a constraint C = (H,5) and a
variable © = 5, 2 value a = [, 12 supported in C' if there iz a fuple t = R such that
tlz] = a. t is then celled a support for < v.a > in U, O is erc-consistent if for ench
variable =, in its scope and each of #s values, 0 = D, < r 0 > has a support in C. A
CSP is arc-consistent if each of its constraints is arc-consistent,

/

DPLL{y)
Input: A cnf theory
Output: A decision of whether is satisfiable.
1. Unit_propagate(y);
2. If the empty clause is generated, return(false);
3. Else, if all variables are assipgned, return{true);
4, Elze
5 () = some unassipned variable;
6 return(DPLL{ @A () W

DPLL(A =))

Figure 5.13: The DPLL Procedure

/

Fipure 5.14: A backtracking search tree along the variables A, B, D), ' for a cof theory
w={(—Av B) (-Cv A) (Av Bv D), ('} Hollow nodes and bars in the search tree
represent illegal states, triangles represent solutions. The enclosed area corresponds to
DPLL with unit-propagation.

_ /

