Consistency algorithms

Chapter 3




Consistency methods

e Approximation of inference:
Arc, path and i-consistecy
e Methods that transform the original

network into a tighter and tighter
representations

\_
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Arc-consistency

—

e

X =¥

X<V

(a) (b)

Figure 3.1: A matching diagram describing the arc-consistency of two variables x and y.

In (a) the variables are not arc-consistent. In (b) the domains have been reduced, and
the variables are now arc-consistent.

Definition 3.2.2 (arc-consistency) Given a constraint network R = (X, D,C), with
H;; € C, a variable x; 15 arc-consistent relative to x; if and only iof for every value a; € D
there exists a value a; € Dy such that (a;,a;) € Ry;. The subnetwork (alternatively, the
arc) defined by {zi, x;} is arc-consistent if and only if x; is arc-consistent relative to z;
and T; 15 arc-consistent relative to x;. A network of constraints is called arc-consistent aff /
—

all of its arcs (e.g., subnetworks of size 2) are arc-consistent.
.
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Arc-consistency

Only domain constraints are recorded: R, < H Ry XD,

R, ={1,2,3}, R, ={1,2,3}, constriant X <Y
reduces domain of X to R, = {1,2}.

x ¥ T ¥
1 8 1
2 = 2 e
- 3
3 3
=y =y

[a] (b]

Example:

\_
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Revise for arc-consistency

REVISE((z;), z;)

input: a subnetwork defined by two variables X = {z;, z;}, a distinguished variable z;,
domains: D; and D;, and constraint A;;

output: D;, such that, x; arc-consistent relative to z;

1. for each a; € D;

2. if there is no a; € D; such that (a;,a;) € R;;
3. then delete a; from D;

4. endif

5. endfor

Figure 3.2: The Revise procedure

DieDimﬂi(Rl.j@)Dj) /
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/ Figure 3.3: (a) Matching diagram describing a
network of constraints that is not arc-consistent
(b) An arc-consistent equivalent network.

\_
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~~ AC-1
AC-1(R

input: a netwmrk of constraints R = (X, D,C)
_output: R’ which is the loosest arc-consistent network equivalent to R

1. repeat

2. for every pair {z;,z;} that participates in a constraint
3 Revise((z;), ;) (or D; — D; Nm;(R;; X D))

4. Revise((z;), z;) (or D; «— D; Nm;(R;; X D;))

5. endfor

6. until no domain is changed

Figure 3.4: Arc-consistency-1 (AC-1)

e Complexity (Mackworth and Freuder, 1986): O (enk *)

e e = number of arcs, n variables,k values
e (ek”2, each loop, nk number of loops), best-case = ek,

K Arc-consistency is: Q(ek?)

~

/
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AC-3(R)
=—=input: a network of constraints R = (X, D, C)
output: R’ which is the largest arc-consistent network equivalent to R

1. for every pair {z;, x;} that participates in a constraint R;; € R
2 queue «— queue U {(z;, x;), (z;,x;)}

3. endfor

4. while queue # {}

5. select and delete (z;, ;) from gqueue

6 Revise((x;), ;)

7 if Revise((x;),x;) causes a change in D;

8 then queue «+ queue U {(xy,x;),i # k}

9. endif

10. endwhile

Figure 3.5: Arc-consistency-3 (AC-3)

o Complexity: O(ek?)
K e Best case O(ek), since each arc may be processed in O(2k)
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/ Example: A three variable network, with
two constraints: z divides x and z divides y
(a) before and (b) after AC-3 is applied.

~

7 VA

X Y

ORI D ) (24

/
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AC-4.,,

input: a network of constraints R
output: An arc-consistent network equivalent to R

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.

Initialization: M <« @,
initialize S(4, ), counter(i, a;, j) for all R;;
for all counters
if counter(z;,a;,x;) = 0 (if < z;,a; > is unsupported by z;)
then add < x;,a; > to LIST
endif
endfor
while LIST is not empty
choose < z;,a; > from LIST, remove it, and add it to M
for each < z;,a; > in S, q)
decrement counter(z;,a;, x;)
if counter(z;, a;,x;) =0
then add < x;,a; > to LIST
endif
endfor
endwhile

Figure 3.7: Arc-consistency-4 (AC-4)

o Complexity: O(ek?)

e (Counter is the number of supports to ai in xi from xj. S_(xi,ai) is the

set of pairs that (xi,ai) supports)
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Distributed arc-consistency
(Constraint propagation)

~

\_

e Implement AC-1 distributedly.
D, <D Nnrm(R,®D),)
o Node x_j sends the message
to node X | hl-] «— ﬂ.i (le ® DJ)

 Node x_i updates its domain: D; <~ D, N7, (R; ®D;) =
D, < D,Nnh’

e Messages can be sent
asynchronously or scheduled
in a topological order
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Is arc-consistency enough?

\_

e Example: a triangle graph-coloring with 2
values.
|s it arc-consistent?
|s it consistent?

e |t is not path, or 3-consistent.

Fall 2003 ICS 275A - Constraint Networks
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Path-consistency

5.1,

\_

Definition 3.3.2 (Path-consistency) Given a constraint network R = (X, D,C), a
two variable set {z;,z;} is path-consistent relative to variable zy, if and only if for every
consistent assignment (< z;,8; >,< zj,0; >) there is a value ay € Dy s.t. the assign-
ment (< i, 0; >,< Ty, a; >) is consistent and (< zy,a; >,< zj,0; >) is consistent.
Alternatwely, a binary constraint Ry; is path-consistent relative to zy off for every pawr
(a;,0;), € Ry;, where a; and a; are from their respective domains, there is a value ay € Dy

(a;,ar) € Ry, and (ay,a;) € Ryj. A subnetwork over three variables {z;,z;, 2y} is

path-consistent iff for any permutation of (4, 5,k), Rij is path consistent relative to zx. A
network 1s path-consistent iff for every Ry; (including universal binary relations) and for
every k # 1,7 Hy; 15 path-consistent relative to zy.

/
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Path-consistency

(a) (b)

Figure 3.8: (a) The matching diagram of a 2-value graph coloring problem. (b) Graphical
picture of path-consistency using the matching diagram.

- /
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/Revise-3

REVISE-3((z,y), 2)

input: a three-variable subnetwork over (z,y, 2), Ry, R,., R...
output: revised R;, path-consistent with z.
1. for each pair (a,b) € R,

2. if no value ¢ € D, exists such that (a,c) € Rz, and (b,¢c) € Ry.
3. then delete (a,b) from R,,.

4. endif

5. endfor

Figure 3.9: Revise-3
R, <R, N7, (R, ®D ®OR,)

e Complexity: O(k"3)
e Best-case: O(t)
e Worst-case O(ik)
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PC-1(R)

input: a network R = (X, D,C).

output: a path consistent network equivalent to K.
1. repeat

2. fork«< 1ton
3 fori,j« 1ton

4. Ri; < Ry Nmy; (R M Dy M Ry;)/* (Revise — 3((4,7),k))
5. endfor

6 endfor

7. until no constraint is changed.

Figure 3.10: Path-consistency-1 (PC-1)

o Complexity: O(n’k>)

e O(n"3) triplets, each take O(k*3) steps > O(n"3 k3)
e Max number of loops: O(n*2 k"2) .
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PC-2
PC-3(R)

input: a network R = (X, D, C).
output: R’ a path consistent network equivalent to R.

L Qe {(k )| 1<i<j<nl<k<nk#ik#]}
2. while @ is not empty

3. select and delete a 3-tuple (i, k, j) from @

4. R;; — Ri; Ny (R X Dy, X Ry;) /* (Revise-3((4,4), k))
5. if R;; changed then

6. Q—QU{{,i5)L59) |1 <i<nlF#il+#j}

7. endwhile

Figure 3.11: Path-consistency-3 (PC-3)

o Complexity: O(n’k>)
e Optimal PC-4: o(n’k’)
e (each pair deleted may add: 2n-1 triplets, number of pairs: O(n*2 k*"2) >

Vize of Qis O(n"3 k*2), processing is O(k"3))
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Example: before and after path-
consistency

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency

e PC-1 requires 2 processings of each arc while PC-2 may not /
e (Can we do path-consistency distributedly?
Fall 2003 ICS 275A - Constraint Networks 20




I-consistency

AR CONWSIST ENCY

=

G2 o

FPATIF-CONSISTENCY

Figure 3.17: The scope of consistency enforcing: (a) arc-consistency, (b) path-consistency,
(¢) i-consistency
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Higher levels of consistency,
global-consistency

Definition 3.4.1 (:-consistency, global consistency) Given a general network of con-
straints R = (X, D,C), a relation Rg € C where |S| = i — 1 is i-consistent relative to
a variable y not in S iff for every t € Rg, there ewists a value a € Dy, st. (t,a) s
consistent. A network is ¢-consistent iff given any consistent instantiation of any 1 — 1
distinct variables, there exists an instantiation of any ith variable such that the @ values
taken together satisfy all of the constraints among the 1 variables. A network s strongly
t-consistent iff i s j-consistent for all 9 < 1. A strongly n-consistent network, where n
15 the number of variables in the network, is called globally consistent.

- /
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Revise-i

REVISE-i({z1, %9, ..., Ti_1}, Z;)
input: a network R = (X, D, C)
output: a constraint Rg, S = {1, ...., ;_1} i-consistent relative to x;.
1. for each instantiation a; 1 = (< x1,61 >, < Ta,a2 >, ..., < Ti1,a,1 >) do,
2. if no value of a; € D; exists s.t. (a;_1,a;) is consistent
then delete a;,_; from Rg
(Alternatively, let S be the set of all subsets of {z,...,z;} that contain z;
and appear as scopes of constraints of R, then
Rg + RgNng(Msics Rsr))
3. endfor

Figure 3.14: Revise-i .
o Complexity: for binary constraints O(k")

& For arbitrary constraints: O((2k)") /
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4-queen example

\_

Q

(a)

Q

(b)

Figure 3.13: (a) Not 3-consistent; (b) Not 4-consistent

Fall 2003 ICS 275A - Constraint Networks
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I-consistency

I-CONSISTENCY(R)

input: a network K.

output: an i-consistent network equivalent to .

1. repeat

2. for every subset S C X of size ¢ — 1, and for every x;. do

3. let S be the set of all subsets in of {x;, ..., z;} scheme(R)
that contain x;

4. FRes «+— Rag M TTS(NSJE_S RSJ'} { this is Revise—i(S, 55'.5:]:]
6. endfor
7. until no constraint is changed.

Figure 3.15: i-consistency-1

Theorem 3.4.3 (complexity of i-consistency) The time and space complezity of brute-
force t-consistency O(2'(nk)¥) and O(nk?), respectively. A lower bound for enforcing

K reonsistency is (n'k'). O

/
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/ Arc-consistency for non-binary \
constraints:
Generalized arc-consistency

Definition 3.5.1 (generalized arc-consistency) Given a constraint network R = (X, D, (),
with g € C, a variable z s arc-consistent relatiwe to Rg of and only of for every value
a € D, there exists a tuple t € Rg such that tlz] = a. t can be called a support for a.
The constrant Rg 15 called arc-consistent iff i is arc-consistent relatiwe to each of the

variables in its scope and a constraint network s arc-consistent if all its constraints are
arc-consistent.

D <D nr (R, ® DS_{X})

Complexity: O(t k), t bounds number of tuples.
Relational arc-consistency:

K R, ., « 7 (R, ®D,) /
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Examples of generalized arc-consistency

\_

o {X+y+Z <= 15, z >= 13} 2 X<=2, y<=2

e Example of relational arc-consistency

{AANB > G,G},=»—-Av—B

Fall 2003 ICS 275A - Constraint Networks
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More arc-based consistency

e Global constraints: e.g., all-different
constraints

Special semantic constraints that appears
often in practice and a specialized constraint
propagation. Used in constraint programming.

e Bounds-consistency: pruning the
boundaries of domains

e Do exercise 16

/
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Example for alldiff

\_

A = {3,4,5,6}

B = {3,4}

C={2,3,4,5}

D= {2,3,4}

E ={3,4}

Alldiff (A,B,C,D,E}
Arc-consistency does nothing
Apply GAC to sol(A,B,C,D,E)?
2> A={6}, F ={1}....

Alg: bipartite matching kn*1.5

(Lopez-Ortiz, et. Al, IJCAI-03 pp 245 (A fast and simple
algorithm for bounds consistency of alldifferent constraint)

/
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Global constraints

e Alldifferent
e Sum constraint

e Global cardinality constraint (a value can
be assigned a bounded number of times)

e The cummulative constraint (related to
scheduling tasks)

\_ /
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Bounds consistency

Definition 3.5.4 (bounds consistency) Given a constraint C over a scope S and do-
main constraints, a variable £ € S is bounds-consistent relative to C if the value min{D,}
(respectively, maz{D;}) can be extended to a full tuple t of C. We say that t sup-

ports min{D,}. A constraint C is bounds-consistent if each of its variables is bounds-
consistent,

\_
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Bounds consistency for Alldifferent
constraints

\_

Example 3.5.5 Consider the constraint problem with variables zq,...xg, each with do-
mains 1,...,6, and constraints:

Crizpzxo+3, Cyizy=zze+3, Ciiasg=x3+3, Cpizs=x:4+1,

Cs : alldi f ferent{z,, T3, 3, T4, T5}

The constraints are not bounds consistent. For example, the minimum wvalue 1 in the
domain of z; does not have support in constraint € as there is no corresponding value
for z; that satisfies the constraint. Enforcing bounds consistency using constraints
through Cy reduces the domains of the variables as follows: Dy = {1,2}, Dy = {1,2},
Iy = {1,2,3} Dy = {4,5} and D5 = {5,6}. Subsequently, enforcing bounds consistency
using constraints Cys further reduces the domain of C to Dy = {3}.Now constraint Cj is
no longer bound consistent. Reestablishing bounds consistency causes the domain of zy
to be reduced to {6}. Is the resulting problem already arc-consistent? O

/

Fall 2003 ICS 275A - Constraint Networks 32



4 N

Boolean constraint propagation

e (AV ~B) and (B)
B is arc-consistent relative to A but not vice-versa

e Arc-consistency achieved by resolution:
res((AV ~B),B) = A

Given also (B V C), path-consistency means:

res(AV ~B),(BV C)) =(AVC)

What can generalized arc-consistency do to cnfs?
Relational arc-consistency rule = unit-resolution

\_ /
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Boolean constraint propagation

Example: party problem

e If Alex goes, then Becky goes: A —-B (or,—A vB)
e If Chris goes, then Alex goes: C— A (or,—CVv A)

e Query:
Is it possible that Chris goes to the
party but Becky does not?

I

Is propositional theory
K ¢p={-AvB, =Cv A, =B, C} satisfiable? /
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Constraint propagation for Boolean
constraints: Unit propagation

Procedure UNIT-PROPAGATION

Input: A cnf theory, @, d = @1, ..., @x.

Output: An equivalent theory such that every unit clause
does not appear in any non-unit clause.

1. queue = all unit clauses.

2. while queue is not empty, do.

3. T« next unit clause from Queue.
4 for every clause G containing 7" or 7T
5. if 5 contains 7" delete § (subsumption elimination)
6 else, For each clause v = resolve(3,T).
if ~. the resolvent, is empty, the theory is unsatisfiable.
7. else, add the resolvent ~ to the theory and delete 4.
if ~ is a unit clause, add to Queue.
8. endfor.

0. endwhile.

Theorem 3.6.1 Algorithm UNIT-PROPAGATION has a linear time complexity.
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/Algorithms for relational and \
generalized arc-cnsistency

e Think about the following:

GAC-i apply AC-i to the dual problem when singleton
variables are explicit: the bi-partite representation.

What is the complexity?
Relational arc-consistency: imitate unit propagation.

Apply AC-1 on the dual problem where each subset of
a scope is presented.

Is unit propagation equivalent to AC-4?

- /
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Consistency for numeric
constraints

x€ [L,10], y € [5,15],

x+y=10

arc — consistency = x € [1,5], y € [5,9]
by —adding —x+ y=10,—y < -5

<€ [—10,10],
y+2z<3
path — consistency = x—z27

obtained — by — adding,x+ y =10,—y -z > -3

\_

/
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Tractable classes

Theorem 3.7.1 1. The consistency bhinary constraint networks having no cycles can
be decided by arc-consistent

2. The consistency of binary constraint networks with bi-valued domains can be decided
by path-consistency,

3. The consistency of Horn cnf theories can be decided by unit propagation.

\_ /
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/ Changes in the network graph as a result of
arc-consistency, path-consistency and 4-
consistency.

~

arc-consistency
—

4-gonsistency

\_

path-consistency

Fall 2003 ICS 275A - Constraint Networks

39



-

Distributed arc-consistency
(Constraint propagation)

~

e Implement AC-1

distributedly. D, <D nr(R;®D,)
e Node x_j sends the J

message to node x_i hi <7 (R; ®D,)

D, < D,Nh/

e Node x_i updates its

domain:
e Generalized arc-consistenc

can be implemented y RS—{x} <« ﬂ-S—{x}(RS ®D,)

distributedly: sending
messages between constraints

over the dual graph:

/

Fall 2003 ICS 275A - Constraint Networks 40



/ Distributed relational arc- \
consistency example

R,

The message that R2 sends to R1 is

R1 updates its relation and domains and
sends messages to neighbors

\_
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Distributed Arc-Consistency

\_

hg — Wzij(Ra' > ([><:I kEne(z')h'i;))

D; — D;N ([x:l kEﬂe(é)Di)

DR-AC can be applied to the dual problem of any constraint
network.

b) Constraint networy
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DR-AC on a du ¢ join-graph

\
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/ h‘: — ’ﬁz,-f(Ra‘ > (Dq kefne(s’)hi;)) (1)

Iteration 1 Al (Al (A A

h:  h;

Fall 2003
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/ h‘: — 'ﬂ'l,-j(Rz' ] (D(] ken.e(a')hi))

R n K

Iteration 2 i Al Al A
i i

R, h hs

N i g
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/ h‘: — 'ﬂ'l,-j(Rz' ] (D(] ken.e(a')hi))

1 hl hl 1

zltzeration R3 i W

wiﬁﬁ
\_ e o a /
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/ h‘: — 7 ;,-,,,-(Rz- > (Dq kefne(s’)hi;)) (1)

1 hl hl 1

Iteration 4 i H_w
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Iteration 5

R

h‘: «— 'ﬂ'l,-j(Rz' o (D(] ken.e(a')hi))

Fall 2003
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