Consistency algorithms

Chapter 3

Consistency methods

- Approximation of inference:
 - Arc, path and i-consistecy
- Methods that transform the original network into a tighter and tighter representations

$$1 \le X, Y, Z, T \le 3$$

$$X < Y$$

$$Y = Z$$

$$T < Z$$

$$X \le T$$

Figure 3.1: A matching diagram describing the arc-consistency of two variables x and y. In (a) the variables are not arc-consistent. In (b) the domains have been reduced, and the variables are now arc-consistent.

Definition 3.2.2 (arc-consistency) Given a constraint network $\mathcal{R} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$, with $R_{ij} \in C$, a variable x_i is arc-consistent relative to x_j if and only if for every value $a_i \in D_i$ there exists a value $a_j \in D_j$ such that $(a_i, a_j) \in R_{ij}$. The subnetwork (alternatively, the arc) defined by $\{x_i, x_j\}$ is arc-consistent if and only if x_i is arc-consistent relative to x_j and x_j is arc-consistent relative to x_i . A network of constraints is called arc-consistent iff all of its arcs (e.g., subnetworks of size 2) are arc-consistent.

Only domain constraints are recorded: $R_A \leftarrow \prod_A R_{AB} \bowtie D_B$

Example: $R_X = \{1,2,3\}, R_Y = \{1,2,3\}, \text{ constriant } X < Y \text{ reduces domain of } X \text{ to } R_X = \{1,2\}.$

Revise for arc-consistency

```
REVISE((x_i), x_j)
input: a subnetwork defined by two variables X = \{x_i, x_j\}, a distinguished variable x_i, domains: D_i and D_j, and constraint R_{ij}
output: D_i, such that, x_i arc-consistent relative to x_j

1. for each a_i \in D_i

2. if there is no a_j \in D_j such that (a_i, a_j) \in R_{ij}

3. then delete a_i from D_i

4. endif

5. endfor
```

Figure 3.2: The Revise procedure

$$D_i \leftarrow D_i \cap \pi_i(R_{ij} \otimes D_i)$$

Figure 3.3: (a) Matching diagram describing a network of constraints that is not arc-consistent (b) An arc-consistent equivalent network.

AC-1

Figure 3.4: Arc-consistency-1 (AC-1)

- Complexity (Mackworth and Freuder, 1986): O (enk⁻³)
- e = number of arcs, n variables,k values
- (ek², each loop, nk number of loops), best-case = ek,
- Arc-consistency is: $\Omega(ek^2)$

AC-3

```
AC-3(\mathcal{R})
—input: a network of constraints \mathcal{R} = (X, D, C)
   output: \mathcal{R}' which is the largest arc-consistent network equivalent to \mathcal{R}
   1. for every pair \{x_i, x_j\} that participates in a constraint R_{ij} \in \mathcal{R}
             queue \leftarrow queue \cup \{(x_i, x_i), (x_i, x_i)\}
   2.
   3. endfor
   4. while queue \neq \{\}
             select and delete (x_i, x_j) from queue
   5.
   6.
             Revise((x_i), x_j)
             if Revise((x_i), x_j) causes a change in D_i
   7.
                     then queue \leftarrow queue \cup \{(x_k, x_i), i \neq k\}
   8.
             endif
   9.
   10. endwhile
```

```
Figure 3.5: Arc-consistency-3 (AC-3)
```

- Complexity: $O(ek^3)$
- Best case O(ek), since each arc may be processed in O(2k)

Example: A three variable network, with two constraints: z divides x and z divides y (a) before and (b) after AC-3 is applied.

input: a network of constraints \mathcal{R} **output:** An arc-consistent network equivalent to \mathcal{R} 1. Initialization: $M \leftarrow \emptyset$, initialize $S_{(x_i,c_i)}$, $counter(i,a_i,j)$ for all R_{ij} 3. for all counters if $counter(x_i, a_i, x_j) = 0$ (if $\langle x_i, a_i \rangle$ is unsupported by x_i) 4. then add $\langle x_i, a_i \rangle$ to LIST 5. endif 6. endfor while LIST is not empty choose $\langle x_i, a_i \rangle$ from LIST, remove it, and add it to M 9. 10. for each $\langle x_j, a_j \rangle$ in $S_{(x_i, a_i)}$ decrement $counter(x_i, a_i, x_i)$ 11. 12. if $counter(x_i, a_i, x_i) = 0$ then add $\langle x_i, a_i \rangle$ to LIST 13. endif 14. 15. endfor

Figure 3.7: Arc-consistency-4 (AC-4)

• Complexity: $O(ek^2)$

16. endwhile

• (Counter is the number of supports to ai in xi from xj. S_(xi,ai) is the set of pairs that (xi,ai) supports)

Distributed arc-consistency (Constraint propagation)

- Implement AC-1 distributedly.
- Node x_j sends the message to node x i

$$D_i \leftarrow D_i \cap \pi_i(R_{ij} \otimes D_j)$$

$$h_i^j \leftarrow \pi_i(R_{ij} \otimes D_i)$$

Node x_i updates its domain:

$$D_i \leftarrow D_i \cap \pi_i(R_{ij} \otimes D_j) =$$

$$D_i \leftarrow D_i \cap h_i^j$$

 Messages can be sent asynchronously or scheduled in a topological order

Is arc-consistency enough?

- Example: a triangle graph-coloring with 2 values.
 - Is it arc-consistent?
 - Is it consistent?
- It is not path, or 3-consistent.

Path-consistency

Definition 3.3.2 (Path-consistency) Given a constraint network $\mathcal{R} = (X, D, C)$, a two variable set $\{x_i, x_j\}$ is path-consistent relative to variable x_k if and only if for every consistent assignment $(\langle x_i, a_i \rangle, \langle x_j, a_j \rangle)$ there is a value $a_k \in D_k$ s.t. the assignment $(\langle x_i, a_i \rangle, \langle x_k, a_k \rangle)$ is consistent and $(\langle x_k, a_k \rangle, \langle x_j, a_j \rangle)$ is consistent. Alternatively, a binary constraint R_{ij} is path-consistent relative to x_k iff for every pair $(a_i, a_j), \in R_{ij}$, where a_i and a_j are from their respective domains, there is a value $a_k \in D_k$ s.t. $(a_i, a_k) \in R_{ik}$ and $(a_k, a_j) \in R_{kj}$. A subnetwork over three variables $\{x_i, x_j, x_k\}$ is path-consistent iff for any permutation of (i, j, k), R_{ij} is path consistent relative to x_k . A network is path-consistent iff for every R_{ij} (including universal binary relations) and for every $k \neq i, j$ R_{ij} is path-consistent relative to x_k .

Path-consistency

Figure 3.8: (a) The matching diagram of a 2-value graph coloring problem. (b) Graphical picture of path-consistency using the matching diagram.

Revise-3

```
REVISE-3((x,y),z)
input: a three-variable subnetwork over (x,y,z), R_{xy}, R_{yz}, R_{xz}.
output: revised R_{xy} path-consistent with z.

1. for each pair (a,b) \in R_{xy}

2. if no value c \in D_z exists such that (a,c) \in R_{xz} and (b,c) \in R_{yz}

3. then delete (a,b) from R_{xy}.

4. endif

5. endfor
```

Figure 3.9: Revise-3
$$R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \otimes D_k \otimes R_{kj})$$

- Complexity: O(k³)
- Best-case: O(t)
- Worst-case O(tk)

PC-1

```
PC-1(\mathcal{R})
input: a network \mathcal{R} = (X, D, C).
output: a path consistent network equivalent to \mathcal{R}.

1. repeat
2. for k \leftarrow 1 to n
3. for i, j \leftarrow 1 to n
4. R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \bowtie D_k \bowtie R_{kj})/* (Revise - 3((i, j), k))
5. endfor
6. endfor
7. until no constraint is changed.
```

Figure 3.10: Path-consistency-1 (PC-1)

- Complexity: $O(n^5k^5)$
- O(n³) triplets, each take O(k³) steps \rightarrow O(n³ k³)
- Max number of loops: O(n^2 k^2).

PC-2

```
PC-3(\mathcal{R})
```

input: a network $\mathcal{R} = (X, D, C)$. **output:** \mathcal{R}' a path consistent network equivalent to \mathcal{R} .

- $1. \quad Q \leftarrow \{(i, k, j) \mid 1 \le i < j \le n, 1 \le k \le n, k \ne i, k \ne j \}$
 - 2. **while** Q is not empty
 - 3. select and delete a 3-tuple (i, k, j) from Q
 - 4. $R_{ij} \leftarrow R_{ij} \cap \pi_{ij}(R_{ik} \bowtie D_k \bowtie R_{kj}) / * (Revise-3((i,j),k))$
 - 5. **if** R_{ij} changed then
 - 6. $Q \leftarrow Q \cup \{(l, i, j)(l, j, i) \mid 1 \le l \le n, l \ne i, l \ne j\}$
 - 7. endwhile

Figure 3.11: Path-consistency-3 (PC-3)

- Complexity: $O(n^3k^5)$
- Optimal PC-4: $O(n^3k^3)$
- (each pair deleted may add: 2n-1 triplets, number of pairs: O(n^2 k^2) →
 size of Q is O(n^3 k^2), processing is O(k^3))

Example: before and after pathconsistency

Figure 3.12: A graph-coloring graph (a) before path-consistency (b) after path-consistency

- PC-1 requires 2 processings of each arc while PC-2 may not
- Can we do path-consistency distributedly?

I-consistency

Figure 3.17: The scope of consistency enforcing: (a) arc-consistency, (b) path-consistency, (c) i-consistency

Higher levels of consistency, global-consistency

Definition 3.4.1 (i-consistency, global consistency) Given a general network of constraints $\mathcal{R} = (X, D, C)$, a relation $R_S \in C$ where |S| = i - 1 is i-consistent relative to a variable y not in S iff for every $t \in R_S$, there exists a value $a \in D_y$, s.t. (t, a) is consistent. A network is i-consistent iff given any consistent instantiation of any i - 1 distinct variables, there exists an instantiation of any ith variable such that the i values taken together satisfy all of the constraints among the i variables. A network is strongly i-consistent iff it is j-consistent for all $j \leq i$. A strongly n-consistent network, where n is the number of variables in the network, is called globally consistent.

Revise-i

```
REVISE-i(\{x_1, x_2, ...., x_{i-1}\}, x_i)

input: a network \mathcal{R} = (X, D, C)

output: a constraint R_S, S = \{x_1, ...., x_{i-1}\} i-consistent relative to x_i.

1. for each instantiation \bar{a}_{i-1} = (\langle x_1, a_1 \rangle, \langle x_2, a_2 \rangle, ..., \langle x_{i-1}, a_{i-1} \rangle) do,

2. if no value of a_i \in D_i exists s.t. (\bar{a}_{i-1}, a_i) is consistent

then delete \bar{a}_{i-1} from R_S

(Alternatively, let S be the set of all subsets of \{x_1, ..., x_i\} that contain x_i

and appear as scopes of constraints of R, then

R_S \leftarrow R_S \cap \pi_S(\bowtie_{S'\subseteq S} R_{S'}))

3. endfor
```

Figure 3.14: Revise-i

- Complexity: for binary constraints $O(k^i)$
- For arbitrary constraints: $O((2k)^i)$

4-queen example

Figure 3.13: (a) Not 3-consistent; (b) Not 4-consistent

I-consistency

```
I-CONSISTENCY(\mathcal{R})
input: a network \mathcal{R}.
output: an i-consistent network equivalent to \mathcal{R}.

1. repeat
2. for every subset S \subseteq X of size i-1, and for every x_i, do
3. let \mathcal{S} be the set of all subsets in of \{x_1, ..., x_i\} scheme(\mathcal{R})
that contain x_i
4. R_S \leftarrow R_S \cap \pi_S(\bowtie_{S' \in \mathcal{S}} R_{S'}) (this is Revise-i(S, x_i))
6. endfor
7. until no constraint is changed.
```

Figure 3.15: i-consistency-1

Theorem 3.4.3 (complexity of i-consistency) The time and space complexity of brute-force i-consistency $O(2^i(nk)^{2i})$ and $O(n^ik^i)$, respectively. A lower bound for enforcing i-consistency is $\Omega(n^ik^i)$. \square

Arc-consistency for non-binary constraints:

Generalized arc-consistency

Definition 3.5.1 (generalized arc-consistency) Given a constraint network $\mathcal{R} = (\mathcal{X}, \mathcal{D}, \mathcal{C})$, with $R_S \in C$, a variable x is arc-consistent relative to R_S if and only if for every value $a \in D_x$ there exists a tuple $t \in R_S$ such that t[x] = a. t can be called a support for a. The constraint R_S is called arc-consistent iff it is arc-consistent relative to each of the variables in its scope and a constraint network is arc-consistent if all its constraints are arc-consistent.

$$D_x \leftarrow D_x \cap \pi_x(R_S \otimes D_{S-\{x\}})$$

Complexity: O(t k), t bounds number of tuples. Relational arc-consistency:

$$R_{S-\{x\}} \leftarrow \pi_{S-\{x\}}(R_S \otimes D_x)$$

Examples of generalized arc-consistency

•
$$\{x+y+z <= 15, z >= 13\} \rightarrow x <= 2, y <= 2$$

Example of relational arc-consistency

$$\{A \land B \rightarrow G, \neg G\}, \Rightarrow \neg A \lor \neg B$$

More arc-based consistency

- Global constraints: e.g., all-different constraints
 - Special semantic constraints that appears often in practice and a specialized constraint propagation. Used in constraint programming.
- Bounds-consistency: pruning the boundaries of domains
- Do exercise 16

Example for alldiff

- $A = \{3,4,5,6\}$
- $B = \{3,4\}$
- $C = \{2,3,4,5\}$
- $D = \{2,3,4\}$
- $E = \{3,4\}$
- Alldiff (A,B,C,D,E)
- Arc-consistency does nothing
- Apply GAC to sol(A,B,C,D,E)?
- \rightarrow A = {6}, F = {1}....
- Alg: bipartite matching kn^1.5
- (Lopez-Ortiz, et. Al, IJCAI-03 pp 245 (A fast and simple algorithm for bounds consistency of alldifferent constraint)

Global constraints

- Alldifferent
- Sum constraint
- Global cardinality constraint (a value can be assigned a bounded number of times)
- The cumulative constraint (related to scheduling tasks)

Bounds consistency

Definition 3.5.4 (bounds consistency) Given a constraint C over a scope S and domain constraints, a variable $x \in S$ is bounds-consistent relative to C if the value $min\{D_x\}$ (respectively, $max\{D_x\}$) can be extended to a full tuple t of C. We say that t supports $min\{D_x\}$. A constraint C is bounds-consistent if each of its variables is bounds-consistent.

Bounds consistency for Alldifferent constraints

Example 3.5.5 Consider the constraint problem with variables $x_1, ... x_6$, each with domains 1, ..., 6, and constraints:

$$C_1: x_4 \ge x_1 + 3$$
, $C_2: x_4 \ge x_2 + 3$, $C_3: x_5 \ge x_3 + 3$, $C_4: x_5 \ge x_4 + 1$,

$$C_5$$
: $all different\{x_1,x_2,x_3,x_4,x_5\}$

The constraints are not bounds consistent. For example, the minimum value 1 in the domain of x_4 does not have support in constraint C_1 as there is no corresponding value for x_1 that satisfies the constraint. Enforcing bounds consistency using constraints C_1 through C_4 reduces the domains of the variables as follows: $D_1 = \{1, 2\}$, $D_2 = \{1, 2\}$, $D_3 = \{1, 2, 3\}$ $D_4 = \{4, 5\}$ and $D_5 = \{5, 6\}$. Subsequently, enforcing bounds consistency using constraints C_5 further reduces the domain of C to $D_3 = \{3\}$. Now constraint C_3 is no longer bound consistent. Reestablishing bounds consistency causes the domain of x_5 to be reduced to $\{6\}$. Is the resulting problem already arc-consistent?

Boolean constraint propagation

- (A V ~B) and (B)
 - B is arc-consistent relative to A but not vice-versa
- Arc-consistency achieved by resolution: res((A V ~B),B) = A

Given also (B V C), path-consistency means: res((A V ~B),(B V C)) = (A V C)

What can generalized arc-consistency do to cnfs? Relational arc-consistency rule = unit-resolution

Boolean constraint propagation

Example: party problem

- If Alex goes, then Becky goes: $\mathbf{A} \to \mathbf{B}$ (or, $\neg \mathbf{A} \lor \mathbf{B}$)
- If Chris goes, then Alex goes: $\mathbf{C} \to \mathbf{A}$ (or, $\neg \mathbf{C} \lor \mathbf{A}$)
- Query:

Is it possible that Chris goes to the party but Becky does not?

Is propositional theory

$$\varphi = {\neg A \lor B, \neg C \lor A, \neg B, C}$$
 satisfiable?

Constraint propagation for Boolean constraints: Unit propagation

```
Procedure UNIT-PROPAGATION
Input: A cnf theory, \varphi, d = Q_1, ..., Q_n.
Output: An equivalent theory such that every unit clause
does not appear in any non-unit clause.
1. queue = all unit clauses.
2. while queue is not empty, do.
3.
         T \leftarrow next unit clause from Queue.
         for every clause \beta containing T or \neg T
4.
5.
              if \beta contains T delete \beta (subsumption elimination)
              else, For each clause \gamma = resolve(\beta, T).
6.
              if \gamma, the resolvent, is empty, the theory is unsatisfiable.
7.
              else, add the resolvent \gamma to the theory and delete \beta.
              if \gamma is a unit clause, add to Queue.
         endfor.
8.
9. endwhile.
```

Theorem 3.6.1 Algorithm Unit-propagation has a linear time complexity.

Algorithms for relational and generalized arc-cnsistency

- Think about the following:
 - GAC-i apply AC-i to the dual problem when singleton variables are explicit: the bi-partite representation.
 - What is the complexity?
 - Relational arc-consistency: imitate unit propagation.
 - Apply AC-1 on the dual problem where each subset of a scope is presented.
 - Is unit propagation equivalent to AC-4?

Consistency for numeric constraints

```
x \in [1,10], y \in [5,15],

x + y = 10

arc - consistency \Rightarrow x \in [1,5], y \in [5,9]

by - adding - x + y = 10, -y \le -5
```

$$z \in [-10,10],$$

 $y + z \le 3$
 $path - consistency \Rightarrow x - z \ge 7$
 $obtained - by - adding, x + y = 10, -y - z \ge -3$

Tractable classes

- Theorem 3.7.1 1. The consistency binary constraint networks having no cycles can be decided by arc-consistent
 - 2. The consistency of binary constraint networks with bi-valued domains can be decided by path-consistency,
 - 3. The consistency of Horn cnf theories can be decided by unit propagation.

Changes in the network graph as a result of arc-consistency, path-consistency and 4-consistency.

Distributed arc-consistency (Constraint propagation)

- Implement AC-1 distributedly.
- Node x_j sends the message to node x i

- Node x_i updates its domain:
- Generalized arc-consistency can be implemented distributedly: sending messages between constraints over the dual graph:

$$D_i \leftarrow D_i \cap \pi_i(R_{ij} \otimes D_j)$$

$$h_i^j \leftarrow \pi_i(R_{ij} \otimes D_j)$$

$$D_i \leftarrow D_i \cap h_i^j$$

$$R_{S-\{x\}} \leftarrow \pi_{S-\{x\}}(R_S \otimes D_x)$$

Distributed relational arcconsistency example

The message that R2 sends to R1 is

R1 updates its relation and domains and sends messages to neighbors

Distributed Arc-Consistency

DR-AC can be applied to the dual problem of any constraint network.

$$h_i^j \leftarrow \pi_{l_{ij}}(R_i \bowtie (\bowtie_{k \in ne(i)} h_k^i))$$
 (1)

$$D_i \leftarrow D_i \cap (\bowtie_{k \in ne(i)} D_k^i) \tag{2}$$

b) Constraint network

DR-AC on a dual join-graph

$h_i^j \leftarrow \pi_{l_{ij}}(R_i \bowtie (\bowtie_{k \in ne(i)} h_k^i))$

Iteration 1

 h_{5}^{2} h_4^2 В

В 2

D

 h_1^2

233

 R_2

2

 R_4

A B D

 R_1 h_{3}^{1} h_4^1 3

2 AB AC 4 ABD **BCF** 6

DFG R_6 h_{5}^{6} D F G F

 R_3

 R_5

B C F

C

 h_3^5

 h_5^3 **C** 2

Fall 2003

ICS 275A - Constraint 3 tworks

44

$R_i \leftarrow R_i \cap (\bowtie_{k \in ne(i)} h_k^i) \tag{2}$

Iteration 1

R₁
A
1
3

$h_i^j \leftarrow \pi_{l_{ij}}(R_i \bowtie (\bowtie_{k \in ne(i)} h_k^i))$

Iteration 2

2 R_2 h_{5}^{2} h_4^2

 R_1

 h_3^1

 h_4^1

$R_i \leftarrow R_i \cap (\bowtie_{k \in ne(i)} h_k^i) \tag{2}$

Iteration 2

R₁
A
1

$h_i^j \leftarrow \pi_{l_{ij}}(R_i \bowtie (\bowtie_{k \in ne(i)} h_k^i))$ (1)

Iteration 3

 h_5^2 h_4^2

B B 1

 h_1^2

A B 1 3 3 1

 R_2

 R_3

A C A 1 2 3 2 3

C 2

 h_6^4

D 2 **B** 1 3

 h_1^4

A 1 A B D
1 3 2

 R_4

R₅
B C F

B C 2

 h_{3}^{5}

 h_{2}^{5}

F 1

Fall 2003

 h_4^6

 h_{5}^{6}

 R_6

D F G

$R_i \leftarrow R_i \cap (\bowtie_{k \in ne(i)} h_k^i) \tag{2}$

Iteration 3

R₁
A
1
3

$h_i^j \leftarrow \pi_{l_{ij}}(R_i \bowtie (\bowtie_{k \in ne(i)} h_k^i))$ (1)

Iteration 4

 h_1^2 R_2 **A A B 1 3**

 R_3 h_1^3 h_5^3 C A C A C 2

*n*₆ **D** 2

 h_1^4 h_1^6 h_1^8 h_1^8 h_1^8 h_1^8 h_1^8 h_1^8 h_1^8 h_1^8

B C F 3 2 1

 h_{2}^{3} h_{3}^{3} C C C

*n*₆

$R_i \leftarrow R_i \cap (\bowtie_{k \in ne(i)} h_k^i)$

(2)

Iteration 4

 R_1

$h_i^j \leftarrow \pi_{l_{ij}}(R_i \bowtie (\bowtie_{k \in ne(i)} h_k^i))$ (1)

Iteration 5

 h_5^2 h_4^2 **B B 3**

 h_1^2 R_2 A B 1 3

*n*₆ **D** 2

B 3

 h_1^4

A B D
1 3 2

R₅
B C F
3 2 1

 $h_2^3 h_3^3 = C$

F

$R_i \leftarrow R_i \cap (\bowtie_{k \in ne(i)} h_k^i)$

(2)

Iteration 5

 R_1

