Normed BPA vs. normed BPP revisited

Petr Jančar **Martin Kot** Zdeněk Sawa

Center for Applied Cybernetics, Department of Computer Science Technical University of Ostrava Czech Republic

> 22 August 2008 CONCUR'08

 QQ

- After the models like FA, PDA, CFG were defined, decidability and complexity questions regarding language equivalence have been studied
- For example:
	- NFA PSPACE-complete
	- CFG, PDA undecidable

CFG grammar

$$
V = \{A, B\} \qquad\n\begin{array}{c}\nA \longrightarrow b \\
A = \{a, b\} \\
B \longrightarrow a\n\end{array}
$$

イロト イ部 トイヨ トイヨト

活

BPA system (sequential composition)

$$
V = \{A, B\} \qquad\n\begin{array}{ccc}\nA \longrightarrow b & A \stackrel{b}{\longrightarrow} \varepsilon \\
A = \{a, b\} & B \longrightarrow a & B \stackrel{a}{\longrightarrow} AB \\
B \longrightarrow a & B \stackrel{a}{\longrightarrow} \varepsilon\n\end{array}
$$

P. Jančar, M. Kot, Z. Sawa (TU Ostrava) [Normed BPA vs. normed BPP revisited](#page-0-0) 22 August 2008 CONCUR'08 3 / 28

 \Box

 299

目

BPA system (sequential composition)

$$
V = \{A, B\} \qquad\n\begin{array}{ccc}\nA \longrightarrow b & A \stackrel{b}{\longrightarrow} \varepsilon \\
A = \{a, b\} & B \longrightarrow a & B \stackrel{a}{\longrightarrow} AB \\
B \longrightarrow a & B \stackrel{a}{\longrightarrow} \varepsilon\n\end{array}
$$

Using left-most derivation it defines a LTS:

 $L(\alpha) = \{ w \in \mathcal{A}^* \mid \alpha \longrightarrow^* w \} = \{ w \in \mathcal{A}^* \mid \alpha \stackrel{w}{\longrightarrow} \varepsilon \}$

System is normed if $(\forall A \in V)(\exists w \in \mathcal{A}^*) : A \stackrel{w}{\longrightarrow} \epsilon$

Unnormed BPA system

 \leftarrow \Box

 298

÷

-4 B X

Brief history . . . (continuation)

• In 1980s, bisimilarity ... fundamental behavioral equivalence

Definition (Bisimulation)

Given an LTS $(S, \mathcal{A}, \longrightarrow)$, a binary relation $\mathcal{R} \subseteq S \times S$ is a **bisimulation** iff for each $(s, t) \in \mathcal{R}$ and $a \in \mathcal{A}$ we have:

- $\forall s' \in S: s \stackrel{a}{\longrightarrow} s' \Rightarrow (\exists t': t \stackrel{a}{\longrightarrow} t' \wedge (s',t') \in \mathcal{R}),$ and
- $\forall t^{\prime} \in \mathcal{S}: t \stackrel{a}{\longrightarrow} t^{\prime} \Rightarrow (\exists s^{\prime}: s \stackrel{a}{\longrightarrow} s^{\prime} \wedge (s^{\prime},t^{\prime}) \in \mathcal{R}).$

States s and t are **bisimulation equivalent (bisimilar)**, written $s \sim t$, iff they are related by some bisimulation.

 Ω

Also for bisimilarity, decidability and complexity questions are a natural topic to study

 \bullet ...

- \bullet NFA polynomial
- normed BPA decidable [Baeten, Bergstra, Klop, JACM 1993]
- This was a seminal paper for a line of research ...

Parallel composition is natural alternative to sequential

$$
V = \{A, B\} \qquad\n\begin{array}{l}\nA \xrightarrow{b} \varepsilon \\
A = \{a, b\} \\
B \xrightarrow{a} \varepsilon\n\end{array}
$$

 QQ

Parallel composition is natural alternative to sequential

As parallel composition is commutative and associative, Parikh images of sequence can be considered as states of LTS

 Ω

Basic Parallel Processes (BPP)

$$
V = \{A, B\} \qquad A \xrightarrow{b} \varepsilon
$$

$$
A = \{a, b\} \qquad A \xrightarrow{b} AB
$$

$$
B \xrightarrow{a} \varepsilon
$$

 \leftarrow

 299

Þ

ъ.

Basic Parallel Processes (BPP)

For BPA:

- Bisimilarity on BPA is in 2-EXPTIME and PSPACE-hard
- Bisimilarity on normed BPA is in $O(n^8 \text{polylog } n)$

For BPP:

- Bisimilarity on BPP is PSPACE-complete
- Bisimilarity on normed BPP is in $O(n^3)$ \bullet

- Both sequential and parallel composition are allowed
- Decidability of bisimilarity is open question
	- (adding communication Turing powerfull)
- Normed PA
	- Decidable [Hirshfeld, Jerrum, 1999]
	- Quite complicated proof
	- \bullet Most important part characterising when $P_1 \cdot P_2 \sim Q_1 || Q_2$

- Both sequential and parallel composition are allowed
- Decidability of bisimilarity is open question
	- (adding communication Turing powerfull)
- Normed PA
	- Decidable [Hirshfeld, Jerrum, 1999]
	- Quite complicated proof
	- Most important part characterising when $P_1 \cdot P_2 \sim Q_1 || Q_2$
- Bisimilarity between BPA process and BPP process is a simple subcase \bullet
- For normed BPA and BPP decidable (in exponential time) [Cerná, Křetínský and Kučeral
- For general BPA and BPP decidable [Jančar, Kučera, Moller]

 QQQ

Problem nBPA-nBPP-bisim

Instance: A BPP process definition Δ with initial marking M_0 and a BPA process definition Σ with initial configuration α_0

Question: Is $M_0 \sim \alpha_0$?

Main result

Problem nBPA-nBPP-bisim is decidable in polynomial time.

- Transform (M_0,Δ) to bisimilar (M'_0,Δ') into a special form (called prime form)
- **•** Check certain conditions characterising when there exists a BPA process bisimilar with M_0 (which possibly leads to an answer $\alpha_0 \nsim M_0$
- Construct BPA Σ' with initial configuration α_0' $\frac{1}{0}$ such that $\alpha'_0 \sim M'_0$, if the number of variables exceeds "some bound" end with answer $\alpha_0 \nsim M_0$
- Check whether $\alpha_{0} \sim \alpha_{0}^{\prime}$ 0

 QQQ

Every BPP can be transformed into a special form where bisimilarity coincides with identity

$$
M \sim M' \,\mathrm{iff}\; M = M'
$$

Example of BPP which is not in a prime form:

 $(5, 0, 0) \sim (0, 1, 0)$

Prime form of BPP

Every BPP can be transformed into a special form where bisimilarity coincides with identity

$$
M \sim M' \,\mathrm{iff}\; M = M'
$$

Example of BPP which is in a prime form:

- It is possible to use algorithm implicitly present in |Hirshfeld, Jerrum, Moller, 1996]
	- \bullet it is polynomial
	- precise complexity has not been analyzed
- We suggest an alternative algorithm
	- it is based on dd-functions
	- the transformation is done in time $O(n^3)$
	- we do not go into details in this presentation

 Ω

- The prime form allowed us to achieve our result by a combination of simple observations
- Those observations lead to conditions on BPP potentially excluding the existence of a bisimilar BPA

 Ω

If $A\alpha \sim M$ and M marks at least two places then $||A|| \ge 2$. Proof by contradiction: $A\alpha \sim M$, M marks at least two places, $||A|| = 1$

- \bullet If α ∼ *M* and *M* marks at least two places then number of tokens in M is at most $|V|$.
- If $\alpha \sim M$ then $M(p) \leq |V|$ for every non-SF-place p.

 QQ

Definition

A place p is called a **single final place** (SF-place) if no transition which takes a token from p gives a token to some other place.

Remark

```
||p|| = 1 for every SF-place p
```


A is SF-place, C is growing SF-place and B is non-SF-place

If one of the following conditions hold for (M_0, Δ) there is not any (α_0, Σ) such that $\alpha_0 \sim M_0$:

- **1** A non-SF-place is unbounded
- 2 $M_0 \longrightarrow^* M$ such that M has at least two marked places and $M(p) \geq 1$ for some growing SF-place p
- \bullet A non-growing SF-place p is unbounded

If no of those conditions holds, there are only two types of reachable markings:

- Tokens are only in bounded places
- All tokens are in one SF-place

- \bullet Construct reachability graph of M_0 markings with all tokens in one SF-place are "frozen"
- Construct BPA Σ' where:
	- a variable A_M for each unfrozen marking
	- a variable I_p for each SF-place p
	- rules $A_M \stackrel{a}{\longrightarrow} A_{M'}, A_M \stackrel{a}{\longrightarrow} (I_p)^k, I_p \stackrel{a}{\longrightarrow} (I_p)^k$
- Constructed BPA can possibly be of exponential size

- \bullet Construct reachability graph of M_0 markings with all tokens in one SF-place are "frozen"
- Construct BPA Σ' where:
	- a variable A_M for each unfrozen marking
	- a variable I_p for each SF-place p
	- rules $A_M \stackrel{a}{\longrightarrow} A_{M'}, A_M \stackrel{a}{\longrightarrow} (I_p)^k, I_p \stackrel{a}{\longrightarrow} (I_p)^k$
- Constructed BPA can possibly be of exponential size
- \bullet Our goal is to check bisimilarity with the given Σ , we can use it for a bound
- If a number of unfrozen markings exceeds $4N^2$ where N is maximum of $\{|V_{\Sigma}|, |P_{\Delta'}|\}$ end with answer $\alpha_0 \nsim M_0$

 QQQ

Bound on the number of "unfrozen" markings

- Divide "unfrozen" markings into 4 classes
- Show that the size of each class is bounded by \mathcal{N}^2

 Ω

Markings with all tokens in one (non-SF) place

- Number of tokens is bounded by $|V_{\Sigma}|$
- Number of places is $|P_{\Delta}|$
- There is at most $|V_{\Sigma}| \cdot |P_{\Delta}|$ markings in class 1.

 QQ

Markings with at least two marked places, at least two sink places with norm 1 are reachable

- If $\alpha \sim M$ for M form class 2 then $\alpha = A$
- Number of markings is at most $|V| \leq \mathcal{N}^2$

つひひ

Markings with at least two marked places, only one sink places with norm 1 are reachable, the sink place is a non-SF-place

- If $A\alpha \sim M$ for M form class 3 then $\|\alpha\| \leq 1$
- The number of markings in Class 3 is at most $|V|^2\leq \mathsf{N}^2.$

 Ω

Class 4.

Markings with at least two marked places, only one sink places with norm 1 are reachable, the sink place is a SF-place

- Let $A\alpha \sim M$ for M from Class 4, p is SF-place.
- $\alpha \sim I^k$ where $k = \| \alpha \|$ and $I \in V$, $I \sim p$
- \bullet There is M' reachable from M by norm reducing steps, M' does not have all tokens in p , every norm reducing transition from M' leads to marking with all tokens in p
- It follows, that M' has only 1 token $(|P|$ possibilities for M')
- The number of markings in Class 4 is at most $|V|\cdot |P| \leq N^2.$

- Algorithm for normed BPA (e.g. [Lasota, Rytter, 2006] working in $O(n^8 \text{polylog } n))$ can be used
- We propose a specialized algorithm
- It is based on ideas from algorithms deciding bisimilarity between BPA and finite state systems (e.g. Kučera, Mayr, 2002)
- It uses the fact that constructed BPA is almost a finite state system
- Our algorithm seems to have better complexity in this particular case, but we provide no analysis in this paper

- Transform (M_0, Δ) to bisimilar (M'_0, Δ') in the prime form
- Check three conditions, possibly end with answer $\alpha_0 \nsim M_0$
- Construct reachability graph of M'_0 markings with all tokens in one SF-place are "frozen"
- If the number of unfrozen markings exceeds $4N^2$ end with answer $\alpha_0 \nsim M'_0$
- Construct BPA Σ' with initial configuration α_0' 0
- Check whether $\alpha_{0} \sim \alpha_{0}^{\prime}$ 0

All steps of this algorithm are polynomial hence the problem nBPA-nBPP-bisim is polynomial.

 QQ

Thank you

 \leftarrow

Þ

∍ × × э 298

活