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Brief history . . .

After the models like FA, PDA, CFG were defined,
decidability and complexity questions regarding language equivalence
have been studied . . .

For example:

NFA – PSPACE-complete
CFG, PDA – undecidable
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CFG grammar

V = {A, B}
A = {a, b}

A −→ b

A −→ bAB

B −→ a
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BPA system (sequential composition)

V = {A, B}
A = {a, b}

A −→ b

A −→ bAB

B −→ a

A
b

−→ ε

A
b

−→ AB

B
a

−→ ε
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BPA system (sequential composition)

V = {A, B}
A = {a, b}

A −→ b

A −→ bAB

B −→ a

A
b

−→ ε

A
b

−→ AB

B
a

−→ ε

Using left-most derivation it defines a LTS:

A AB ABB ABBB . . .

ε B BB BBB . . .

b b b b

a a a a

b b b b

L(α) = {w ∈ A∗ | α −→∗ w} = {w ∈ A∗ | α
w

−→ ε}

System is normed if (∀A ∈ V )(∃w ∈ A∗) : A
w

−→ ǫ
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Unnormed BPA system

V = {A, B}
A = {a, b}

A
b

−→ ε

A
b

−→ AB

B
a

−→ B

A AB ABB ABBB . . .

ε B BB BBB

b b b b

a a a

b b b b
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Brief history . . . (continuation)

In 1980s, bisimilarity . . . fundamental behavioral equivalence

Definition (Bisimulation)

Given an LTS (S ,A,−→), a binary relation R ⊆ S × S is a bisimulation
iff for each (s, t) ∈ R and a ∈ A we have:

∀s ′ ∈ S : s
a

−→ s ′ ⇒ (∃t ′ : t
a

−→ t ′ ∧ (s ′, t ′) ∈ R), and

∀t ′ ∈ S : t
a

−→ t ′ ⇒ (∃s ′ : s
a

−→ s ′ ∧ (s ′, t ′) ∈ R).

States s and t are bisimulation equivalent (bisimilar), written
s ∼ t, iff they are related by some bisimulation.

a

a b

a a

a b
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Brief history . . . (continuation)

Also for bisimilarity, decidability and complexity questions are a
natural topic to study

. . .

NFA – polynomial
normed BPA – decidable [Baeten, Bergstra, Klop, JACM 1993]

This was a seminal paper for a line of research . . .
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Example of a BPP system

Parallel composition is natural alternative to sequential

V = {A, B}
A = {a, b}

A
b

−→ ε

A
b

−→ AB

B
a

−→ ε
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Example of a BPP system

Parallel composition is natural alternative to sequential

V = {A, B}
A = {a, b}

A
b

−→ ε

A
b

−→ AB

B
a

−→ ε

A AB ABB ABBB . . .

ε B BB BBB . . .

b b b b

a a a a

a a a a

b b b b

As parallel composition is commutative and associative, Parikh images of
sequence can be considered as states of LTS
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Basic Parallel Processes (BPP)

V = {A, B}
A = {a, b}

A
b

−→ ε

A
b

−→ AB

B
a

−→ ε

A B

b ab
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Basic Parallel Processes (BPP)

A B

b ab

(1, 0) (1, 1) (1, 2) (1, 3) . . .

(0, 0) (0, 1) (0, 2) (0, 3) . . .

b b b b

a a a a

a a a a

b b b b
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Known results

For BPA:

Bisimilarity on BPA is in 2-EXPTIME and PSPACE-hard

Bisimilarity on normed BPA is in O(n8polylog n)

For BPP:

Bisimilarity on BPP is PSPACE-complete

Bisimilarity on normed BPP is in O(n3)
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PA

Both sequential and parallel composition are allowed

Decidability of bisimilarity is open question

(adding communication - Turing powerfull)

Normed PA

Decidable [Hirshfeld, Jerrum, 1999]
Quite complicated proof
Most important part - characterising when P1 · P2 ∼ Q1||Q2
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PA

Both sequential and parallel composition are allowed

Decidability of bisimilarity is open question

(adding communication - Turing powerfull)

Normed PA

Decidable [Hirshfeld, Jerrum, 1999]
Quite complicated proof
Most important part - characterising when P1 · P2 ∼ Q1||Q2

Bisimilarity between BPA process and BPP process is a simple subcase

For normed BPA and BPP - decidable (in exponential time) [Černá,
Křet́ınský and Kučera]

For general BPA and BPP - decidable [Jančar, Kučera, Moller]
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Main problem

Problem nBPA-nBPP-bisim

Instance: A BPP process definition ∆ with initial marking M0 and a
BPA process definition Σ with initial configuration α0

Question: Is M0 ∼ α0?

Main result

Problem nBPA-nBPP-bisim is decidable in polynomial time.
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Algorithm - sketch

Transform (M0, ∆) to bisimilar (M ′

0, ∆
′) into a special form (called

prime form)

Check certain conditions characterising when there exists a BPA
process bisimilar with M0 (which possibly leads to an answer
α0 ≁ M0)

Construct BPA Σ′ with initial configuration α
′

0 such that α
′

0 ∼ M ′

0, if
the number of variables exceeds “some bound” end with answer
α0 ≁ M0

Check whether α0 ∼ α
′

0
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Prime form of BPP

Every BPP can be transformed into a special form where bisimilarity
coincides with identity

M ∼ M ′
iff M = M ′

Example of BPP which is not in a prime form:

A B C

a

b

a

b

b a

ba

3

4 2

(5, 0, 0) ∼ (0, 1, 0)
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Prime form of BPP

Every BPP can be transformed into a special form where bisimilarity
coincides with identity

M ∼ M ′
iff M = M ′

Example of BPP which is in a prime form:

A C

a

b

b a

ba

3

10
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Transformation of BPP into the prime form

It is possible to use algorithm implicitly present in [Hirshfeld, Jerrum,
Moller, 1996]

it is polynomial
precise complexity has not been analyzed

We suggest an alternative algorithm

it is based on dd-functions
the transformation is done in time O(n3)
we do not go into details in this presentation

P. Jančar, M. Kot, Z. Sawa (TU Ostrava ) Normed BPA vs. normed BPP revisited 22 August 2008 CONCUR’08 14 / 28



A combination of observations

The prime form allowed us to achieve our result by a combination of
simple observations

Those observations lead to conditions on BPP potentially excluding
the existence of a bisimilar BPA
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An example of an observation

If Aα ∼ M and M marks at least two places then ‖A‖ ≥ 2.
Proof by contradiction: Aα ∼ M, M marks at least two places, ‖A‖ = 1

≥ 1 ≥ 1

(x , y , . . .)

(x − 1, y + k , . . .) (x + l , y − 1, . . .)

Aα

α
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Other observations

If α ∼ M and M marks at least two places then number of tokens in
M is at most |V |.

If α ∼ M then M(p) ≤ |V | for every non-SF-place p.

P. Jančar, M. Kot, Z. Sawa (TU Ostrava ) Normed BPA vs. normed BPP revisited 22 August 2008 CONCUR’08 17 / 28



Single final place

Definition

A place p is called a single final place (SF-place) if no transition which
takes a token from p gives a token to some other place.

Remark

‖p‖ = 1 for every SF-place p

A B C

a b b a

ba

3

A is SF-place, C is growing SF-place and B is non-SF-place
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Conditions on BPP excluding a bisimilar BPA

If one of the following conditions hold for (M0, ∆) there is not any (α0, Σ)
such that α0 ∼ M0:

1 A non-SF-place is unbounded

2 M0 −→∗ M such that M has at least two marked places and
M(p) ≥ 1 for some growing SF-place p

3 A non-growing SF-place p is unbounded

If no of those conditions holds, there are only two types of reachable
markings:

Tokens are only in bounded places

All tokens are in one SF-place
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BPA construction

Construct reachability graph of M0 - markings with all tokens in one
SF-place are “frozen”

Construct BPA Σ′ where:

a variable AM for each unfrozen marking
a variable Ip for each SF-place p

rules AM
a

−→ AM′ ,AM
a

−→ (Ip)
k
, Ip

a
−→ (Ip)

k

Constructed BPA can possibly be of exponential size
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BPA construction

Construct reachability graph of M0 - markings with all tokens in one
SF-place are “frozen”

Construct BPA Σ′ where:

a variable AM for each unfrozen marking
a variable Ip for each SF-place p

rules AM
a

−→ AM′ ,AM
a

−→ (Ip)
k
, Ip

a
−→ (Ip)

k

Constructed BPA can possibly be of exponential size

Our goal is to check bisimilarity with the given Σ, we can use it for a
bound

If a number of unfrozen markings exceeds 4N2 where N is maximum
of {|VΣ|, |P∆′ |} end with answer α0 ≁ M0
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Bound on the number of “unfrozen” markings

Divide “unfrozen” markings into 4 classes

Show that the size of each class is bounded by N2

Tokens are

Reachable sink places

Sink place is

Class 1

Class 2

Class 3 Class 4

in 1 place
in at least 2 places

≥ 2 1

non-SF SF
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Class 1.

Markings with all tokens in one (non-SF) place

≥ 0 0

0 0

a

Number of tokens is bounded by |VΣ|

Number of places is |P∆|

There is at most |VΣ| · |P∆| markings in class 1.
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Class 2.

Markings with at least two marked places, at least two sink places with
norm 1 are reachable

≥ 1 ≥ 1

a b

If α ∼ M for M form class 2 then α = A

Number of markings is at most |V | ≤ N2

P. Jančar, M. Kot, Z. Sawa (TU Ostrava ) Normed BPA vs. normed BPP revisited 22 August 2008 CONCUR’08 23 / 28



Class 3.

Markings with at least two marked places, only one sink places with norm
1 are reachable, the sink place is a non-SF-place

≥ 1 ≥ 1

a b

If Aα ∼ M for M form class 3 then ‖α‖ ≤ 1

The number of markings in Class 3 is at most |V |2 ≤ N2.
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Class 4.

Markings with at least two marked places, only one sink places with norm
1 are reachable, the sink place is a SF-place

≥ 1 ≥ 1

a

Let Aα ∼ M for M from Class 4, p is SF-place.

α ∼ I k where k = ‖α‖ and I ∈ V , I ∼ p

There is M’ reachable from M by norm reducing steps, M ′ does not
have all tokens in p, every norm reducing transition from M ′ leads to
marking with all tokens in p

It follows, that M ′ has only 1 token (|P| possibilities for M ′)

The number of markings in Class 4 is at most |V | · |P| ≤ N2.
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Deciding bisimilarity between given and constructed BPA

Algorithm for normed BPA (e.g. [Lasota, Rytter, 2006] working in
O(n8polylog n)) can be used

We propose a specialized algorithm

It is based on ideas from algorithms deciding bisimilarity between
BPA and finite state systems (e.g. Kučera, Mayr, 2002)

It uses the fact that constructed BPA is almost a finite state system

Our algorithm seems to have better complexity in this particular case,
but we provide no analysis in this paper
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Algorithm recapitulation

Transform (M0, ∆) to bisimilar (M ′

0, ∆
′) in the prime form

Check three conditions, possibly end with answer α0 ≁ M0

Construct reachability graph of M ′

0 - markings with all tokens in one
SF-place are “frozen”

If the number of unfrozen markings exceeds 4N2 end with answer
α0 ≁ M ′

0

Construct BPA Σ′ with initial configuration α
′

0

Check whether α0 ∼ α
′

0

All steps of this algorithm are polynomial hence the problem
nBPA-nBPP-bisim is polynomial.
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Thank you

P. Jančar, M. Kot, Z. Sawa (TU Ostrava ) Normed BPA vs. normed BPP revisited 22 August 2008 CONCUR’08 28 / 28


