
Transform and Conquer

Jiří Dvorský, Ph.D.
Presentation status to date February 24, 2025

Department of Computer Science
VSB – Technical University of Ostrava

8/203

Lecture outline

Transform and Conquer

Presorting
Unity of elements in the array

Module Calculation

Search

Gaussian Elimination Method
𝐿𝑈-decomposition of a matrix

Balanced Search Trees
AVL Trees

2-3 trees

9/203

Lecture outline (cont.)

Heap and Heap Sorting

Horner’s Scheme

Problem Reduction

10/203

Solution strategy transform and solve

Biphasic strategy
1. transformation
2. solution

Instance
problem

simple instance of problem
or

other representation of problem
or

instance other problem

Solution

11/203

Transform and Conquer
Presorting

Data sorting

• A relatively old idea that motivated, among other things,
research into sorting algorithms.

• Sorted data lead to significantly simpler algorithms, “order
must be”.

• Prerequisites:
1. data is stored in an array – sorting an array is easier than
sorting a list for s do

o
end
rting we use an algorithm with complexity Θ(𝑛 log𝑛) –
typically QuickSort, MergeSort.

• Usage: geometric algorithms, graph algorithms, caustic
algorithms.

12/203

Unity of elements in the array

Background
We are given an array 𝐴 with 𝑛 elements. We have to
determine whether each element occurs exactly once in the
array 𝐴.

Rough force solution – compare all pairs of elements until:

1. does not find a pair of the same elements or
2. tested all pairs of elements.

The time complexity is in the worst case Θ(𝑛2).

13/203

Unity of elements in the array

ALGORITHM PresortElementUniqueness(A[0..n − 1])

//Solves the element uniqueness problem by sorting the array first
//Input: An array A[0..n − 1] of orderable elements
//Output: Returns “true” if A has no equal elements, “false” otherwise
sort the array A

for i ← 0 to n − 2 do
if A[i] = A[i + 1] return false

return true

Algorithm time complexity

𝑇(𝑛) = 𝑇𝑠𝑜𝑟𝑡(𝑛) + 𝑇𝑠𝑐𝑎𝑛(𝑛) ∈ Θ(𝑛 log𝑛) + Θ(𝑛) = Θ(𝑛 log𝑛)

14/203

Module count

Background
We are given an array 𝐴 with 𝑛 elements. We have to
determine which element occurs most often in the array. This
element is called modus.

For simplicity, we will assume that there is only one modus in
the array 𝐴.

Rough force solution

For each element 𝑎𝑖 ∈ 𝐴, search the auxiliary list 𝐿:
1. If we find a match, we increment the corresponding
frequency,

2. otherwise, insert the element 𝑎𝑖 at the end of the list with
frequency 1.

15/203

Mod calculation – time complexity of brute force solution

• Worst case – all elements in array 𝐴 are different.
• For 𝑎𝑖 we have to do 𝑖 − 1 comparison with elements in the
list 𝐿 before we add a new element to the end of it.

• The number of comparisons is equal to

𝐶(𝑛) =
𝑛
∑
𝑖=1
(𝑖 − 1) = 0 + 1 + ⋯ + (𝑛 − 1) = 12𝑛(𝑛 − 1) ∈ Θ(𝑛

2)

• Finding the maximum requires 𝑛 − 1 comparisons, which
does not affect the quadratic complexity of the algorithm.

16/203

Mod calculation – data presort

• If we sort the array 𝐴, the identical elements in the array 𝐴
will be next to each other.

• To calculate the mode, it is enough to find the longest run
of identical elements in 𝐴.

• Time complexity

𝑇(𝑛) = 𝑇𝑠𝑜𝑟𝑡(𝑛) + 𝑇𝑠𝑐𝑎𝑛(𝑛) ∈ Θ(𝑛 log𝑛) + Θ(𝑛) = Θ(𝑛 log𝑛)

17/203

Module count

ALGORITHM PresortMode(A[0..n − 1])

//Computes the mode of an array by sorting it first
//Input: An array A[0..n − 1] of orderable elements
//Output: The array’s mode
sort the array A

i ← 0 //current run begins at position i

modef requency ← 0 //highest frequency seen so far
while i ≤ n − 1 do

runlength ← 1; runvalue ← A[i]
while i + runlength ≤ n − 1 and A[i + runlength] = runvalue

runlength ← runlength + 1
if runlength > modef requency

modef requency ← runlength; modevalue ← runvalue

i ← i + runlength

return modevalue

18/203

Search for element 𝑥 in array 𝐴 of length 𝑛

• The brute force solution leads to an algorithm requiring 𝑛
comparisons in the worst case.

• After sorting the array, the interval halving algorithm can
be used, which requires ⌊log2 𝑛⌋ + 1 comparison in the
worst case.

• The time complexity of the algorithm will then be

𝑇(𝑛) = 𝑇𝑠𝑜𝑟𝑡(𝑛) + 𝑇𝑠𝑒𝑎𝑟𝑐ℎ(𝑛) = Θ(𝑛 log𝑛) +Θ(log𝑛) = Θ(𝑛 log𝑛),

which is more than the complexity of sequential search!!!
• But for repeated searches it is already worth sorting the 𝐴
field.

19/203

Resources for self-study

• Book [1], chapter 6.1, pages 202 – 205

20/203

Transform and Conquer
Gaussian Elimination Method

Gaussian Elimination Method – Motivation

A system of two equations with two unknowns

𝑎11𝑥 + 𝑎12𝑦 = 𝑏1
𝑎21𝑥 + 𝑎22𝑦 = 𝑏2

can be solved relatively easily – for example, we can express
the variable 𝑥 as a function of 𝑦, substitute it into the second
equation, and solve the equation.

Problem
How to solve a system of 𝑛 equations with 𝑛 unknowns? In
the same way?

21/203

Gaussian elimination method

System of 𝑛 linear equations with 𝑛 unknowns
𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯ + 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

is transformed into an equivalent system of equations, where
all coefficients below the main diagonal are zero

𝑎′11𝑥1 + 𝑎′12𝑥2 + ⋯ + 𝑎′1𝑛𝑥𝑛 = 𝑏′1
𝑎′22𝑥2 + ⋯ + 𝑎′2𝑛𝑥𝑛 = 𝑏′2

⋮
𝑎′𝑛𝑛𝑥𝑛 = 𝑏′𝑛

22/203

Gaussian Elimination Method – Matrix Notation

A ⃗𝑥 = �⃗� ⟹ A′ ⃗𝑥 = �⃗�′

where

A = (

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

) �⃗� = (

𝑏11
𝑏21

⋮
𝑏𝑛1

)

A′ = (

𝑎′11 𝑎12 ⋯ 𝑎′1𝑛
0 𝑎′22 ⋯ 𝑎′2𝑛
⋮ ⋮
0 0 ⋯ 𝑎′𝑛𝑛

) ⃗𝑏′ = (

𝑏′11
𝑏′21

⋮
𝑏′𝑛1

)

A′ is called the upper triangular matrix.
23/203

Gaussian Elimination Method – Advantages of Representation
Change

A system given by an upper triangular matrix can be easily
solved using back substitution:

1. From the equation
𝑎′𝑛𝑛𝑥𝑛 = 𝑏′𝑛

we compute the unknown 𝑥𝑛.
2. We substitute the value of the unknown 𝑥𝑛 into the
equation

𝑎′𝑛−1 𝑛−1𝑥𝑛−1 + 𝑎′𝑛−1 𝑛𝑥𝑛 = 𝑏′𝑛−1
and compute the unknown 𝑥𝑛−1.

3. We proceed in this manner until we compute the unknown
𝑥1.

The complexity of this algorithm is Θ(𝑛2). 24/203

Gaussian elimination method – elementary operations

The matrix of the system A is transformed into an upper
triangular matrix A′ using elementary operations:

• swapping two equations in the system,
• multiplying an equation by a non-zero coefficient and
• adding or subtracting a multiple of another equation to
the given equation, i.e. a linear combination with another
equation.

Elementary operations do not change the solution of the
system of equations – the transformed system has the same
solution as the original system.

25/203

Gaussian Elimination Method – Matrix Transformation

1. We choose 𝑎11 as the pivot and ”nullify” all coefficients in
the first column, except for 𝑎11.

A = (

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

)

”Nullification” – from the second equation, we subtract 𝑎21𝑎11
times the first equation, from the third equation, we
subtract 𝑎31𝑎11

times the first equation, and so on.
2. We choose 𝑎22 as the pivot and repeat the same
procedure.

Remark
Of course, we also perform changes for the vector of
right-hand sides �⃗�.

26/203

Gaussian Elimination Method – Example

Let us have a system of equations

2𝑥1 − 𝑥2 + 𝑥3 = 1
4𝑥1 + 𝑥2 − 𝑥3 = 5
𝑥1 + 𝑥2 + 𝑥3 = 0

The augmented matrix of the system

(
2 −1 1 1
4 1 −1 5
1 1 1 0

)

27/203

Gaussian Elimination Method – Example (cont.)

Forward Elimination

From the second row, we subtract 42 times the first row, from
the third row, we subtract 12 times the first row

(
2 −1 1 1
0 3 −3 3
0 3

2
1
2 −32

)

From the third row, we subtract
3
2
3 =

1
2 times the second row

(
2 −1 1 1
0 3 −3 3
0 0 2 −2

)

28/203

Gaussian Elimination Method – Example (cont.)

Back Substitution

𝑥3 = −2
2 = −1

𝑥2 =
3 − (−3)𝑥3

3 = 3 − (−3)(−1)3 = 0

𝑥1 =
1 − 𝑥3 − (−1)𝑥2

2 = 1 − (−1)2 = 1

29/203

Gaussian elimination method – forward elimination

Input : Matrix A of type 𝑛 × 𝑛 and column vector �⃗� of
dimension 𝑛

Output: Equivalent triangular matrix A and vector �⃗�
1 for 𝑖 ← 1 to 𝑛 − 1 do
2 for 𝑗 ← 𝑖 + 1 to 𝑛 do
3 𝑡𝑒𝑚𝑝 ← 𝐴[𝑗, 𝑖]/𝐴[𝑖, 𝑖];
4 for 𝑘 ← 𝑖 to 𝑛 do
5 𝐴[𝑗, 𝑘] ← 𝐴[𝑗, 𝑘] − 𝐴[𝑖, 𝑘] ∗ 𝑡𝑒𝑚𝑝;
6 end
7 𝑏[𝑗] ← 𝑏[𝑗] − 𝑏[𝑖] ∗ 𝑡𝑒𝑚𝑝;
8 end
9 end

30/203

Gaussian Elimination Method – Forward Elimination

Partial Pivoting

• In the forward elimination algorithm, there is an error. If
𝑎𝑖𝑖 = 0, then division by zero occurs.

• The problem can be solved by swapping equations
(elementary operation) so that 𝑎𝑖𝑖 ≠ 0.

• It is also possible to simultaneously address potential
rounding errors – the pivot is chosen such that it is the
largest of all elements 𝑎𝑖𝑖 to 𝑎𝑛𝑖 in absolute value.

31/203

Gaussian elimination method – partial pivoting

ALGORITHM BetterForwardElimination(A[1..n, 1..n], b[1..n])

//Implements Gaussian elimination with partial pivoting
//Input: Matrix A[1..n, 1..n] and column-vector b[1..n]
//Output: An equivalent upper-triangular matrix in place of A and the
//corresponding right-hand side values in place of the (n + 1)st column
for i ← 1 to n do A[i, n + 1] ← b[i] //appends b to A as the last column
for i ← 1 to n − 1 do

pivotrow ← i

for j ← i + 1 to n do
if |A[j, i]| > |A[pivotrow, i]| pivotrow ← j

for k ← i to n + 1 do
swap(A[i, k], A[pivotrow, k])

for j ← i + 1 to n do
temp ← A[j, i] / A[i, i]
for k ← i to n + 1 do

A[j, k] ← A[j, k] − A[i, k] ∗ temp

32/203

Gaussian Elimination Method – Time Complexity

• Input size – number of equations in the system, i.e.,
dimension of matrix 𝑛.

• Basic operation – arithmetic operations, for historical
reasons multiplication. In the innermost cycle, the
number of multiplications corresponds to the number of
subtractions, it’s just a multiple of a constant 2.

• We will be interested in the number of multiplications
𝐶(𝑛) depending on the number 𝑛.

33/203

Gaussian Elimination Method – Time Complexity (cont.)

𝐶(𝑛) =
𝑛−1
∑
𝑖=1

𝑛
∑
𝑗=𝑖+1

𝑛
∑
𝑘=𝑖
1 =

𝑛−1
∑
𝑖=1

𝑛
∑
𝑗=𝑖+1

(𝑛 − 𝑖 + 1)

=
𝑛−1
∑
𝑖=1
(𝑛 − 𝑖 + 1)

𝑛
∑
𝑗=𝑖+1

1 =
𝑛−1
∑
𝑖=1
(𝑛 − 𝑖 + 1)(𝑛 − 𝑖)

The last sum is expanded for individual 𝑖

𝑖 = 1 (𝑛 − 1 + 1)(𝑛 − 1) = 𝑛(𝑛 − 1)
𝑖 = 2 (𝑛 − 2 + 1)(𝑛 − 2) = (𝑛 − 1)(𝑛 − 2)

⋮ ⋮ ⋮ ⋮
𝑖 = 𝑛 − 2 (𝑛 − 𝑛 + 2 + 1)(𝑛 − 𝑛 + 2) = 3 ⋅ 2
𝑖 = 𝑛 − 1 (𝑛 − 𝑛 + 1 + 1)(𝑛 − 𝑛 + 1) = 2 ⋅ 1

34/203

Gaussian Elimination Method – Time Complexity (cont.)

From the last column, it is clear that this is a sum of a series

1 ⋅ 2 + 2 ⋅ 3 + ⋯ + (𝑛 − 2)(𝑛 − 1) + (𝑛 − 1)𝑛 =
𝑛−1
∑
𝑙=1
𝑙(𝑙 + 1)

𝑛−1
∑
𝑙=1
𝑙(𝑙 + 1) =

𝑛−1
∑
𝑙=1
𝑙2 +

𝑛−1
∑
𝑙=1
𝑙

= 1
6𝑛(𝑛 − 1)(2𝑛 − 1) +

1
2𝑛(𝑛 − 1)

= 1
3𝑛

3 − 12𝑛
2 + 16𝑛 +

1
2𝑛

2 − 12𝑛

= 1
3𝑛

3 − 13𝑛

35/203

Gaussian Elimination Method – Time Complexity (cont.)

And therefore

𝐶(𝑛) = 13𝑛
3 − 13𝑛 ≈

1
3𝑛

3 ∈ Θ(𝑛3)

Since the complexity of back substitution is Θ(𝑛2), the
complexity of the entire Gaussian elimination method is Θ(𝑛3).

36/203

𝐿𝑈-decomposition of a matrix

Let us have the matrix A of the system of linear equations
from the previous example

A = (
2 −1 1
4 1 −1
1 1 1

)

Further, let us consider two matrices:

L = (
1 0 0
2 1 0
1
2

1
2 1

)

Coefficients from Gaussian
elimination

U = (
2 −1 1
0 3 −3
0 0 2

)

Result of Gaussian
elimination

37/203

𝐿𝑈-decomposition of a matrix

Definition
Let A be a regular square matrix with elements from the real
numbers, for which it is not necessary to swap rows during
Gaussian elimination. Then there exist regular matrices L
and U, which are uniquely determined and satisfy the
following statement

A = LU,

where L is a lower triangular matrix with ones on the entire
main diagonal and U is an upper triangular matrix with
non-zero elements on the main diagonal.

38/203

Solution of a system of equations by 𝐿𝑈 decomposition

Let us have a system of linear equations

A ⃗𝑥 = �⃗�
We replace matrix A with its 𝐿𝑈 decomposition

LU ⃗𝑥 = �⃗�
Furthermore, let us denote the product U ⃗𝑥 = ⃗𝑦. After
substitution, we obtain a system of equations

L ⃗𝑦 = �⃗�
This system can be easily solved because L is a lower
triangular matrix. And finally, we can also easily solve the
system

U ⃗𝑥 = ⃗𝑦,
because U is an upper triangular matrix.

39/203

Solution of a systemof equations by 𝐿𝑈 decomposition, example

We have a system of equations

2𝑥1 − 𝑥2 + 𝑥3 = 1
4𝑥1 + 𝑥2 − 𝑥3 = 5
𝑥1 + 𝑥2 + 𝑥3 = 0

We perform the 𝐿𝑈 decomposition of the system matrix A

A = (
2 −1 1
4 1 −1
1 1 1

) = (
1 0 0
2 1 0
1
2

1
2 1

) (
2 −1 1
0 3 −3
0 0 2

)

40/203

Solution of a systemof equations by 𝐿𝑈 decomposition, example
(cont.)

First, we solve the system L ⃗𝑦 = �⃗�

(
1 0 0
2 1 0
1
2

1
2 1

) (
𝑦1
𝑦2
𝑦3
) = (

1
5
0
)

𝑦1 = 1
𝑦2 = 5 − 2𝑦1 = 3
𝑦3 = 0 − 12𝑦1 −

1
2𝑦2 = −2

41/203

Solution of a systemof equations by 𝐿𝑈 decomposition, example
(cont.)

Subsequently, we solve the system U ⃗𝑥 = ⃗𝑦

(
2 −1 1
0 3 −3
0 0 2

) (
𝑥1
𝑥2
𝑥3
) = (

1
3
−2
)

𝑥3 = −2
2 = −1

𝑥2 =
3 − (−3)𝑥3

3 = 3 − (−3)(−1)3 = 0

𝑥1 =
1 − 𝑥3 − (−1)𝑥2

2 = 1 − (−1)2 = 1

42/203

𝐿𝑈-decomposition of a matrix, notes

• In practice, 𝐿𝑈-decomposition is used to solve systems of
linear equations.

• Using 𝐿𝑈-decomposition, it is possible to efficiently solve
multiple systems of equations with the same system
matrix.

• The matrices L and U can be stored together in one
matrix – from the matrix L we store only the elements
below the diagonal. Why?

• If it is necessary to perform partial pivoting in the matrix
A, i.e., to swap rows, then the decomposition has the form

PA = LU

and from this
A = P−1LU,

where P is a permutation matrix. 43/203

Permutation Matrix

• Represents a permutation of 𝑛 elements as a matrix
• A square binary matrix of order 𝑛, with one 1 in each row
and column, and the rest 0

• For every permutation matrix P applies:
• left multiplication, PM, results in a permutation of the
rows of matrix M, where M is a matrix with 𝑛 rows

• right multiplication, MP, results in a permutation of the
columns of matrix M, where M is a matrix with 𝑛 columns

• P is orthogonal, i.e. its inverse matrix is equal to its
transpose, P−1 = P𝑇

44/203

Permutation matrix, example

𝜋 = (1 2 3 4
3 2 4 1) ↔ 𝑅𝜋 = (

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

)

↕ ↕

𝐶𝜋 = (

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

) ↔ 𝜋−1 = (1 2 3 4
4 2 1 3)

45/203

Transform and Conquer
Balanced Search Trees

Binary Search Trees – review

• Fundamental data structure for implementing sets,
dictionaries etc.

• Each node contains one key; a total order must be defined
over the keys.

• For each node, all keys in the left subtree are smaller than
the key in the given node and in the right subtree are all
keys greater.

• Average time complexity of search, insertion, and deletion
operations is Θ(log2 𝑛).

• Worst-case scenario is however still Θ(𝑛) – the tree
degenerates into a list.

46/203

Balanced Search Trees

Possible solution for the worst case:

Proactive Measures

• transformation into a balanced binary tree using rotations
• various definitions of balance
• AVL trees, red-black trees, splay trees.

Representation Change

• multiple keys in one node,
• 2-3 trees, 2-3-4 trees, B-trees.

47/203

AVL Trees

Authors
• Georgij Maximovič Adelson-Velskij and
• Jevgenij Michajlovič Landis

First published in 1962.

Definition
The balance factor of a node 𝑢 is the difference between the
heights of its left and right subtrees. The height of an empty
tree is defined as -1.

Definition
A binary search tree is called an AVL tree if and only if the
balance factor for each node in the tree is either -1, 0, or +1.

48/203

AVL trees – example

AVL tree

E
1

C
0

B
1

A
0

D
-1

E
0

G
1

F
0

This is not an AVL tree

E
2

C
0

B
1

A
0

D
-1

E
0

G
0

49/203

AVL trees – maintaining balance

• Insertion of a new node, or deletion of an existing one,
can cause imbalance in the AVL tree.

• Balance must be restored after each such operation.
• Balance is restored using rotations.
• Rotation is a local transformation of the tree at those
nodes where the balance factor reaches a value of -2 or 2.

• If there are multiple such nodes, we always start with the
node at the lowest level (closest to the leaves of the tree)
and proceed upwards towards the root of the tree.

• There are a total of four rotations – two pairs of mutually
mirror-symmetric rotations.

50/203

Simple rotations

Right rotation

C
2

B
1

A
0

Operation
result

B
0

A
0

C
0

Left rotation

A
-2

B
-1

C
0

Operation
result

B
0

A
0

C
0

51/203

Double rotations

Left-Right rotation

C
2

A
-1

B
0

Operation
result

B
0

A
0

C
0

Right-Left rotation

A
-2

C
1

B
0

Operation
result

B
0

A
0

C
0

52/203

AVL trees – general scheme of right rotation

r

c

𝑇1

x

𝑇2
𝑇3

Operation
result

c

𝑇1

x

r

𝑇2 𝑇3

53/203

AVL trees – general scheme of LR rotation

r
c

𝑇1

g

𝑇2

X

𝑇3

X

𝑇4

nebo

Operation
result

g

c

𝑇1

𝑇2

X

r

𝑇3

X 𝑇4nebo

54/203

AVL trees – properties of rotations

• Constant time complexity – only pointers between nodes
are moved, not data.

• Rotations preserve the ordering of keys in the tree – after
completing a rotation, the “left” side always contains
smaller keys, the “right” side always contains larger keys.

55/203

AVL Trees – Sequential Construction of the Tree

Insertion of
5

5
0

Insertion of
6

5
-1

6
0

Insertion of 8

5
-2

6
-1

8
0

Left Rotation of 5 6
0

5
0

8
0

56/203

AVL Trees – Sequential Construction of the Tree (cont.)

Insertion of 3

6
1

5
1

3
0

8
0

57/203

AVL Trees – Sequential Construction of the Tree (cont.)

Insertion of 2

6
2

5
2

3
1

2
0

8
0 Right Rotation of 5

6
1

3
0

2
0

5
0

8
0

58/203

AVL Trees – Sequential Construction of the Tree (cont.)

Insertion of 4

6
2

3
-1

2
0

5
1

4
0

8
0 Left-Right Rotation of 6

5
0

3
0

2
0

4
0

6
-1

8
0

59/203

AVL Trees – Sequential Construction of the Tree (cont.)

Insertion of 7

5
-1

3
0

2
0

4
0

6
-2

8
1

7
0

Right-Left Rotation of 6
5
0

3
0

2
0

4
0

7
0

6
0

8
0

60/203

AVL trees – properties

• The height of an AVL tree with 𝑛 nodes is bounded by

⌊log2 𝑛⌋ ≤ ℎ < 1.4405 log2(𝑛 + 2) − 1.3277

• Search and insertion operations therefore proceed with a
complexity of Θ(log2 𝑛) even in the worst case.

• The average height of an AVL tree constructed from a
random sequence of 𝑛 keys is 1.01 log2 𝑛 + 0.1.

• Node deletion is more complicated, but still falls within
the logarithmic complexity class.

• Disadvantages – a large number of rotations during tree
balancing.

61/203

2-3 trees

62/203

2-3 trees – types of nodes

2-node
𝑘

< 𝑘 𝑘 <

3-node
𝑘1, 𝑘2

< 𝑘1 (𝑘1, 𝑘2) 𝑘2 <

63/203

Construction of a 2-3 tree from the sequence 9, 5, 8, 3, 2, 4, 7

9 5, 9 5, 8, 9 Operation
Result

8

5 9

8

3, 5 9

8

2, 3, 5 9
Operation
Result

3, 8

2 5 9

3, 8

2 4, 5 9

64/203

Construction of a 2-3 tree from the sequence 9, 5, 8, 3, 2, 4, 7
(cont.)

3, 8

2 4, 5, 7 9
Operation
Result

3, 5, 8

2 4 7 9

Operation
Result

5

3

2 4

8

7 9

65/203

Sources for independent study

• Book [1], chapter 6.3, pages 218 – 225
• Book [2], chapters 4.4.6, 4.4.7 and 4.4.8, pages 296 – 310

66/203

Transform and Conquer
Heap and Heap Sorting

Heap

Heap – a partially sorted data structure, especially
suitable for implementing a priority queue.

Priority Queue – a data structure understood as a multiset,
where elements are ordered according to priority
and supporting operations:
• finding the element with the highest priority,
• removing the element with the highest
priority and

• inserting a new element into the queue.
Usage of Priority Queue :

• task scheduling in OS
• graph algorithms such as Prim’s, Dijkstra’s etc.
• heap sorting – HeapSort
• and others...

67/203

Heap – distinction of terminology

The term heap in computer science is used to denote:

• a data structure and
• a part of the operating memory during program execution.

In further explanation, we will deal with the heap exclusively
as a data structure.

68/203

Heap

Definition
A heap is defined as a binary tree with one key in each node,
which satisfies the following two properties:

1. completeness, i.e., all levels of the tree are filled, except
for the last. In the last level, several leaves may be
missing from the right and

2. parent dominance, i.e., the key in each node is always
greater than or equal to the keys in all its children. In
leaves, any key is always considered greater than the keys
in non-existent children.

69/203

Heap – example

Heap

10

5

4 2

7

1

Not every binary tree is a
heap!

These are not heaps – why?

10

5

2

7

1

10

5

6 2

7

1

70/203

Heap – additional properties

For all heaps, it can be proven that:

1. The keys on each path from the root to a leaf form a
non-increasing sequence. Otherwise, there are no
relationships between the keys, e.g., smaller keys in the
left subtree than in the right etc.

2. For 𝑛 keys, there exists only one complete binary tree. Its
height is ⌊log2 𝑛⌋.

3. The largest key is always at the root of the heap.
4. Each node in the heap is always the root of a heap formed
by this node and its descendants.

71/203

Heap – array representation

In an array, we store the heap from the root to the leaves and
from left to right: Then:

1. internal nodes – the first ⌊𝑛2 ⌋, leaves are the remaining ⌈
𝑛
2 ⌉,

2. the children of a node at position 𝑖, where 1 ≤ 𝑖 ≤ ⌊𝑛2 ⌋, are
located at positions 2𝑖 and 2𝑖 + 1. And conversely, the
parent of a node at position 𝑗, for 2 ≤ 𝑗 ≤ 𝑛, is located at
position ⌊ 𝑗2 ⌋.

Remark
A heap can be defined as an array 𝐻[1…𝑛] in which for each
element at index 𝑖 holds

𝐻[𝑖] ≥ 𝑚𝑎𝑥{𝐻[2𝑖], 𝐻[2𝑖 + 1]}

for all 𝑖 = 1, … , ⌊𝑛2 ⌋. 72/203

Heap – representation in an array, example

10

8

5

3 5

2

1

7

1 6

index 1 2 3 4 5 6 7 8 9 10
key 10 8 7 5 2 1 6 3 5 1

internal nodes leaves

73/203

Construction of a heap

A heap can be constructed in two ways:

1. bottom-up and
2. top-down.

74/203

Construction of a heap from the bottom up – example

Initial state of the heap

2

9

6 5

7

8

Step 1
2

9

6 5

7

8

Operation
result

2

9

6 5

8

7

75/203

Construction of a heap from the bottom up – example (cont.)

Step 2

2

9

6 5

8

7

Step 3a
2

9

6 5

8

7

Operation
result

9

2

6 5

8

7

76/203

Construction of a heap from the bottom up – example (cont.)

Step 3b

9

2

6 5

8

7

Operation
result

9

6

2 5

8

7

Finished heap

77/203

Construction of a heap from the bottom up

Input : Array 𝐴[0…𝑛 − 1] with a defined ordering on
the array elements, 𝑖 root of the heap being
constructed

Output: Heap with the root at index 𝑖
1 procedure Heapify(𝐴, 𝑛, 𝑖)
2 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ← 𝑖;
3 𝑙 ← 2 ∗ 𝑖 + 1;
4 𝑟 ← 2 ∗ 𝑖 + 2;
5 if 𝑙 < 𝑛 ∧ 𝐴[𝑙] > 𝐴[𝑙𝑎𝑟𝑔𝑒𝑠𝑡] then 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ← 𝑙 ;
6 if 𝑟 < 𝑛 ∧ 𝐴[𝑟] > 𝐴[𝑙𝑎𝑟𝑔𝑒𝑠𝑡] then 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ← 𝑟 ;
7 if 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ≠ 𝑖 then
8 Swap (𝐴[𝑖], 𝐴[𝑙𝑎𝑟𝑔𝑒𝑠𝑡]);
9 Heapify (𝐴, 𝑛, 𝑙𝑎𝑟𝑔𝑒𝑠𝑡);
10 end
11 end 78/203

Construction of a heap from the bottom up

Input : Array 𝐴[0…𝑛 − 1] with a defined ordering on
the array elements

Output: Heap in the array 𝐴
1 procedure MakeHeap(𝐴, 𝑛)
2 for 𝑖 ← ⌊𝑛2 ⌋ − 1 down to 0 do
3 Heapify (𝐴, 𝑛, 𝑖);
4 end
5 end

79/203

Heap Construction from Bottom to Top – Time Complexity

For simplicity, let us assume that 𝑛 = 2𝑘 − 1, i.e., the heap forms
a complete binary tree.

The height of the heap is then ℎ = ⌊log2 𝑛⌋, which can be
written as

⌈log2(𝑛 + 1)⌉ − 1 = ⌈log2(2𝑘 − 1 + 1)⌉ − 1
= ⌈log2(2𝑘)⌉ − 1
= 𝑘 − 1

80/203

Heap Construction from Bottom to Top – Time Complexity
(cont.)

Remark
The expression ⌈log2(𝑛 + 1)⌉ can be interpreted as the “height
of the heap with 𝑛 + 1 elements”. We assumed a complete
binary tree⇒ the tree with 𝑛 + 1 elements definitely has one
more level than the tree with 𝑛 elements.

Each key from level 𝑖 will be shifted, in the worst case, to the
leaf, i.e., to level ℎ.
Shifting by one level requires two comparisons:

1. finding the larger of both children and
2. testing whether an exchange with the parent is necessary.

81/203

Heap Construction from Bottom to Top – Time Complexity
(cont.)

The number of comparisons is therefore 2(ℎ − 𝑖).
The total number of comparisons will be, in the worst case,
equal to

𝐶(𝑛) =
ℎ−1
∑
𝑖=0

∑
keys of level 𝑖

2(ℎ − 𝑖)

=
ℎ−1
∑
𝑖=0
2(ℎ − 𝑖)2𝑖 = 2ℎ

ℎ−1
∑
𝑖=0
2𝑖 − 2

ℎ−1
∑
𝑖=0
𝑖2𝑖

= 2𝑛 − 2 log2(𝑛 + 1)

82/203

Heap Construction from Bottom to Top – Time Complexity
(cont.)

Constructing a heap with 𝑛 elements requires, in the worst
case, less than 2𝑛 comparisons.
Remark
In the derivation, we used the formulas:

𝑛
∑
𝑖=0
2𝑖 = 2𝑛+1 − 1

𝑛
∑
𝑖=1
𝑖2𝑖 = 1 ⋅ 2 + 2 ⋅ 22 + ⋯ + 𝑛2𝑛 = (𝑛 − 1)2𝑛+1 + 2

83/203

Construction of a heap from top to bottom

• Repeated insertion of a new key into an existing heap.
1. We insert the new key at the end of the heap.
2. We compare the new key with its parent and potentially
move the new key up one level.

3. We continue this process until we encounter a larger
parent or reach the root of the heap.

• The height of a heap with 𝑛 elements is ≈ log2 𝑛, thus the
complexity of inserting a key into the heap is 𝑂(log𝑛).

• Construction from top to bottom is therefore more
complex than construction from bottom to top.

84/203

Construction of a heap from top to bottom – example

Initial state of the heap

9

6

2 5

8

7

Step 1 – insertion of key 10 at the end of the heap
9

6

2 5

8

7

Operation
result

9

6

2 5

8

7 10

85/203

Construction of a heap from top to bottom – example (cont.)

Step 2a – comparison of key 10 with parent
9

6

2 5

8

7 10

Operation
result

9

6

2 5

10

7 8

Step 2b – comparison of key 10 with parent
9

6

2 5

10

7 8

Operation
result

10

6

2 5

9

7 8

86/203

Removal of the largest key from the heap

Algorithm principle:

1. Swapping the key in the root with the key at the end of the
heap.

2. Reducing the heap by one.
3. Heap restoration – testing whether the parent key is
greater than the keys in both children and, if necessary,
performing a swap. This process is repeated until the
parent key is greater than the keys in the children.

Remark
In principle, any key can be removed from the heap. But this
operation has no practical significance.

87/203

Removal of the largest key from the heap – algorithm complexity

• The number of comparisons necessary to restore the heap
is proportional to the height of the heap – we “move” the
key from the root down through the levels.

• We always compare the parent with both children – we
must find the largest of the given trio.

• The height of the heap is ℎ ≈ log2 𝑛, so the number of
comparisons will not be greater than 2ℎ.

• The complexity of the algorithm is therefore 𝑂(log𝑛).

88/203

Removal of the largest key from the heap – example

Initial state of the heap

9

8

2 5

6

1

Step 1 – swapping the root with the last element
9

8

2 5

6

1

Operation
result

1

8

2 5

6

9

89/203

Removal of the largest key from the heap – example (cont.)

Step 2 – removal of the last node
1

8

2 5

6

9

Operation
result

1

8

2 5

6

Step 3 – heap restoration
1

8

2 5

6
Operation
result

8

5

2 1

6

90/203

Heap Sorting – HeapSort

The algorithm works in two phases:

Heap Construction : for a given array, a heap is constructed.
Removal of Maximum : the algorithm for removing the largest

key from the progressively decreasing heap is
applied (𝑛 − 1) times.

91/203

Heap Sorting – HeapSort

Input : Array 𝐴[0…𝑛 − 1] with a defined ordering on
the array elements

Output: Sorted array 𝐴
1 procedure HeapSort(𝐴, 𝑛)
2 BuildHeap (𝐴, 𝑛);
3 for 𝑖 ← 𝑛 − 1 downto 0 do
4 Swap (𝐴[0], 𝐴[𝑖]);
5 Heapify (𝐴, 𝑖, 0);
6 end
7 end

92/203

Heap sorting – algorithm complexity

• The complexity of the first phase is 𝑂(𝑛).
• In the second phase, we progressively remove the largest
key from the heap of decreasing size 𝑛, 𝑛 − 1,… , 2. The
number of comparisons 𝐶(𝑛) is

𝐶(𝑛) ≤ 2 ⌊log2(𝑛 − 1)⌋ + 2 ⌊log2(𝑛 − 2)⌋ + ⋯ + 2 ⌊log2 1⌋

≤ 2
𝑛−1
∑
𝑖=1
log2 𝑖

≤ 2
𝑛−1
∑
𝑖=1
log2(𝑛 − 1) = 2(𝑛 − 1) log2(𝑛 − 1) ≤ 2𝑛 log2 𝑛

Thus, 𝐶(𝑛) ∈ 𝑂(𝑛 log𝑛).

93/203

Heap sorting – algorithm complexity (cont.)

• For both phases, we get 𝑂(𝑛) + 𝑂(𝑛 log𝑛) = 𝑂(𝑛 log𝑛).
• Further complexity analysis can prove that the same
complexity applies to the average case as well. Therefore,
Θ(𝑛 log𝑛).

• Heap sorting is comparable to merge sorting.

• However, in practice, it is slower than QuickSort.

94/203

Sources for Independent Study

• Book [1], chapter 6.4, pages 226 – 232
• Book [3], chapters 6.1 through 6.4, pages 161 – 172

95/203

Transform and Conquer
Horner’s Scheme

Value of a Polynomial at a Point

Problem Statement
Given is a polynomial

𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0.

Our task is to compute the value of the polynomial 𝑝(𝑥) at
the point 𝑥0.

Motivation
• Polynomials are used for function approximation, namely

1. How does a processor calculate the value of the function
sin(𝑥)?

2. Where do the values of the function sin(𝑥) in mathematical
tables come from?

Using the Taylor series expansion of a function, which is a
polynomial!

• Fast Fourier Transform

96/203

Taylor expansion of the function 𝑦 = 𝑓(𝑥)

The function 𝑓(𝑥), which has finite derivatives up to order 𝑛 + 1
at point 𝑎, can be expressed in the vicinity of point 𝑎 as an
expansion

𝑓(𝑥) = 𝑓(𝑎)+ 𝑓
′(𝑎)
1! (𝑥−𝑎)+

𝑓″(𝑎)
2! (𝑥−𝑎)2+⋯+ 𝑓

(𝑛)(𝑎)
𝑛! (𝑥−𝑎)𝑛 +𝑅𝑓,𝑎𝑛+1(𝑥)

For 𝑎 = 0, the expansion is called Maclaurin

𝑓(𝑥) = 𝑓(0) + 𝑓
′(0)
1! 𝑥 +

𝑓″(0)
2! 𝑥2 + ⋯ + 𝑓

(𝑛)(0)
𝑛! 𝑥𝑛 + 𝑅𝑓,0𝑛+1(𝑥)

97/203

Taylor expansion of the function 𝑦 = sin(𝑥) at point 0

sin(𝑥) = sin(0) + sin
′(0)
1! 𝑥 + sin

″(0)
2! 𝑥2 + ⋯ + sin

(𝑛)(0)
𝑛! 𝑥𝑛 + 𝑅sin,0𝑛+1 (𝑥)

Derivatives
sin(1) 0 = cos0 = 1
sin(3) 0 = − cos0 = −1

sin(2) 0 = − sin0 = 0
sin(4) 0 = sin0 = 0

sin(𝑥) = 0 + 11!𝑥 +
0
2!𝑥

2 + −13! 𝑥
3 + 04!𝑥

4 + ⋯ + 𝑅sin,0𝑛+1 (𝑥)

Approximation by a 13th-degree polynomial

sin(𝑥) ≈ 𝑥 − 𝑥
3

3! +
𝑥5
5! −

𝑥7
7! +

𝑥9
9! −

𝑥11
11! +

𝑥13
13!

98/203

Taylor series expansion of the function 𝑦 = sin(𝑥) at point 0

−2𝜋 −32𝜋
−𝜋 −12𝜋 0 1

2𝜋
𝜋 3

2𝜋 2𝜋−10

−5

0

5

10

Taylor series
expansion:
degree 1
degree 3
degree 5
degree 7
degree 9
degree 11
degree 13

The function 𝑦 = sin(𝑥) is displayed in black.
99/203

Taylor series expansion of the function 𝑦 = sin(𝑥) of degree 13 at
point 0

−12𝜋 0 1
2𝜋

−1

−0.5

0

0.5

1

100/203

Taylor series expansion of the function 𝑦 = sin(𝑥) at point 0,
approximation error

−12𝜋 0 1
2𝜋

−2

−1

0

1

2
⋅10−4

101/203

Tables of function values

• Using Taylor series
expansion, we can
approximate the value of
the desired function and
construct tables.

• Manual calculation –
laborious and prone to a
vast number of errors.

• Breakthrough idea –
numerical computations
do not require
intelligence! They can be
performed mechanically!

102/203

Charles Babbage – Difference Engine

Difference Engine
• first programmable computer in the
world

• 1819 – commencement of work
• 1822 – prototype completed
• 1823 – work begun on large machine
• 1833 – work halted
• 1842 – government support
terminated, 17 thousand pounds
spent on project, machine never
completed

• 1991 – functional replica!

Charles Babbage
1791 – 1871

103/203

Difference Engine

104/203

Difference Engine

105/203

First programmer in the world?!

Augusta Ada King, Countess of Lovelace
(1815 – 1852)
Programmer of the Analytical Engine,
(Babbage 1837), which was the first
general-purpose Turing-complete
computer.

106/203

Horner’s scheme – transformation

Basic idea:

• transformation of a polynomial into another form,
• we gradually extract the variable 𝑥 from parts of the
polynomial.

𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛𝑥𝑛

= 𝑎0 + 𝑥 (𝑎1 + 𝑎2𝑥 + ⋯ + 𝑎𝑛−1𝑥𝑛−2 + 𝑎𝑛𝑥𝑛−1)
= 𝑎0 + 𝑥 (𝑎1 + 𝑥 (𝑎2 + ⋯ + 𝑎𝑛−1𝑥𝑛−3 + 𝑎𝑛𝑥𝑛−2))
⋮
= 𝑎0 + 𝑥(𝑎1 + 𝑥(𝑎2 + ⋯ + 𝑥(𝑎𝑛−1 + 𝑎𝑛𝑥)…))

It is easy to see that this equality holds by successive
multiplication of all parentheses.

107/203

Horner’s scheme – computation

The value of 𝑝(𝑥0) is computed ”from the inside” of the
parentheses, progressively calculating the values of 𝑏𝑖

𝑏𝑛 = 𝑎𝑛
𝑏𝑛−1 = 𝑎𝑛−1 + 𝑏𝑛𝑥0
𝑏𝑛−2 = 𝑎𝑛−2 + 𝑏𝑛−1𝑥0

⋮
𝑏0 = 𝑎0 + 𝑏1𝑥0

The value of 𝑏0 is then equal to 𝑝(𝑥0), since

𝑝(𝑥0) = 𝑎0 + 𝑥0(𝑎1 + 𝑥0(𝑎2 + ⋯ + 𝑥0(𝑎𝑛−1 + 𝑎𝑛𝑥0) …))

108/203

Horner’s scheme – computation (cont.)

and by progressively substituting 𝑏𝑖, we obtain

𝑝(𝑥0) = 𝑎0 + 𝑥0(𝑎1 + 𝑥0(𝑎2 + ⋯ + 𝑥0(𝑎𝑛−1 + 𝑏𝑛𝑥0) …))

𝑝(𝑥0) = 𝑎0 + 𝑥0(𝑎1 + 𝑥0(𝑎2 + ⋯ + 𝑥0(𝑏𝑛−1) …))

𝑝(𝑥0) = 𝑎0 + 𝑥0(𝑏1)
𝑝(𝑥0) = 𝑏0

109/203

Horner’s scheme – manual calculation

Calculate the value of the polynomial 𝑝(𝑥) = 2𝑥3 − 6𝑥2 + 2𝑥 − 1
at the point 𝑥0 = 3.
𝑥0 𝑥3 𝑥2 𝑥1 𝑥0
3 2 -6 2 -1

6 0 6
2 0 2 5

Standard calculation

𝑝(3) = 2 × 33 − 6 × 32 + 2 × 3 − 1
= 2 × 27 − 6 × 9 + 2 × 3 − 1
= 54 − 54 + 6 − 1 = 5

110/203

Horner’s scheme

ALGORITHM Horner(P [0..n], x)

//Evaluates a polynomial at a given point by Horner’s rule
//Input: An array P [0..n] of coefficients of a polynomial of degree n,

// stored from the lowest to the highest and a number x

//Output: The value of the polynomial at x

p ← P [n]
for i ← n − 1 downto 0 do

p ← x ∗ p + P [i]
return p

111/203

Horner’s scheme – time complexity of the algorithm

It is clear that the number of multiplications 𝑀(𝑛) and the
number of additions 𝐴(𝑛) equals

𝑀(𝑛) = 𝐴(𝑛) =
𝑛−1
∑
𝑖=0
1 = 𝑛 ∈ Θ(𝑛)

Computation by brute force

Just for computing 𝑎𝑛𝑥𝑛, the following is needed:

• 𝑛 − 1 multiplications to compute the power
• 1 multiplication to multiply by 𝑎𝑛.

For the same number of multiplications, Horner’s algorithm
can also compute the remaining 𝑛 −1 terms of the polynomial!!!

112/203

Sources for independent study

• Book [1], chapter 6.5, pages 234 – 239
• Book [3], chapter 30.1, pages 879 – 880

113/203

Transform and Conquer
Problem Reduction

Problem Reduction

The purpose of reduction is to transform the problem being
solved into another problem that we know how to solve.

Reduction Procedure

1. Problem 1 – what we want to solve
2. Reduction of Problem 1 to Problem 2
3. Problem 2 – solvable by algorithm 𝐴
4. Execution of algorithm 𝐴
5. Solution to Problem 2

114/203

Least Common Multiple

The least common multiple 𝑙𝑐𝑚(𝑚, 𝑛) of two natural numbers
𝑚 and 𝑛 is defined as the smallest natural number that is
divisible by both 𝑚 and 𝑛.

Solution using Prime Factorization

24 = 23 ⋅ 31

60 = 22 ⋅ 31 ⋅ 51

lcm(24, 60) = 23 ⋅ 31 ⋅ 51 = 120

Solution using Greatest Common Divisor

It can be proven that

lcm(𝑚, 𝑛) = 𝑚𝑛
gcd(𝑚, 𝑛)

gcd(𝑚, 𝑛) can be computed efficiently using the Euclidean
algorithm.

115/203

Number of walks in a graph

Problem statement: Calculate the number of walks between
pairs of vertices in a given graph 𝐺.
Solution: It can be proven that the number of different walks
of length 𝑘 between vertices 𝑖 and 𝑗 is equal to the element 𝑎𝑖𝑗
of the matrix A𝑘, where 𝐴 is the adjacency matrix of graph 𝐺.

a b

c d

A = (

𝑎 𝑏 𝑐 𝑑
𝑎 0 1 1 1
𝑏 1 0 0 0
𝑐 1 0 0 1
𝑑 1 0 1 0

) A2 = (

𝑎 𝑏 𝑐 𝑑
𝑎 3 0 1 1
𝑏 0 1 1 1
𝑐 1 1 2 1
𝑑 1 1 1 2

)

From 𝑎 to 𝑎, there are three walks of length 2: 𝑎 − 𝑏 − 𝑎, 𝑎 − 𝑐 − 𝑎,
𝑎 − 𝑑 − 𝑎
From 𝑎 to 𝑐, there is one walk of length 2: 𝑎 − 𝑑 − 𝑐 116/203

Reduction of Optimization Problems

Maximization Problem – finding the maximum of function 𝑓(𝑥)
Minimization Problem – finding the minimum of function 𝑓(𝑥)

How to Solve the Situation?

• We need to minimize function 𝑓(𝑥), but
• we only have a maximization algorithm available.

Can we use a maximization algorithm for a minimization
problem? Or vice versa?

117/203

Reduction of Optimization Problems

−𝑓(𝑥𝑚)
𝑓(𝑥𝑚)

𝑥𝑚
𝑥

𝑦

min 𝑓(𝑥) = −max [− 𝑓(𝑥)]
max 𝑓(𝑥) = −min [− 𝑓(𝑥)]

118/203

Goat, wolf and cabbage

• On the riverbank, there is a ferryman, a goat, a wolf, and
cabbage.

• The ferryman must transport the goat, the wolf, and the
cabbage to the other bank using a boat.

• The boat can hold at most one of the entities being
transported, in addition to the ferryman.

• On the same bank, the pairs goat and cabbage and wolf
and goat cannot be left together without the ferryman’s
supervision.

• The task is to devise a transportation plan or prove that
no solution exists.

The oldest written form of the problem dates back to the 9th
century…

119/203

Goat, wolf and cabbage – state space

State – represents the occupancy of both riverbanks,
e.g. Gw||c

Transition between states – path from one riverbank to the
other, with possible transportation

120/203

Goat, wolf and cabbage – state space graph

‖ Pgwc

Pw
‖ gc

w
‖
Pg
cPw
c
‖
g

wc ‖
Pg

Pgwc ‖

gw ‖ Pc

Pg ‖
wc

g ‖
Pw
c

Pgc
‖
w

c ‖
Pgw

Pc ‖ gw

P ‖ gwc

gwc ‖ P

gc ‖ Pw

Pgw ‖ c

P

P

P

Pc

Pc

P

P

P

Pc

PcPg

Pg

Pg

Pg

Pw

P

Pw

Pw

P

Pw

Solution to the problem – finding a directed path from the
initial state to the final state through breadth-first traversal. 121/203

Sources for Independent Study

• Book [1], chapter 6.6, pages 240 – 248

122/203

Thanks for your attention

122/203

	Transform and Conquer
	Presorting
	Gaussian Elimination Method
	Balanced Search Trees
	Heap and Heap Sorting
	Horner's Scheme
	Problem Reduction

