
Space and Time Trade-Offs

Jiří Dvorský, Ph.D.
Presentation status to date February 24, 2025

Department of Computer Science
VSB – Technical University of Ostrava

101/193



Lecture outline

Space and Time Trade-Offs

B-trees
Searching for a key in a B-tree

Inserting a key into a B-tree

Deletion of a key from a B-tree

102/193



Space and Time Trade-Offs
B-trees



B-trees – motivation

• Processing a large amount of structured records (that can
be identified by a unique key) that exceeds the available
operating memory.

• Data must be stored in external memory, so-called ”on
disk”.

• The disk offers only a sequential file.
• We are looking for a data structure that allows efficient
searching, inserting, and deleting records in such a file.

• The answer is to trade off memory complexity for time
complexity, in other words, we increase memory
complexity (we sacrifice extra memory) to reduce the time
complexity of operations.

103/193



B-trees

B-tree of order 𝑛 is a (2𝑛 + 1)-tree that satisfies the following
criteria:

1. Each page contains at most 2𝑛 keys.
2. Each page, with the exception of the root, contains at least
𝑛 keys.

3. Each page is either a leaf page, i.e. it has no children, or it
has 𝑚 + 1 children, where 𝑚 is the current number of keys
in the page.

4. All leaf pages are on the same level. In other words, the
tree is perfectly balanced.

Published by Rudolf Bayer in 1972 [1].

104/193



B-trees – page schema

𝑘1 𝑘2 ⋯ 𝑘2𝑛

𝑝0 𝑝1 ⋯ 𝑝2𝑛−1 𝑝2𝑛

• Nodes in a B-tree are
traditionally called pages.

• The number of keys in a page
ranges from 𝑛 to 2𝑛, with the
exception of the root node.

• Keys in a page are sorted, i.e.,
𝑘1 ≤ 𝑘2 ≤ ⋯ ≤ 𝑘2𝑛.

• For keys in the subtrees referenced by pointers 𝑝0, … , 𝑝2𝑛,
the following holds

𝐾𝑝0 ≤ 𝑘1 ≤ 𝐾𝑝1 ≤ 𝑘1 ≤ ⋯𝐾𝑝2𝑛−1 ≤ 𝑘2𝑛 ≤ 𝐾𝑝2𝑛 ,
where 𝐾𝑝𝑖 is the set of all keys in the subtree rooted at the
page referenced by 𝑝𝑖.

105/193



B-trees – example

2 3 5 7 17 22 45 55 66 68 70

10 50

106/193



B-trees – notes

• From the definition, it is clear that a B-tree does not have
to be completely filled. The fill factor varies from 50 % to
100 %.

• Free space in the tree allows for easy insertion of
additional keys.

• Thanks to the tree structure, search, insert, and delete key
operations in a B-tree can be performed with logarithmic
time complexity.

• B-tree algorithms are a generalization of binary search
tree algorithms.

107/193



B-trees – alternative definition, variants

• The above definition only allows B-trees with a maximum
capacity of 2𝑛 keys, i.e., an even number.

• However, the maximum capacity can be any number, even
odd.

• Some definitions denote the maximum capacity using the
number 𝑛.

• The number of keys in a page thus varies from ⌈𝑛2 ⌉ to 𝑛.
• The goal of our definition is easy understandability of the
B-tree operation principles and simple notation.

• Sometimes, one can also encounter a definition where the
number 𝑛 denotes the maximum number of children, not
the number of keys in a page.

108/193



B-trees – variants

B+-tree • all keys are stored only in leaves
• leaves are mutually linked by pointers –
faster operation with contiguous key ranges,
”find all keys between 100 and 200”

• in Levitin’s book [2] is as a B-tree described
precisely this variant.

B*-tree • a page must be filled to at least two thirds,
• when inserting a key into a full page, keys are
first moved between siblings,

• results in a smaller number of page splits.

109/193



B-trees – searching for a key 𝑥

1. At the beginning of the algorithm, we mark the root page
as the current page 𝑃.

2. If page 𝑃 does not exist, the search ends in failure.
3. Otherwise, assume that page 𝑃 contains 𝑚 keys 𝑘1, … , 𝑘𝑚
and corresponding child pointers 𝑝0, … 𝑝𝑚. Then:
3.1 If 𝑥 = 𝑘𝑖, for some 1 ≤ 𝑖 ≤ 𝑚, then the search ends in

success.
3.2 If 𝑥 < 𝑘1, then 𝑃 = 𝑝0 and back to point 2.
3.3 If 𝑥 > 𝑘𝑚 , then 𝑃 = 𝑝𝑚 and back to point 2.
3.4 Otherwise, we find such 𝑖, 1 ≤ 𝑖 < 𝑚, for which it holds that

𝑘𝑖 < 𝑥 < 𝑘𝑖+1. Then 𝑃 = 𝑝𝑖 and back to point 2.

110/193



Examples of B-tree operations

𝑘1 𝑘2 ⋯ 𝑘2𝑛

𝑝0 𝑝1 ⋯ 𝑝2𝑛−1 𝑝2𝑛

In examples we will use B-tree for
𝑛 = 2, meaning each page contains
at least 2 and at most 4 keys.

Furthermore, each page refers to at least 3 and at most 5
children. The exception is the root of the tree.

111/193



Example of searching in a B-tree – finding the key 50

2 3 5 7
𝐴

17 22 45
𝐵

55 66 68 70
𝐶

10 50
𝑅

Procedure

1. We start the search in the root 𝑅, so 𝑃 = 𝑅.
2. Page 𝑃 exists, we proceed to the next point.
3. Because 𝑥 = 𝑘2 the search ends in success.

112/193



Example of searching in a B-tree – search for 3

2 3 5 7
𝐴

17 22 45
𝐵

55 66 68 70
𝐶

10 50
𝑅

Procedure

1. We start the search in the root 𝑅, thus 𝑃 = 𝑅.
2. Page 𝑃 exists, we proceed to the next point.
3. Since 𝑥 < 𝑘1, then 𝑃 = 𝑝0 = 𝐴.
4. Page 𝑃 exists, we proceed to the next point.
5. Since 𝑥 = 𝑘2 the search ends in success.

113/193



Example of searching in a B-tree – search for 45

2 3 5 7
𝐴

17 22 45
𝐵

55 66 68 70
𝐶

10 50
𝑅

Procedure

1. We begin the search at the root 𝑅, thus 𝑃 = 𝑅.
2. Page 𝑃 exists, we proceed to the next point.
3. Since 𝑘1 < 𝑥 < 𝑘2, then 𝑃 = 𝑝1 = 𝐵.
4. Page 𝑃 exists, we proceed to the next point.
5. Since 𝑥 = 𝑘3 the search ends in success.

114/193



Example of searching in a B-tree – search for 57

2 3 5 7
𝐴

17 22 45
𝐵

55 66 68 70
𝐶

10 50
𝑅

Procedure

1. We begin the search at the root 𝑅, thus 𝑃 = 𝑅.
2. Page 𝑃 exists, we proceed to the next point.
3. Since 𝑥 > 𝑘2, then 𝑃 = 𝑝2 = 𝐶.
4. Page 𝑃 exists, we proceed to the next point.
5. Since 𝑘1 < 𝑥 < 𝑘2, then 𝑃 = 𝑝1 = 𝑛𝑢𝑙𝑙.
6. Since 𝑃 does not exist, the search ends in failure.

115/193



B-trees – inserting key 𝑥

1. First, it is necessary to determine, using the search
algorithm, the leaf page 𝐿 where the key 𝑥 will be inserted.

2. Two cases can occur:
• Page 𝐿 is not completely filled – key 𝑥 is inserted into the
page so that the ordering of keys is preserved.

• Page 𝐿 is completely filled, then
2.1 key 𝑥 is sorted (e.g., in an auxiliary array) among the keys

from page 𝐿 so that the ordering of keys is preserved. We
obtain a sequence of 2𝑛 + 1 keys 𝑘′1 < 𝑘′2 < ⋯𝑘′2𝑛+1

2.2 a new page 𝑃 is created, with the same parent 𝑅 as 𝐿
2.3 distribution of keys to pages

Keys Action
𝑘′1, … , 𝑘′𝑛 remain in page 𝐿
𝑘′𝑛+1 insert into parent page 𝑅

𝑘′𝑛+2, … 𝑘′2𝑛+1 insert into new page 𝑃

116/193



B-trees – insertion algorithm, notes

• The process of creating a new page and redistributing keys
is called page splitting.

• By inserting the key 𝑘′𝑛+1 into the parent page 𝑅, the
number of keys in this page increases, which in turn
increases the number of references to the child pages of
this page. Without moving 𝑘′𝑛+1, the page 𝑅 would lack a
free reference for attaching the page 𝑃.

• The insertion of the key 𝑘′𝑛+1 into page 𝑅 is performed
using the same algorithm as the insertion of key 𝑥 into 𝐿.
The insertion of 𝑘′𝑛+1 can cause the page 𝑅 to split.

• Page splitting can lead to the creation of a new root of the
entire tree, which is the only way for a B-tree to increase
its height.

117/193



Example of Insertion into a B-Tree

• In this more extensive example, we will gradually build a
B-tree with the same parameters as in the search example.

• We will gradually insert the keys 3, 22, 10, 2, 17, 5, 66, 68, 50,
7, 55, 45, 70, 44, 6, 21, 67, 1, 4, 8, 9, 12, and 15 into the tree.

118/193



Example of insertion into a B-tree – insertion of keys 3, 22 and
10

Insertion of key 3

3

Insertion of key 22

3 22

Insertion of key 10
3 10 22

119/193



Example of insertion into a B-tree – insertion of key 2

2 3 10 22

The page is completely full, inserting any additional key will
cause a change in the structure of the B-tree.

120/193



Example of insertion into a B-tree – insertion of key 17

2 3
𝐿

17 22
𝑃

10
𝑅

By inserting the key 17, the following occurred:

1. the page 𝐿 was split and half of the keys were moved to a
new page 𝑃,

2. a new root page 𝑅 was created and the key 10 was moved
to the new root.

121/193



Example of insertion into a B-tree – insertion of key 5

2 3 5 17 22

10

122/193



Example of insertion into a B-tree – insertion of key 66

2 3 5 17 22 66

10

123/193



Example of insertion into a B-tree – insertion of key 68

2 3 5 17 22 66 68

10

The page with keys 17 to 68 is completely full, inserting another
key into this page will cause a change in the structure of the
B-tree.

124/193



Example of insertion into a B-tree – insertion of key 50

2 3 5 17 22 66 68

10 50

By inserting the key 50, the following occurred:

1. the page split and half of the keys were moved to a new
page, and

2. at the same time, the newly inserted key 50, being the
median of the values in the original page, was moved to
the root page.

125/193



Example of insertion into a B-tree – inserting key 7

2 3 5 7 17 22 66 68

10 50

The page with keys 2 to 7 is completely full, inserting another
key into this page will cause a change in the structure of the
B-tree.

126/193



Example of insertion into a B-tree – insertion of key 55

2 3 5 7 17 22 55 66 68

10 50

127/193



Example of insertion into a B-tree – insertion of key 45

2 3 5 7 17 22 45 55 66 68

10 50

128/193



Example of insertion into a B-tree – insertion of key 70

2 3 5 7 17 22 45 55 66 68 70

10 50

The page with keys 55 to 70 is completely full, inserting another
key into this page will cause a change in the structure of the
B-tree.

129/193



Example of insertion into a B-tree – insertion of key 44

2 3 5 7 17 22 44 45 55 66 68 70

10 50

All leaf pages are completely filled, inserting any additional key
will cause a change in the structure of the B-tree.

130/193



Example of insertion into a B-tree – insertion of key 6

2 3 6 7 17 22 44 45 55 66 68 70

5 10 50

Upon inserting key 6, the following occurred:

1. the page split and half of the keys were moved to a new
page, and

2. simultaneously, key 5 was moved to the root page.

131/193



Example of insertion into a B-tree – insertion of key 21

2 3 6 7 17 21 44 45 55 66 68 70

5 10 22 50

Upon the insertion of key 21, the following occurred:

1. the page split and half of the keys were moved to a new
page, and

2. key 22 was moved to the parent page.
3. At the same time, the root page of the tree became full.

132/193



Example of insertion into a B-tree – insertion of key 67

2 3 6 7 17 21 44 45 55 66 68 70

5 10 50 67

22

133/193



Example of insertion into a B-tree – insertion of key 67 (cont.)

Upon inserting key 67, the following occurred:

1. the page split and half of the keys were moved to a new
page, and

2. simultaneously, the newly inserted key 67, being the
median value in the original page, was moved to the
parent page.

3. Since this page was also fully occupied, it split, resulting in
the creation of a new root page with a single key 22.

134/193



Example of insertion into a B-tree – insertion of key 67 (cont.)

Remarks
• At this point, the B-tree’s fill factor reaches its minimum
value of approximately 50%. The B-tree has maximum free
space for inserting additional keys.

• However, the minimal filling of the B-tree will cause the
removal of any key to result in page merging, including the
cancellation of the root and a subsequent decrease in the
height of the B-tree1.

1See the next part of the presentation

135/193



Example of insertion into a B-tree – insertion of additional keys

Into the tree were further inserted keys 1, 4, 8, 9, 12, 15 and 46.
The order of key insertion, in this case, does not matter.

1 2 3 4 6 7 8 9 12 15 17 21 44 45 46 55 66 68 70

5 10 50 67

22

136/193



B-trees – deletion of key 𝑥

1. First, it is necessary to find the key 𝑥 in the tree.
2. Let us denote the page with key 𝑥 as 𝑃.
3. Two cases can occur:

• page 𝑃 is an internal page of the tree or
• page 𝑃 is a leaf page.

137/193



B-trees – deletion of key 𝑥 from internal page 𝑃

1. We replace key 𝑥 in page 𝑃 with the closest larger key 𝑦 to
it.

2. Key 𝑦 must be located in the subtree with keys greater
than 𝑥 and, at the same time, is the smallest among these
keys, so it must be located in a leaf page.

3. We have thus reduced the deletion of key 𝑥 from an
internal page of the tree to the deletion of key 𝑦 from a
leaf page of the tree.

138/193



B-trees – deleting key 𝑥 from leaf page 𝑃

1. We delete key 𝑥 from page 𝑃.
2. If page 𝑃 still contains at least 𝑛 keys after deletion, the
deletion process is terminated.

3. If 𝑃 then contains only 𝑛 − 1 keys, we must replenish the
missing key.
3.1 We determine the number of keys in the sibling page of 𝑃.

We denote the sibling as 𝑆. The common parent of pages 𝑃
and 𝑆 is denoted as 𝑅.

3.2 If there are more than 𝑛 keys in 𝑆, then
3.2.1 we move the nearest larger key than 𝑥 from 𝑅 to 𝑃 and
3.2.2 we move the smallest key from 𝑆 to 𝑅.

3.3 If there are exactly 𝑛 keys in 𝑆, then

139/193



B-trees – deleting key 𝑥 from leaf page 𝑃 (cont.)

3.3.1 we move keys from page 𝑆 to page 𝑃 and obtain one page
with 2𝑛 − 1 keys.

3.3.2 We eliminate page 𝑆.
3.3.3 In page 𝑅, there is now one redundant pointer to a page. We

move the nearest larger key than 𝑥 from 𝑅 to page 𝑃, which
now contains exactly 2𝑛 keys.

140/193



B-trees – deleting key 𝑥 from leaf page 𝑃 (cont.)
Remarks
• Usually, we choose a sibling with larger keys than 𝑥, i.e.,
the sibling to the “right” of 𝑃. In the previous explanation,
we assumed this choice.

• However, it is possible to choose a sibling with smaller
keys, i.e., the one to the “left” of 𝑃. The further procedure
is a mirror image of the “right” sibling.

• The process of moving keys from 𝑆 to 𝑃 and subsequent
elimination of page 𝑆 is called page merging.

• The process of page merging can continue progressively
up to the root of the tree and may lead to the extinction of
the current root of the tree. The new root of the tree will
then be the page resulting from the merging process. The
B-tree thus reduces its height. 141/193



Example of deletion in a B-tree – initial B-tree

1 2 3 4 6 7 8 9 12 15 17 21 44 45 46 55 66 68 70

5 10 50 67

22

In this state, we have left the B-tree at the end of the example
of inserting keys into the B-tree. Now we will gradually delete
keys from the B-tree.

142/193



Example of deletion in a B-tree – deletion of key 3

Key 3 is located in a leaf page, where there are enough keys to
simply delete key 3. This results in the following B-tree.

1 2 4 6 7 8 9 12 15 17 21 44 45 46 55 66 68 70

5 10 50 67

22

143/193



Example of deletion in a B-tree – deletion of keys 7 and 8

In the same way, we delete keys 7, 8 and obtain

1 2 4 6 9 12 15 17 21 44 45 46 55 66 68 70

5 10 50 67

22

144/193



Example of deletion in a B-tree – deletion of key 6

1. After deleting key 6, page 𝑃 contains 𝑛 − 1 = 1 key, number
9.

2. Sibling 𝑆 contains more than 𝑛 keys.
3. The nearest larger key than 6, i.e. 10, is moved from 𝑅 to 𝑃.
4. The smallest key from 𝑆, i.e. 12, is moved to 𝑅.

1 2 4 9 10
𝑃

15 17 21
𝑆

44 45 46 55 66 68 70

5 12
𝑅

50 67

22

145/193



Example of deletion in a B-tree – deleting key 22

1. Key 22 is located in the internal page 𝑃, see the following
figure.

2. We replace it with the nearest larger key – larger keys than
22 are in the subtree rooted at page 𝐴. From there, we
proceed to the leftmost leaf page, in our case to 𝐵.

3. We select the smallest key in 𝐵, i.e., 44.
4. We have thus reduced the deletion of key 22 to the
deletion of key 44.

5. After performing all operations corresponding to the
deletion of 44 (in this case, it only involves deleting 44
from page 𝐵), we replace key 22 with key 44.

146/193



Example of deletion in a B-tree – deleting key 22 (cont.)

1 2 4 9 10 15 17 21 45 46
𝐵

55 66 68 70

5 12 50 67
𝐴

44
𝑃

147/193



Example of deletion in a B-tree – deletion of key 46, phase I

State of the B-tree before deletion begins

1 2 4 9 10 15 17 21 45 46
𝑃

55 66
𝑆

68 70

5 12 50 67
𝐴

44

148/193



Example of deletion in a B-tree – deletion of key 46, phase I
(cont.)

1. After deleting key 46, page 𝑃 contains 𝑛 − 1 keys, i.e., only
key 45.

2. Sibling 𝑆 contains exactly less than 𝑛 keys, we must merge
pages.

3. We move all keys from 𝑆 to 𝑃.
4. Page 𝑃 is the first child of page 𝐴, so we also move the first
key from 𝐴 to 𝑃.

149/193



Example of deletion in a B-tree – deletion of key 46, phase I
(cont.)

Result of phase 1

1 2 4 9 10 15 17 21 45 50 55 66
𝑃 𝑆

68 70

5 12
𝐵

67
𝐴

44
𝐶

150/193



Example of deletion in a B-tree – deletion of key 46, phase II

1. In page 𝐴, only 𝑛 − 1 keys remain, which contradicts the
definition of a B-tree.

2. Sibling 𝐵 contains exactly 𝑛 keys, so we must also perform
page merging at this level.

3. We move key 67 from page 𝐴 to page 𝐵.
4. And similarly, we also move one key from the parent page
𝐶 to 𝐵.

5. This results in the elimination of the root page and a
decrease in the height of the B-tree.

151/193



Example of deletion in a B-tree – deletion of key 46, phase II
(cont.)

1 2 4 9 10 15 17 21 45 50 55 66
𝑃 𝑆

68 70

5 12 44 67
𝐵 𝐴

𝐶

152/193



Example of deletion in a B-tree – deletion of key 46, result

1 2 4 9 10 15 17 21 45 50 55 66 68 70

5 12 44 67

153/193



Example of deletion in a B-tree – deletion of keys 1, 17, and 55

.Keys 1, 17, and 55 are located in leaf pages, where there is a
sufficient number of keys to simply delete them.

2 4 9 10 15 21 45 50 66 68 70

5 12 44 67

154/193



Example of deletion in a B-tree – deletion of key 44

1. Key 44 is located on an internal page.
2. We replace it with the nearest larger key, i.e. key 45.

Resulting tree

2 4 9 10 15 21 50 66 68 70

5 12 45 67
𝑃

The B-tree is now in a state where the leaf pages are filled to
the minimum acceptable level. Deletion of any key will cause
page merging.

155/193



Example of deletion in a B-tree – deletion of key 4

1. After deleting key 4, page 𝑃 contains only 𝑛 − 1 keys.
2. Sibling 𝑆 contains exactly 𝑛 keys.
3. We move the keys from 𝑆 to 𝑃.
4. We also move key 5 from the parent page 𝑅 to 𝑃, because
otherwise one child pointer in 𝑅 would be redundant.

Resulting tree

2 5 9 10
𝑃 𝑆

15 21 50 66 68 70

12 45 67
𝑅

156/193



Example of deletion in a B-tree – deletion of key 45

The tree before deleting key 45

2 5 9 10 15 21 50 66
𝑃

68 70
𝑆

12 45 67
𝑅

1. Key 45 is located in the internal page 𝑅.
2. We replace it with the next larger key, i.e., key 50.

157/193



Example of deletion in a B-tree – deletion of key 45 (cont.)

3. This reduces the deletion of key 45 to the deletion of key
50.

4. After deleting key 50, page 𝑃 contains only 𝑛 − 1 keys.
5. Sibling 𝑆 contains exactly 𝑛 keys.
6. We move keys from 𝑆 to 𝑃.
7. We also move the next larger key than 45, i.e., key 57, from
parent page 𝑅 to 𝑃, because otherwise one child pointer in
𝑅 would be left over.

158/193



Example of deletion in a B-tree – deletion of key 45 (cont.)

Resulting tree

2 5 9 10 15 21 66 67 68 70
𝑃 𝑆

12 50
𝑅

159/193



Example of deletion in a B-tree – deletion of key 15

After deleting 15, there remained only 𝑛 − 1 keys in page 𝑃. We
must therefore move one key from page 𝑆 through page 𝑅.

2 5 9 10 21 50
𝑃

67 68 70
𝑃

12 66
𝑅

160/193



Example of deletion in a B-tree – deletion of keys 9, 10 and 67

Deletion of keys 9, 10 and 67 is very simple.

2 5 21 50 68 70

12 66

161/193



Example of deletion in a B-tree – deletion of key 2

After deleting 2, there are only 𝑛 − 1 keys left in page 𝑃. The
sibling 𝑆 contains 𝑛 keys, so page merging occurs.

5 12 21 50
𝑃 𝑆

68 70

66
𝑅

162/193



Example of deletion in a B-tree – deletion of key 70

5 12 21 50
𝑆

68 70
𝑃

66
𝑅

163/193



Example of deletion in a B-tree – deletion of key 70 (cont.)

After deleting 70, page 𝑃 is left with only 𝑛 − 1 keys. Sibling 𝑆
contains more than 𝑛 keys, so a shift of 66 from 𝑅 to 𝑃 occurs
and the nearest smaller key from 𝑆 to 𝑅.

5 12 21
𝑆

66 68
𝑃

50
𝑅

164/193



Example of deletion in a B-tree – deletion of key 21

Deletion of key 21 is very simple.

5 12 66 68

50

165/193



Example of deletion in a B-tree – deletion of key 5

Deletion of key 5 is evident.

12 50 66 68
𝑃 𝑆

𝑅

166/193



Example of deletion in a B-tree – deletion of key 5 (cont.)

Page 𝑃 has become the new root, and simultaneously the only
page, of the B-tree.

12 50 66 68
𝑃

Deletion of keys 12, 50, 66, and 68 is now a trivial matter.

167/193



Thanks for your attention

167/193


	Space and Time Trade-Offs
	B-trees


