
Introduction

Jiří Dvorský, Ph.D.
Presentation status to date February 24, 2025

Department of Computer Science
VSB – Technical University of Ostrava

21/371

Lecture outline

Introduction

What is an algorithm?

Basics of algorithmic problem solving

Important Types of Problems

Fundamental Data Structures
Linear Data Structures

Graphs

Trees

Sets and dictionaries

22/371

Introduction
What is an algorithm?

Why study algorithms?

• A professional developer/informatician should know
standard algorithms for solving basic problems, be able to
design new algorithms, and analyze the effectiveness of
algorithms.

• Algorithms lead to the development of analytical thinking
– it’s about finding a precise and formal procedure for
solving a problem.

• It’s a universally applicable mental tool – a person does
not fully understand a problem until they can explain it to
anyone else, let alone explain it to a computer.

• The ability to formalize solutions leads to a much deeper
understanding of the issue than if we simply tried to solve
the problem, say, in an ad-hoc way.

23/371

What is an algorithm?

Algorithm
An algorithm is understood as a finite sequence of
unambiguous instructions leading to the solution of a
problem, i.e., leading to obtaining the desired output for any
correct input in a finite time.

Problem

Algorithm

ComputerInput Output

24/371

What is an algorithm? (cont.)

• The previous description of the concept of an algorithm is
not a definition in the mathematical sense.

• We assume that there is something or someone who can
understand “unambiguous instructions” and is able to
follow them.

• For a correct definition, we would have to first clearly
define what an unambiguous instruction is.

• A formal definition of an algorithm does not at all exist!

25/371

What is an algorithm? (cont.)

Remarks
• Automatic assumption – the algorithm will be executed by
an electronic computer.

• The word computer means:
1. today – electronic device,
2. formerly – calculator, a person involved in numerical
calculations.

• Although we will further assume that we will implement
algorithms on an electronic computer, the concept of an
algorithm itself does not depend on electronic computers.

26/371

Example of an Algorithm

• Three algorithms for solving the same problem – finding
the greatest common divisor of two integers.

• Demonstration of several important facts:
• adherence to the requirement of uniqueness of
instructions,

• the range of input values must be precisely specified,
• the same algorithm can be represented in several different
ways,

• there can be multiple algorithms for solving one problem
and

• algorithms solving the same problem can be based on
entirely different ideas, principles, and can differ
significantly in the speed of solving the given problem.

27/371

Greatest Common Divisor (GCD)

• Let’s have two non-negative integers 𝑚 and 𝑛, of which at
least one is also different from zero.

• The greatest common divisor gcd(𝑚, 𝑛) is defined as the
largest integer that divides both numbers 𝑚 and 𝑛 without
a remainder.

• An algorithm for finding it was described in the book
“Elements” by Euclid of Alexandria around the third
century before our era.

28/371

Euclid’s Algorithm

The algorithm is based on the repeated application of the
relationship

gcd(𝑚, 𝑛) = gcd(𝑛,𝑚 mod 𝑛), (1)

until the remainder 𝑚 mod 𝑛 is equal to 0.
Because gcd(𝑚, 0) = 𝑚, the last value of 𝑚 is equal to the
desired greatest common divisor.

29/371

Euclid’s Algorithm – Example

gcd(60, 24) = gcd(24, 12) = gcd(12, 0) = 12
gcd(24, 60) = gcd(60, 24) = gcd(24, 12) = gcd(12, 0) = 12
gcd(7, 3) = gcd(3, 1) = gcd(1, 1) = gcd(1, 0) = 1
gcd(3, 7) = gcd(7, 3) = gcd(3, 1) = gcd(1, 1) = gcd(1, 0) = 1
gcd(13, 0) = 13
gcd(0, 13) = gcd(13, 0) = 13

30/371

Euclid’s Algorithm – Stepwise Description

Step 1 If 𝑛 = 0 then return the value 𝑚 as the result and
finish; otherwise continue with Step 2.

Step 2 Divide the number 𝑚 by the number 𝑛, assign the
remainder to 𝑟.

Step 3 Assign the value of the number 𝑛 to 𝑚, the value
of the number 𝑟 to 𝑛. Continue with Step 1.

31/371

Euclid’s Algorithm – Pseudocode

Input : Two non-negative integers 𝑚 and 𝑛, at least
one of which is non-zero

Output: The greatest common divisor of the numbers
𝑚 and 𝑛, gcd(𝑚, 𝑛)

1 while 𝑛 ≠ 0 do
2 𝑟 ← 𝑚 mod 𝑛;
3 𝑚 ← 𝑛;
4 𝑛 ← 𝑟;
5 end
6 return m;

32/371

Algorithm of Successive Division

• The algorithm is based directly on the definition of GCD –
GCD divides both given numbers 𝑚 and 𝑛 without a
remainder.

• GCD cannot be greater than the smaller of the given
numbers, so we can write 𝑡 = min(𝑚, 𝑛).

• If 𝑡 divides both numbers 𝑚 and 𝑛 without a remainder,
then gcd(𝑚, 𝑛) = 𝑡, otherwise the number 𝑡 is decreased by
1 and the process is repeated.

• When does the algorithm stop?

33/371

Algorithm of Successive Division (cont.)

Example
For 𝑚 = 60 and 𝑛 = 24, we have 𝑡 = min(60, 24) = 24.
The algorithm first tries 𝑡 = 24, then 𝑡 = 23, and so on until it
finally stops at 𝑡 = 12.

34/371

Algorithm of Successive Division – Stepwise Description

Step 1 Assign to 𝑡 the value of min(𝑚, 𝑛).
Step 2 Divide the number 𝑚 by the number 𝑡. If the

remainder is equal to 0, proceed to Step 3;
otherwise proceed to Step 4.

Step 3 Divide the number 𝑛 by the number 𝑡. If the
remainder is equal to 0, return the number 𝑡 as
the result and finish; otherwise proceed to Step 4.

Step 4 Decrease the value of the number 𝑡 by 1 and
proceed to Step 2.

35/371

Algorithm of Successive Division – Stepwise Description (cont.)

Error in the Algorithm
• The algorithm in this form does not work correctly if one
of the numbers 𝑚 and 𝑛 is equal to 0. The number 𝑡 would
have a value of 0 and division by zero would occur.

• Requirements for values entering the algorithm must be
carefully specified!

36/371

GCD – algorithm by prime factorization

Step 1 Perform the prime factorization of the number 𝑚.
Step 2 Perform the prime factorization of the number 𝑛.
Step 3 Find all common prime factors in the

decompositions obtained in Step 1 and Step 2.
The number of occurrences of a common prime
factor 𝑝 is equal to

min(𝑝𝑚, 𝑝𝑛),

where 𝑝𝑚 and 𝑝𝑛 are the numbers of occurrences
of 𝑝 in the decompositions of 𝑚 and 𝑛,
respectively,

37/371

GCD – algorithm by prime factorization (cont.)

Step 4 Calculate the product of all common prime factors
and return this product as the result.

38/371

GCD – algorithm by prime factorization (cont.)

Example
For 𝑚 = 60 and 𝑛 = 24, the algorithm will proceed as follows:

60 = 22 ⋅ 31 ⋅ 51

24 = 23 ⋅ 31

gcd(60, 24) = 22 ⋅ 31

= 12

39/371

GCD – algorithm by prime factorization (cont.)

Problems
• The described algorithm is computationally much more
demanding than the Euclidean algorithm.

• Finding GCD using prime factorization is not an algorithm
– prime factorization of a number is not a “unique
instruction”.

• Prime factorization requires a list of primes.
• Step 3 is also unclear – how to find common elements in
the prime factorization? How to find common elements in
two sorted lists of numbers?

40/371

The Sieve of Eratosthenes

• Solution to the problem of finding all prime numbers less
than or equal to a number 𝑛, where 𝑛 > 1.

• Origin in Greece, around 200 years before our era.
• First, we create a list of all natural numbers from 2 to 𝑛.
• Then, we take the numbers that remain in the list and
exclude their multiples.

• We continue this way until no more numbers can be
excluded from the list.

• The numbers that remain in the list are the desired prime
numbers.

41/371

The Sieve of Eratosthenes (cont.)

Example
For 𝑛 = 25 we get

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
2 3 5 7 9 11 13 15 17 19 21 23 25
2 3 5 7 11 13 17 19 23 25
2 3 5 7 11 13 17 19 23

42/371

The Sieve of Eratosthenes (cont.)

Stopping the Algorithm

• In the example, we last excluded multiples of the
number 5.

• What will be, for a given 𝑛, the largest number 𝑝 whose
multiples we will exclude from the list?

• The first multiple will be 𝑝 ⋅ 𝑝, i.e., 𝑝2.
• All lower multiples 2𝑝, 3𝑝,… , (𝑝 − 1)𝑝 have already been
eliminated as multiples of other numbers: 2𝑝 as a
multiple of 2, 3𝑝 as a multiple of 3, and so on.

• Furthermore, it is clear that 𝑝2 ≤ 𝑛 and thus 𝑝 = ⌊√𝑛⌋, where
⌊𝑥⌋ denotes the nearest smaller natural number to 𝑥.

43/371

The Sieve of Eratosthenes (cont.)
Input: A natural number 𝑛
Output: The array of prime numbers ≤ 𝑛

1 for 𝑝 ← 2 to 𝑛 do
2 𝐴[𝑝] ← 𝑝
3 end
4 for 𝑝 ← 2 to ⌊√𝑛⌋ do
5 if 𝐴[𝑝] ≠ 0 then // 𝑝 has not been excluded yet
6 𝑗 ← 𝑝2;
7 while 𝑗 ≤ 𝑛 do
8 𝐴[𝑗] ← 0;
9 𝑗 ← 𝑗 + 𝑝;
10 end
11 end
12 end

44/371

The Sieve of Eratosthenes (cont.)

13 // Numbers that were not excluded from array 𝐴 are
copied to array 𝐿

14 𝑖 ← 0;
15 for 𝑝 ← 2 to 𝑛 do
16 if 𝐴[𝑝] ≠ 0 then
17 𝐿[𝑖] ← 𝐴[𝑝];
18 𝑖 ← 𝑖 + 1;
19 end
20 end

45/371

NSD – algorithm for decomposition into prime factors

• By incorporating the Sieve of Eratosthenes, we obtain a
regular algorithm for calculating the greatest common
divisor using prime factorization.

• It remains to solve the problem when one or both
numbers, for which we are calculating the greatest
common divisor, is equal to 1…

46/371

Introduction
Basics of algorithmic problem solving

Basics of algorithmic problem solving

• We consider algorithms as an procedural, constructive
way to solve a given problem.

• Algorithms are not the solution to the problem
themselves, but are instructions on how to obtain the
solution.

• Computer science vs. mathematics – no existence of
“infinitely small 𝜀”, “limits for 𝑛 approaching infinity”.

• Similarity between computer science and ancient Greek
concept of geometry – solving using “ruler and compass”,
finite number of steps.

47/371

Process of Algorithm Design and Analysis

Understanding the Problem

Decision on:
Computing Device

Exact or Approx. Algorithm
Design Technique

Algorithm Design

Proof of Correctness

Algorithm Analysis

Implementation

48/371

Understanding the Problem

• At first glance, a banality – incorrect understanding can
backfire⇒ necessity to rework the algorithm.

• Solving sample cases, special cases of solutions.
• Input data define an instance of the problem. Definition
of permissible input data.

• A correct algorithm must work correctly for all
permissible input data, not just for the majority.

• Knowledge of professional literature is an advantage –
typical problems and their typical solutions.

• It’s not always necessary to “reinvent the wheel”.
• To select a suitable algorithm, it’s good to know its strong
and weak points.

49/371

Computing Devices

• Computing devices – a computer doesn’t have to be just a
“laptop”.

• Parallel computing devices – multi-core processors, CUDA
accelerators, parallel supercomputers.

• So far, the von Neumann architecture (John von Neumann
1946) prevails.

• In the following explanation, we will deal with sequential
algorithms on the von Neumann architecture.

• Random Access Machine (RAM) – a theoretical model of
the von Neumann computer architecture.

50/371

Computing Devices (cont.)

• For designing an algorithm and examining its
effectiveness, it is suitable to use RAM – HW and SW
independence.

• Practical implementation – it is necessary to take into
account the HW and SW limitations of a specific computer.

• Assumption of sufficient performance of the used
computer. Computer “stone age”.

51/371

Computing Devices (cont.)

Warning
“The real problem is that programmers have spent far too
much time worrying about efficiency in the wrong places and
at the wrong times;

premature optimization is the root of all evil

(or at least most of it) in programming.”

Donald Knuth, The Art of Computer Programming

52/371

Exact vs. Approximate Solution of the Problem

• Exact algorithm – provides an exact solution.
• Approximation algorithm – provides an approximate
solution.
Use of approximation algorithms:
1. There are important problems that we do not know how to
solve exactly, e.g., aerodynamic and hydrodynamic
problems.

2. Exact algorithms are inherently unacceptably slow due to
the enormous number of possible solutions, not due to a
poor algorithm or implementation.

3. An approximation algorithm is part of a sophisticated exact
algorithm.

Remark
If we do not need to strictly distinguish between an algorithm
for an exact and an approximate solution of the problem, we
usually omit the adjective ”exact”.

53/371

Techniques of Algorithm Design

• We have everything we need: we understood the given
problem, chose a computing device, and decided whether
to use an exact or approximate algorithm.

• How do we proceed with designing an algorithm? What
technique should we use for algorithm design?

Definition
Algorithm design technique (algorithm design strategy or
paradigm) is a general approach to algorithmic
problem-solving that can be applied to a wide range of
problems from various areas of computer science.

54/371

Techniques of Algorithm Design (cont.)

Usefulness of Algorithm Design Techniques

1. they provide guidance on how to design algorithms for
new problems, for which no satisfactory algorithm is
known, and

2. allow for a clear classification of various algorithms
according to their basic idea.

55/371

Techniques of Algorithm Design (cont.)

However, Keep in Mind That

• designing a specific algorithm for solving a specific
problem can be a very challenging task,

• not all algorithm design techniques can be applied to a
specific problem; sometimes it is necessary to combine
techniques,

• it can be difficult to recognize which design technique an
algorithm is based on,

• even if the technique is clear, assembling the algorithm
often requires non-trivial effort and ingenuity, but

56/371

Techniques of Algorithm Design (cont.)

• with increasing developer experience, everything becomes
easier and easier, although rarely easy.

Importance of Data Structures

• a suitable data structure has fundamental importance for
the designed algorithm – Eratosthenes’ sieve versus linked
list

• some algorithm design techniques strongly depend on the
structure or reorganization of the data that determine the
instance of the problem being solved,

• Niklaus Wirth: “Algorithms + Data Structures = Programs”

57/371

Methods of Recording an Algorithm During its Design

Natural Language

• does not have to be a written record – an orally
formulated idea

• possible ambiguities – extreme case “The woman beats
the machine with a stick.”

• ability to precisely formulate thoughts, formulate them
logically correctly, define concepts describing the problem,
classify concepts into a thought schema etc.

58/371

Methods of Recording an Algorithm During its Design (cont.)

Pseudocode

• a mix of natural language and constructs similar to
programming languages.

• usually more precise and concise than natural language
• more concise notation of the proposed algorithm
• there are many mutually similar “dialects” of pseudocode

59/371

Methods of Recording an Algorithm During its Design (cont.)

Programming Language

• another possible way of recording

• this record is considered more as an implementation

60/371

Methods of Recording an Algorithm During its Design (cont.)

Development Diagram
• Engl. flowchart
• graphical form of
algorithm recording

• no longer used today

Start

Input

Process 1

Decision 1

Process 2a

Process 2b

Output

Stop

yes

no

61/371

Proof of Algorithm Correctness

Definition
An algorithm is considered correct, if for every correct input it
provides a correct result in finite time. For incorrect input,
the behavior of a correct algorithm is not defined.

• The usual method of proof is mathematical induction.
• Proof of correctness vs. incorrectness of an algorithm

• For a correct proof of algorithm correctness, it is not
enough to prove correctness for some instance of the
problem, we must be able to prove correctness for all
instances of the problem, and vice versa

62/371

Proof of Algorithm Correctness (cont.)

• as a proof of incorrectness of an algorithm, it is enough to
find one instance of the problem, so that we can declare
the algorithm faulty.

• Correctness of an approximation algorithm – the error of
the algorithm’s result does not exceed a predefined limit.

63/371

Analysis of the Algorithm – Examined Properties

Correctness – already solved

Time Complexity (English: time complexity)

• ”how fast the algorithm works”
• speed is not measured in time units, but by the amount of
instructions performed by the algorithm (the same
algorithm on faster and slower HW)

Space Complexity (English: space complexity)

• ”how much memory the algorithm needs”
• measured in bytes and multiples

64/371

Analysis of the Algorithm – Examined Properties (cont.)

Simplicity (English: simplicity)

• cannot be exactly defined, unlike complexity,
• rather a subjective matter – beauty, elegance (NSD Euclid’s
algorithm vs. prime factorization),

• simpler algorithm – easier to understand, implement,
likely fewer errors,

• simpler algorithm – does not necessarily have lower
complexity,

• use – typically software prototype. If it does not meet the
requirements – transition to an algorithm with lower
complexity. But! ”Premature optimization...”

65/371

Analysis of the Algorithm – Examined Properties (cont.)

• terminology – the opposite of simplicity is not
”complexity” of the algorithm, but rather complicatedness,
incomprehensibility, inappropriateness of design.

Generality

1. generality of the proposed algorithmic solution – solve
the problem very generally or take into account possible
simplifications in a specific case?

• solving a more general problem is easier than a specific
one – e.g. inseparability of two numbers, solution via NSD,
NSD is a more general problem

66/371

Analysis of the Algorithm – Examined Properties (cont.)

• solving a more general and specific problem at the same
level – e.g. finding the median, solution via sorting (more
general) and a specific algorithm

• solving a more general problem is significantly more
difficult – e.g. quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 versus a
general algebraic equation of degree 𝑛.

2. generality of the problem instance – the algorithm design
should handle all reasonably expected, natural instances
of the problem.

• For NSD, it is not natural to exclude the number 1, but
• for a quadratic equation, we usually assume that 𝑎, 𝑏, and
𝑐 are real numbers – more generally, we can also consider
complex numbers.

67/371

Analysis of the Algorithm – Examined Properties (cont.)

If we are not satisfied with the complexity or simplicity of the
design or generality of the algorithm?

There is nothing else to do but go back to the beginning, sit
down at the table, take a pencil and paper in hand, and think,
draw, search in literature, and so on.

“The designer knows he has achieved perfection when he can
no longer add or remove anything.”

Antoine de Saint-Exupéry

“Keep It Simple, Stupid!”

Kelly Johnson

68/371

Algorithm Coding

• Again, an underestimated phase – “We have the algorithm
figured out, so now we just rewrite it on the computer and
we’re done.”

• We implement the algorithm either incorrectly or
inefficiently, or even both options occur at the same time.

• In real life – the correctness of programs is verified by
testing.

• Program testing is “an artistic craft”.
• Another critical point – data entry.

• School – input data define a correct instance of the solved
problem.

• Practice – the question of controlling input data needs to
be addressed.

69/371

Algorithm Robustness

Definition
We consider an algorithm to be robust if it is correct and for
every incorrect input, it issues an error report and is able to
recover from the error.

Robustness

Correctness

70/371

Efficiency of Implementation

• Correctness of algorithm implementation is a necessity.
• But even a correct implementation can be done
inefficiently, the computer’s performance is not utilized as
it could be.

• Code optimization:
1. manual – calculation of loop invariant, replacement of
common subexpressions with a variable.

2. automatic – optimization algorithms built into compilers,
e.g. register allocation.

• By optimizing the code, the program’s efficiency can be
improved by some constant factor, e.g. 10%.

71/371

Efficiency of Implementation (cont.)

• For radical, order-of-magnitude improvement, it is
necessary to implement an algorithm with lower
complexity.

• Searching for a better and better algorithm is an
interesting mental adventure...

• The question is when to stop. Perfection is an expensive
luxury. Engineering approach – resources allocated for the
project.

• Academic question of algorithm optimality: “What is the
smallest possible complexity of any algorithm that solves
a given problem?”

72/371

Efficiency of Implementation (cont.)

• For example, a sequential algorithm for sorting an array
with 𝑛 elements – at least 𝑛 log2 𝑛 comparisons.

• Can every problem be solved by an algorithm?
Undecidable problems – cannot be solved by any
algorithm.

• Fortunately, most practical problems can be solved
algorithmically.
A good algorithm is the result of repeated effort and
multiple reworkings.

73/371

Introduction
Important Types of Problems

Important Types of Problems

• Sorting
• Searching
• String Processing
• Graph Problems
• Combinatorial Problems
• Geometric Problems
• Numerical Problems

74/371

Sorting

• Sorting in computer science – rearranging elements into a
non-decreasing sequence. Compare with waste sorting.

• A relation of order must be defined between the
elements, i.e., the relation ”less than or equal to”, ≤.

• In practice, we sort numbers, strings, or structured records.
• For a record, we must define a key, i.e., the part of the
record that we sort by, for which an order is defined. The
key does not have to be defined explicitly, e.g., for
numbers, it is the number itself.

75/371

Arrangement

Definition
Let us have a binary homogeneous relation 𝜌 ⊆ 𝐴 × 𝐴 on the
set 𝐴.

• The relation 𝜌 is called (non-strict) partial ordering, if it is
simultaneously reflexive, antisymmetric and transitive.

• The relation 𝜌 is called (non-strict) total ordering, if it is
simultaneously reflexive, antisymmetric, transitive and
total.

• The relation 𝜌 is called (partial) strict ordering, if it is
simultaneously asymmetric (and therefore also
antisymmetric and irreflexive) and transitive.

• The relation 𝜌 is called total strict ordering, if it is
simultaneously asymmetric (and therefore also
antisymmetric and irreflexive), transitive and connected. 76/371

Arrangement – notes

• We standardly denote a non-strict arrangement by ≤, and
a strict arrangement by <.

• Instead of the term partial arrangement, we sometimes
use just arrangement.

• Instead of the term complete arrangement, we also use
the terms total or linear arrangement.

• If ≤ is an arrangement on a set 𝐴, then we call the
relational system (𝐴, ≤) an ordered set (Eng. poset –
partially ordered set). A completely ordered set is called a
chain (Eng. chain).

77/371

Arrangement – notes (cont.)

• Two different elements 𝑥, 𝑦 are comparable in the
arrangement ≤, if (𝑥 ≤ 𝑦) ∨ (𝑦 ≤ 𝑥) holds. Otherwise, the
elements are incomparable. In a complete arrangement,
all pairs of elements are comparable.

• The intersection of arrangements is again an arrangement.
The union of arrangements does not have to be an
arrangement in general.

• The relationship between strict and non-strict
arrangements can be written as follows:
" ≤ " = " < " ∪ " = ", i.e., by adding the identity relation
(“equality”) to the strict arrangement.

78/371

Used properties of binary homogeneous relations

Used properties of relation 𝜌 ⊆ 𝐴 × 𝐴 ∀𝑥, 𝑦, 𝑧 ∈ 𝐴:

• reflexivity: 𝑥𝜌𝑥,
• irreflexivity: ¬(𝑥𝜌𝑥),
• asymmetry: 𝑥𝜌𝑦 ⇒ ¬(𝑦𝜌𝑥),
• antisymmetry: 𝑥𝜌𝑦 ∧ 𝑦𝜌𝑥 ⇒ 𝑥 = 𝑦,
• transitivity: 𝑥𝜌𝑦 ∧ 𝑦𝜌𝑧 ⇒ 𝑥𝜌𝑧,
• connectivity: [𝑥 ≠ 𝑦 ⇒ 𝑥𝜌𝑦 ∨ 𝑦𝜌𝑥],
• completeness: 𝑥𝜌𝑦 ∨ 𝑦𝜌𝑥.

79/371

Hasse Diagram

The ordering relation is typically represented using a Hasse
diagram, which

• represents the relation of immediate precedence without
transitive edges, which is the same for both strict and
non-strict orderings and which

• corresponds to a directed graph, where all edges are
oriented from bottom to top.

Example
{𝑎, 𝑏}

{𝑎} {𝑏}

∅

Hasse diagram for the ordering relation
“to be a subset” on the set {𝑎, 𝑏}. A
transitive edge, which is normally not
shown, is displayed dashed.

80/371

Partial ordering – example

For any set 𝐴 we can define an ordering ≤ of inclusion on the
set of its subsets 𝑃(𝐴): 𝑋 ≤ 𝑌 if 𝑋 ⊆ 𝑌 , where 𝑋, 𝑌 ∈ 𝑃(𝐴).
The ordering defined in this way is not complete but only
partial, because it contains incomparable elements.
Example

{■, •,♦}

{■, •} {■,♦} {•,♦}

{■} {•} {♦}

∅

In 𝐴 = {■, •,♦} the
incomparable elements are
• all one-element subsets
among themselves and

• all two-element subsets
among themselves.

81/371

Total Ordering – Example

2

1

0

-1

-2

• The usual relation < on the set of natural,
integer, rational, and real numbers is a total
ordering.

• Alphabetical, lexicographical ordering of
strings is also a total ordering.

• Properly nested matryoshka dolls are totally
ordered using the relation “being inside”. But
only under the condition that no more than
one smaller doll can fit inside another at a
time – otherwise, we get only a partial
ordering.

82/371

Sorting – utilization

• A sorted list of values is the desired output – a race result
list, internet search results.

• For some tasks, it is better to solve for a sorted input –
typically search. Phone book. Geometric tasks. Data
compression. Greedy algorithms.

83/371

Definition of the Sorting Problem

• Let’s assume a sequence of elements 𝐴 = 𝑎1, 𝑎2, … 𝑎𝑛. The
task of sorting is to find a permutation 𝜋 ∶ ℕ → ℕ such
that 𝑎𝜋𝑖 ≤ 𝑎𝜋𝑖+1 for all 1 ≤ 𝑖 < 𝑛.

• The permutation 𝜋 cannot be found directly, as there are
𝑛! permutations of 𝑛 elements.

• We will understand sorting algorithms as algorithms that
construct the permutation 𝜋 step by step, for example by
comparing and swapping elements.

84/371

Definition of the sorting problem – example

Let us have a sequence 𝐴 = 𝑒𝑏𝑓𝑐𝑑𝑎 and the usual alphabetical
ordering of letters. The sought permutation is

𝜋 = (1 2 3 4 5 6
6 2 4 5 1 3)

Then

𝑎𝜋1 < 𝑎𝜋2 < 𝑎𝜋3 < 𝑎𝜋4 < 𝑎𝜋5 < 𝑎𝜋6
𝑎6 < 𝑎2 < 𝑎4 < 𝑎5 < 𝑎1 < 𝑎3

𝑎 < 𝑏 < 𝑐 < 𝑑 < 𝑒 < 𝑓

85/371

Sorting

• A number of sorting algorithms have been developed.
There is no single universal algorithm for all situations.

• simple and slow vs. complex and fast,
• random vs. nearly sorted sequence on input
• internal memory vs. external memory.

• Given 𝑛 elements, the minimum number of comparisons is
𝑛 log2 𝑛 for serial algorithms based on comparison and
swapping.

86/371

Sorting (cont.)

• Stable sorting – preserves the relative positions of
elements. If we have two elements with the same key in
positions 𝑖 and 𝑗, where 𝑖 < 𝑗, then after sorting, these
elements will be in positions 𝑖′ and 𝑗′, where 𝑖′ < 𝑗′.

10 20 20 30 10

10 10 20 20 30

Hint: follow the relative positions of orange and green numbers.

Algorithms that sort using exchanges over long distances
are usually faster, but not stable.

87/371

Sorting (cont.)

• In-situ sorting – a sorting algorithm only needs memory
for storing elements plus additional memory of constant
scope, i.e., this memory does not depend on the number
of sorted elements, typically variables for loop iteration,
logical flags, etc.

• Natural sorting – the complexity of the sorting algorithm
increases with the degree of unsortedness of the input
data.

88/371

Degree of disorder of a data sequence

• The goal is to find a measure of disorder, ”messiness”, of a
sequence of 𝑛 elements that we need to sort.

• Sorted sequences should correspond to zero disorder.
• Sequences sorted in reverse order should correspond to
maximum disorder.

• Other sequences should fall between these extreme
possibilities

89/371

Rate of non-monotonicity of a permutation

• Permutation of numbers 1…𝑛.
• Identity permutation – zero non-monotonicity

𝜋𝑖𝑑 = (
1 2 3 4 5 6
1 2 3 4 5 6)

• Reverse permutation – maximum non-monotonicity

𝜋𝑟𝑒𝑣 = (
1 2 3 4 5 6
6 5 4 3 2 1)

• Non-monotonicity of a permutation will be measured by
the number of inversions of the given permutation.

90/371

Inverse in Permutation

Definition
Let’s have a permutation 𝜋 ∶ ℕ → ℕ. The inverse in the
permutation 𝜋 is a pair of elements 𝑖, 𝑗 such that 𝑖 < 𝑗 and
simultaneously 𝜋𝑖 > 𝜋𝑗.

The inverses in the permutation can be freely interpreted as “a
larger element is at a smaller index and at the same time a
smaller element is at a larger index”.

Example

𝜋 = (1 2 3 4
4 1 3 2)

All permutations in 𝜋
1 < 2 ∧ 4 > 1 1 < 4 ∧ 4 > 2
1 < 3 ∧ 4 > 3 3 < 4 ∧ 3 > 2

91/371

Number of inversions in a permutation

• Identity permutation – the total number of inversions is
zero

• Reverse permutation

Element Inversions with elements Number of inversions
𝑛 𝑛 − 1, 𝑛 − 2, 𝑛 − 3,… , 1 𝑛 − 1

𝑛 − 1 𝑛 − 2, 𝑛 − 3,… , 1 𝑛 − 2
⋮ ⋮ ⋮
3 2, 1 2
2 1 1
1 − 0

The total number of inversions is equal to

(𝑛 − 1) + (𝑛 − 2) + ⋯ + 2 + 1 + 0 = 12𝑛(𝑛 − 1)
92/371

Average number of inversions in a permutation

• Let’s denote 𝐶𝑛 as the total number of inversions in all
permutations of 𝑛 elements. First, we derive a relationship
between 𝐶𝑛 and 𝐶𝑛−1.

• Consider all permutations of 𝑛 − 1 elements. To all these
permutations, we add 𝑛 after the last element of the
permutation. The number of inversions does not increase
and will be equal to 𝐶𝑛−1.

• To the permutations of 𝑛 − 1 elements, we add 𝑛 after the
second-to-last element of the permutation. The number
of inversions increases by one for each permutation, so
𝐶𝑛−1 + 1 ⋅ (𝑛 − 1)!

93/371

Average number of inversions in a permutation (cont.)

• Finally, to the permutations of 𝑛 − 1 elements, we add 𝑛
before the first element of the permutation. The number
of inversions increases by 𝑛 − 1 for each permutation, so
𝐶𝑛−1 + (𝑛 − 1)(𝑛 − 1)!

Therefore

𝐶𝑛 = 𝐶𝑛−1 + 0 ⋅ (𝑛 − 1)! +
𝐶𝑛−1 + 1 ⋅ (𝑛 − 1)! +
𝐶𝑛−1 + 2 ⋅ (𝑛 − 1)! +

⋮ ⋮
𝐶𝑛−1 + (𝑛 − 1)(𝑛 − 1)!

94/371

Average number of inversions in a permutation (cont.)

From this

𝐶𝑛 = 𝑛𝐶𝑛−1 + [0 + 1 + ⋯ + (𝑛 − 1)](𝑛 − 1)!

= 𝑛𝐶𝑛−1 + [
1
2𝑛(𝑛 − 1)] (𝑛 − 1)!

= 𝑛𝐶𝑛−1 +
1
2(𝑛 − 1)𝑛!

The average number of inversions 𝐼𝑛 is equal to

𝐼𝑛 =
𝐶𝑛
𝑛! .

95/371

Average number of inversions in a permutation (cont.)

From this, we substitute 𝐶𝑛 = 𝑛!𝐼𝑛 and 𝐶𝑛−1 = (𝑛 − 1)!𝐼𝑛−1 to get

𝑛!𝐼𝑛 = 𝑛(𝑛 − 1)!𝐼𝑛−1 +
1
2(𝑛 − 1)𝑛!

= 𝑛!𝐼𝑛−1 +
1
2(𝑛 − 1)𝑛!

After cancelling 𝑛! we get

𝐼𝑛 = 𝐼𝑛−1 +
1
2(𝑛 − 1)

96/371

Average number of inversions in a permutation (cont.)

Expanding the expression for 𝐼𝑛

𝐼𝑛 = 𝐼𝑛−2 +
1
2(𝑛 − 2) +

1
2(𝑛 − 1)

= 𝐼𝑛−3 +
1
2(𝑛 − 3) +

1
2(𝑛 − 2) +

1
2(𝑛 − 1)

⋮
= 𝐼𝑛−𝑖 +

1
2(𝑛 − 𝑖) + ⋯ +

1
2(𝑛 − 2) +

1
2(𝑛 − 1)

Furthermore, we know that a one-element permutation cannot
have an inversion, so 𝐼1 = 0.

97/371

Average number of inversions in a permutation (cont.)

Now, we are looking for such 𝑖, so that the expression 𝑛 − 𝑖 in
the index 𝐼𝑛−𝑖 equals 1. Obviously, 𝑖 = 𝑛 − 1 and therefore

𝐼𝑛 = 𝐼𝑛−(𝑛−1) +
1
2[𝑛 − (𝑛 − 1)] +

1
2[𝑛 − (𝑛 − 2)] + ⋯ +

1
2(𝑛 − 2) +

1
2(𝑛 − 1)

= 𝐼1 +
1
2 ⋅ 1 +

1
2 ⋅ 2 + ⋯ +

1
2(𝑛 − 2) +

1
2(𝑛 − 1)

= 𝐼1 +
1
2[1 + 2 + ⋯ + (𝑛 − 2) + (𝑛 − 1)]

= 𝐼1 +
1
2 [
1
2𝑛(𝑛 − 1)]

= 𝐼1 +
1
4𝑛(𝑛 − 1)

98/371

Average number of inversions in a permutation (cont.)

And since 𝐼1 = 0, we finally get

𝐼𝑛 =
1
4𝑛(𝑛 − 1)

Summary – number of inversions in a permutation of 𝑛
elements

Minimum 0

Average 1
4𝑛(𝑛 − 1)

Maximum 1
2𝑛(𝑛 − 1)

99/371

Searching

• Basic task – finding an element 𝑎 in a given set 𝑀, or
multiset.

• Mathematically – does 𝑎 ∈ 𝑀 hold, or 𝑎 ∉ 𝑀?
• Mathematics does not deal with the complexity of this
operation.

• There are numerous search algorithms – sequential,
interval halving, hashing...

• There is no optimal algorithm for all situations, algorithms
have different assumptions – more memory for faster
work, sorted array...

• Important aspects:
• the mutual ratio of search, insert, and delete operations on
the set – does searching prevail or is the ratio balanced?

• organization of very large data.
100/371

String Processing

• String – a sequence of characters from a given alphabet.
• Typical examples of strings:

• text strings, alphabet composed of letters, digits, and
punctuation,

• bit strings composed of 0 and 1 or
• genetic strings composed of the characters 𝐴, 𝐶, 𝐺, and 𝑇

• Applications
• text processing,
• data compression,
• programming languages and compilers or
• string searching (pattern matching) – finding one string,
pattern, or patterns in another string. A trivial example –
Ctrl+F in a text editor.

101/371

Searching in Text – Pattern Matching

• When searching in text, we determine whether a given
pattern/patterns matches, coincides with, a part of a
given text. We can also say that we are looking for
occurrences of the pattern in the text.

• Applications:
• in text editors (moving in edited text, replacing strings),
• in utilities like grep, which allow finding all occurrences of
specified patterns in a set of text files,

• web search,
• when examining DNA,
• when analyzing images, sound, etc.

102/371

Text Search – Classification of Search Algorithms

Text Preprocessing
no yes

Sa
m
pl
e
Pr
ep
ro
ce
ss
in
g

no

brute force
search

index-based methods, typically
web search engines, generally
known as Information Retrieval
Systems

ye
s advanced search
algorithms

signature-based search
methods

103/371

Text Search – Additional Division Criteria

Number of searched patterns – one, finite number or infinite
number of patterns

Number of occurrences – first occurrence, all occurrences
Comparison method – exact search versus approximate

search, where deviations between the pattern and
text are allowed, e.g., one character may differ

Search direction – in text, we usually proceed from lower
indices to higher, “from left to right”
• symmetrical algorithms – the pattern is
traversed in the same direction

• asymmetrical algorithms – the pattern is
traversed in the opposite direction.

104/371

Searching in Text – Notation

In the following text, we will use the following notation:

• 𝑝 the searched pattern, 𝑝 = 𝑝0𝑝1…𝑝𝑚−1, where |𝑝| = 𝑚 is
the length of the pattern,

• 𝑡 the searched text, 𝑡 = 𝑡0𝑡1… 𝑡𝑛−1, where |𝑡| = 𝑛 is the
length of the text,

• Σ – the alphabet from which the pattern and the text are
composed,

• 𝜎 – the size of the alphabet Σ (𝜎 = |Σ|),
• ̄𝐶𝑛 – the expected number of comparisons needed to find
the pattern in a text of length 𝑛.

105/371

Graph Problems
Alice Bob

Charles Sanchez

K
a
to

w
ic

e
W

a
rs

za
w

a
K

ra
kó

w

Český Těšín
Třinec, Žilina

Frýdek-Místek
Valašské Meziříčí

Studénka, Hranice na Mor.
Mošnov, Ostrava Airport

K
rn

o
v

O
p
a
va

Karviná hl.n.
Ostrava hl.n.

Ostrava střed

Havířov

Dětmarovice

Ostrava-Kunčice

O.-Bartovice

O
-V

ítk
ov

ic
e

Ostrava-Svinov

Polanka
nad Odrou

Albrechtice u Č.Těšína

Chotěbuz

Bohumín

Petrovice
u Karviné

27
0

320

321

321
323
321
323

321

27
0 323

321

326

320

320

Ostravsko
270

Ostrava-Stodolní

270
321
270
321

270
Racibórz, Rybnik

�
�

� � �
� � 	

�

�

�
�
�
�
�
�
�

�
�
�

� �

�

�
�
�
�

�

�
�

!
"
#
$

%

&

'

(

)
*
+

,

-
.
.
/
0

1
2
3
4
�
5
6

7
8

9
9
:

Taken from [1]

A B

C S

• Graph – informally, a set of points, vertices, some of which
are connected by line segments, edges.

• Applications – representation of transportation networks,
project management, social networks, electrical networks,
etc.

• Basic problems:
• graph traversal – can we reach all vertices in the graph?
• shortest path – the shortest path between two cities

106/371

Graph Problems (cont.)

• topological sorting – organization of a project, activities
must depend on each other, can something be done in
parallel?

• Computationally complex problems
• Traveling Salesman Problem (TSP) – the task is to find the
shortest path between 𝑛 cities, visiting each one exactly
once. Logistics, microchip manufacturing.

• Graph Coloring Problem – the task is to find the smallest
number of colors for vertices such that no two adjacent
vertices have the same color. Planning – events
correspond to vertices, edges connect events that cannot
be performed simultaneously, solving the graph coloring
problem provides an optimal schedule.

107/371

Combinatorial Problems

• The essence of problems – finding a permutation,
combination or subset from a given set of objects that
satisfies certain constraints and possibly has some other
property, such as minimizing or maximizing some function.

• The Traveling Salesman Problem – the order of visited
cities is a permutation, the minimized function is the total
distance.

• Perhaps the most complex problems in computer science
from both theoretical and practical perspectives:

• the number of possible candidate solutions (e.g.,
permutations) grows very rapidly and reaches enormous
values even for moderately sized problems

108/371

Combinatorial Problems (cont.)

• no algorithm is known to find an exact solution in an
acceptable amount of time, and

• it is not even known whether such an algorithm exists; it is
assumed that it does not.

• However, some combinatorial problems can be solved
efficiently – for example, finding the shortest path.

109/371

Geometric Problems

• They process points, line segments, polygons and similar
objects.

• These are actually the first algorithms – Euclidean
geometry, constructions with ”ruler and compass”.

• Applications:
• computer graphics,
• computer games,
• robotics,
• medicine.

• In our subject:
• closest pair problem – a set of points in a plane, find two
points with minimum distance,

• convex hull of a set of points – find the smallest convex
polygon containing the given points.

110/371

Numerical Tasks

• Solving systems of equations, calculating function values,
definite integrals, etc.

• Most of these tasks require calculations with real
numbers. Typical problems:

• The computer can only capture a limited range of numbers
(not ∞) and with limited precision (13 , 𝜋) and

• Accumulation of rounding errors.

• Scientific and technical calculations – the classic
application of early computers. Engineering applications.

• Today – data storage and analysis, navigation, logistics...
• In our subject – several typical tasks, solving a system of
equations, matrices.

111/371

Introduction
Fundamental Data Structures

Fundamental Data Structures

• A data structure can be defined as a way of organizing
interrelated data.

• The choice of data structure strongly depends on the
problem being solved.

• Several particularly important data structures exist:
• linear data structures – array, linked list, stack, queue,
priority queue

• graph
• tree
• set
• dictionary

112/371

Array

• Finite sequence of 𝑛 values stored in a contiguous
memory block

• Access via index with constant time complexity
• Index:

• Non-negative integer
• Array with 𝑛 elements always has index range 0,… , 𝑛 − 1

a[0] a[1] ⋯ a[n-1]
• Applications:

• Direct use – vectors, buffers
• Foundation for other data structures – strings, matrices etc.

113/371

Linked List

Characteristics
• Most general linear
data structure

• Operations not strictly
defined

• Many variants exist

Head

V

S

B

Attributes

• List attributes depend on implementation
• Simplest case: single reference to first element (head)

114/371

Linked List (cont.)

List Variants

• Singly linked list – nodes contain next pointer
• Doubly linked list – nodes contain prev/next pointers
• Circular list – head and tail coincide

115/371

Singly Linked List

• Composed of nodes containing data + next pointer
• Sequential access only
• Direct index access requires traversal
• End marked with special nil/null pointer

116/371

Singly Linked List (Head Only)

Head

V

S

B

117/371

Singly Linked List (Head & Tail)

Head

Tail
V

S

B

118/371

Circular Singly Linked List

Head

V

S

B

119/371

Doubly Linked List (Head Only)

Head

V

S

B

120/371

Doubly Linked List (Head & Tail)

Head

Tail
V

S

B

121/371

Circular Doubly Linked List

Head

V

S

B

122/371

Stack

Characteristics
• LIFO (Last-In, First-Out)
principle

• Most recently pushed
element is first popped

Push Pop

Attributes

• Elements added/removed at stack top
• First inserted element – stack bottom

123/371

Stack Operations

Core Operations

• Push – add element to top
• Pop – remove top element
• IsEmpty – check emptiness
• Top – peek top element

Additional Operations

• Init – initialization
• Clear – empty stack
• IsFull – check capacity (limited capacity stacks)

Properly implemented operations have constant time
complexity 𝑂(1), i.e., their time complexity does not depend on
the number of elements in the stack.

124/371

Stack Visualization

A
B
C

A A
K
G
H
E

Push(A) Pop() Push(K)
Push(B) Pop() Push(G)
Push(C) Push(H)

Push(E)

125/371

Stack

Stack Error States
• Underflow – popping empty stack
• Overflow – pushing full stack

Stack Applications
• Function call management
• Expression evaluation
• Recursion elimination
• Parenthesis/XML tag validation

126/371

Queue

Characteristics
• Follows First-In,
First-Out (FIFO)
principle

• First element inserted
is first removed

Enqueue

Dequeue

Attributes

• First element – head
• Last element – tail

127/371

Queue Operations

Core Operations

• Enqueue – add to tail
• Dequeue – remove from head
• Peek – inspect head element
• IsEmpty – check emptiness

Additional Operations

• Init – initialize
• Clear – empty queue
• IsFull – check capacity (limited capacity queues)

Properly implemented operations have constant time
complexity 𝑂(1), i.e., their time complexity does not depend on
the number of elements in the queue.

128/371

Queue Visualization

C B A C E H G K C

Enqueue(A) Dequeue() Enqueue(K)
Enqueue(B) Dequeue() Enqueue(G)
Enqueue(C) Enqueue(H)

Enqueue(E)

129/371

Queue

Queue Error States
• Underflow – dequeuing empty queue
• Overflow – enqueuing full queue, if queue capacity is
limited

Queue Applications
• Print job scheduling
• OS process scheduling
• Server request handling

130/371

Priority Queue

Characteristics
• solving the task “Remove the largest
element from the set and process it.”

• unlike a regular queue, elements are
also associated with a priority,

• for elements with the same priority,
FIFO applies,

• an element with higher priority
overtakes those with lower priority
and leaves the queue earlier.

1 1 2

3

3

3Dequeue

Enqueue

Implementations

• using an array or a sorted array,
• more efficiently using a data structure called a heap. 131/371

Undirected Graph

Definition
An undirected graph is a pair
𝐺 = (𝑉, 𝐸) where 𝑉 is a finite
non-empty set of vertices, and 𝐸
is a set of one-element or
two-element subsets of 𝑉 .
Elements of set 𝐸 are called
edges of the graph.

2

3 4

1 5

6

Example
𝐺 = (𝑉, 𝐸)
𝑉 = {1, 2, 3, 4, 5, 6}
𝐸 = {{1, 2}, {1, 3}, {1, 5}, {1, 6}, {2, 3}, {2, 4}, {3, 4}, {4, 5}, {4, 6}}

132/371

Edges in an Undirected Graph

Let us have an edge 𝑒 ∈ 𝐸, where 𝑒 = {𝑢, 𝑣}.

• We say that the edge 𝑒 connects the vertices 𝑢 and 𝑣.
• The vertices 𝑢 and 𝑣 are called the end vertices of the
edge 𝑒.

• Furthermore, we say that the vertices 𝑢 and 𝑣 are incident
(or that they incide) with the edge 𝑒. Similarly, we say that
the edge 𝑒 is incident to the vertices 𝑢 and 𝑣.

• Since the edge 𝑒 connects the vertices 𝑢 and 𝑣, we say
that they are adjacent (neighboring) vertices.

Definition
An edge that connects a vertex to itself is called a loop.

133/371

Undirected graph – Vertex Degree

Definition
The degree of a vertex in an undirected graph is the number
of edges incident to the vertex, i.e., 𝑑(𝑣) = |{𝑒 ∈ 𝐸 | 𝑣 ∈ 𝑒}|.

Example
2

3 4

1 5

6

𝑣 𝑑(𝑣)
1 4
2 3
3 3
4 4
5 2
6 2

134/371

Undirected graph – Vertex Degree (cont.)

Theorem
The sum of the degrees of the vertices of any undirected
graph 𝐺 = (𝑉, 𝐸) is equal to twice the number of its edges.

∑
𝑣∈𝑉

𝑑(𝑣) = 2|𝐸|

Proof.
Obvious (each edge is counted twice in the sum).

135/371

Number of Edges in an Undirected Graph

Theorem
For any undirected graph 𝐺 = (𝑉, 𝐸) without loops, the
following holds:

0 ≤ |𝐸| ≤ 12|𝑉|(|𝑉| − 1)

Proof.
The maximum number of edges in a graph is achieved by
connecting each of the |𝑉| vertices with all other vertices,
which are |𝑉| − 1. The product |𝑉|(|𝑉| − 1) must be divided by
two because each edge is counted twice.

136/371

Complete Graph

Definition
An undirected graph 𝐺 = (𝑉, 𝐸) in which for every pair of
vertices 𝑢 and 𝑣 there exists an edge is called a complete
graph and is denoted by 𝐾|𝑉|

Example

𝐾1 𝐾2 𝐾3 𝐾6

137/371

Dense vs. Sparse Graph

• Dense graph – a graph that is “almost” complete, missing
only a “relatively” small number of edges to reach the
maximum number.

• Sparse graph – a graph with a “very small” number of
edges, where a “relatively” large number of edges do not
exist.

• There is no precise definition; terms like “almost”,
“relatively”, or “very small” are subjective.

• It always depends on the specific situation.
• When choosing a graph representation in a computer, it is
necessary to consider whether the graph is dense or
sparse. This subsequently affects the time complexity of
the implemented algorithms.

138/371

Subgraph

Definition
Graph 𝐻 = (𝑉𝐻, 𝐸𝐻) is a subgraph of 𝐺 = (𝑉𝐺, 𝐸𝐺) if:

1. 𝑉𝐻 ⊆ 𝑉𝐺
2. 𝐸𝐻 ⊆ 𝐸𝐺
3. The edges of graph 𝐻 have both vertices in 𝐻.

139/371

Subgraph (cont.)

Remarks
• In other words, a subgraph is obtained by deleting some
vertices of the original graph, all edges incident to these
vertices, and possibly some additional edges.

• The term subgraph is used in graph theory as a kind of
analogy to the concept of a subset.

140/371

Subgraph (cont.)

Example

2

3 4

1 5

6

Graph 𝐺

2

4

1 5

6

Subgraph 𝐻

141/371

Directed Graph

Definition
A directed graph is defined as a
pair 𝐺 = (𝑉, 𝐸), where 𝑉 is a finite
non-empty set of vertices, 𝐸 is a
set of ordered pairs (𝑢, 𝑣), edges,
from the Cartesian product 𝑉 × 𝑉 ,
i.e., (𝑢, 𝑣) ∈ 𝑉 × 𝑉 .

2

3 4

1 5

6

Example
𝐺 = (𝑉, 𝐸)
𝑉 = {1, 2, 3, 4, 5, 6}
𝐸 = {(1, 2), (1, 3), (1, 6), (2, 3), (3, 4), (4, 2), (4, 5), (5, 1),
{(6, 1), (6, 4)}

142/371

Methods of Representing a Graph

• Graphical form
• simply as a picture,
• probably the most understandable form for humans,
• suitable for graphs with a small number of vertices,
• practically impossible to use for computer processing.

• Matrix
• Lists of adjacent vertices

143/371

Incidence Matrix

• The number of rows in the matrix corresponds to the
number of vertices, and the number of columns
corresponds to the number of edges.

• If a vertex is incident with an edge, there is a 1 at the
given position; otherwise, there is a 0.

2

3 4

1 5

6

𝑒2 𝑒7
𝑒8𝑒3

𝑒1
𝑒5

𝑒6

𝑒4

𝑒9
⎛⎜⎜⎜⎜

⎝

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7 𝑒8 𝑒9
1 1 1 1 1 0 0 0 0 0
2 1 0 0 0 1 1 0 0 0
3 0 1 0 0 1 0 1 0 0
4 0 0 0 0 0 1 1 1 1
5 0 0 1 0 0 0 0 1 0
6 0 0 0 1 0 0 0 0 1

⎞⎟⎟⎟⎟

⎠

144/371

Adjacency Matrix

• Square matrix where the number of rows and columns
corresponds to the number of vertices.

• Contains 1 if vertices are adjacent, 0 otherwise.

2

3 4

1 5

6

⎛⎜⎜⎜⎜

⎝

1 2 3 4 5 6
1 0 1 1 0 1 1
2 1 0 1 1 0 0
3 1 1 0 1 0 0
4 0 1 1 0 1 1
5 1 0 0 1 0 0
6 1 0 0 1 0 0

⎞⎟⎟⎟⎟

⎠

145/371

Lists of Neighboring Vertices

2

3 4

1 5

6

1

2

3

4

5

6

2 3 5 6

1 3 4

1 2 4

2 3 5 6

1 4

1 4

146/371

Dense vs. Sparse Graph and their representations

Lists of Neighboring Vertices

• Pointers in lists take up additional memory.
• Suitable for sparse graphs.
• More convenient modifications of the graph structure
(insertion or deletion of a vertex, as well as an edge).

Matrix Representation

• Suitable for dense graphs.
• Vertex insertion/deletion is complex, while edge operation
are easy.

147/371

Weighted Graphs

• Each edge is assigned a number referred to as the weight
or cost of the edge.

• Real-world motivation – length of a path, capacity of a
data link, etc.

• Weighted graphs can be directed or undirected.
• Representation:

• adjacency matrix – the value in the matrix indicates the
weight of the edge or a special value for a non-existent
edge, e.g. ∞

• adjacency list – the weight of a specific edge is also stored
in the list of neighbors.

148/371

Weighted Graphs – Example

Weighted Graph

a b

c d

5

1
7

4

2

Adjacency Matrix

(

∞ 5 1 ∞
5 ∞ 7 4
1 7 ∞ 2
∞ 4 2 ∞

)

149/371

Trail

Definition
A sequence of consecutive vertices and edges
𝑣1, 𝑒1, 𝑣2, … , 𝑣𝑛, 𝑒𝑛, 𝑣𝑛+1, where 𝑒𝑖 = {𝑣𝑖, 𝑣𝑖+1} for 1 ≤ 𝑖 ≤ 𝑛, is
called an (undirected) trail.

2

3 4

1 5

6

Trail
4 {4, 3} 3 {3, 1} 1 {1, 3} 3 {3, 2} 2

In oriented graphs these are called oriented trails.

150/371

Path

Definition
A trail in which no vertex is repeated is called a path. That is,
𝑣𝑖 ≠ 𝑣𝑗, ∀ 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. The number 𝑛 is then called the length
of the path.

2

3 4

1 5

6

Path
4 3 2

From the fact that vertices do
not repeat in a path, it follows
that edges do not repeat either.
Therefore, every path is also a
trail.

151/371

Graph Connectivity

Definition
A graph is called connected if there exists a path between
every pair of vertices.

A disconnected graph consists of several connected parts,
called connected components.

Definition
A connected component of a graph is the maximal connected
subgraph of the given graph.

152/371

Graph Connectivity (cont.)

a b c d

e f g

Theorem
Let 𝐺 = (𝑉, 𝐸) be a connected graph. Then it holds that
|𝐸| ≥ |𝑉| − 1.

Proof.
Obvious.

153/371

Closed trail

Definition
A trail that has at least one edge and whose starting and
ending vertices coincide is called a closed trail.

2

3 4

1 5

6

Closed trail
4 {4, 3} 3 {3, 1} 1 {1, 3} 3 {3, 2}
2 {2, 4} 4

154/371

Cycle

Definition
A closed path is a closed trail in which neither vertices nor
edges are repeated. A closed path is also called a cycle.

2

3 4

1 5

6

Cycle
4 3 2

In the definition of a cycle, we
had to prohibit not only the
repetition of vertices but also
the repetition of edges to
ensure that the sequence
𝑣1, 𝑒1, 𝑣2, 𝑒1, 𝑣1 cannot be
considered a cycle.

155/371

Acyclicity of a Graph

Definition
A graph is called acyclic if it does not contain a cycle.

156/371

Free Tree

Definition
A connected, acyclic, undirected graph is called a free tree.

C

M I B

A D F K

L H N J

E G

Remark
An empty graph
can be
considered a
tree, known as
an empty tree.

157/371

Free Tree (cont.)

Terminology

• In graph theory, the objects connected by edges are
usually called vertices.

• When discussing trees, the term node can also be used for
a vertex.

• The terms vertex and node are equivalent; it is more a
matter of convention.

158/371

Forest

Definition
An acyclic graph that is not connected is called a forest.

Each connected component of a forest is a free tree.

C

M I B

A D F K

L H N J

E G
159/371

Free tree properties

Theorem
Let 𝐺 = (𝑉, 𝐸) be an undirected graph, then the following
statements are equivalent

1. 𝐺 is a free tree.
2. Every two vertices in 𝐺 are connected by exactly one path.
3. 𝐺 is connected, but if we remove any edge, we obtain a
disconnected graph.

4. 𝐺 is connected, and |𝐸| = |𝑉| − 1.
5. 𝐺 is acyclic, and |𝐸| = |𝑉| − 1.
6. 𝐺 is acyclic. Adding a single edge to the set of edges 𝐸 will
result in a graph containing a cycle.

160/371

Spanning Tree

Definition
A spanning tree of a connected graph 𝐺 is called a subgraph
of 𝐺 on the set of all its vertices that is a tree.

2

3 4

1 5

6

2

3 4

1 5

6

2

3 4

1 5

6

Remarks
• A spanning tree must contain all the vertices of the
original graph 𝐺.

• A graph can have multiple spanning trees.
161/371

Rooted Tree

Definition
A free tree that contains one distinguished vertex is called a
rooted tree. The distinguished vertex is called the root of the
tree.

C

M I B

A D F K

L H N J

E G

162/371

Rooted tree – a Common Visualization

Visualization 1
F

I

D

A M H

G

L E

N K

J B

C

Visualization 2
F

K

J B

C

N I

D

A H

G

L E

M

Both visualizations are equivalent rooted trees! There is no
“left” or “right”.

163/371

Rooted Tree – Basic Concepts

Consider a vertex 𝑥 in a rooted tree 𝑇 with root 𝑟.

• Any vertex 𝑦 on the unique path from the root 𝑟 to the
vertex 𝑥 is called a predecessor of the vertex 𝑥.

• If 𝑦 is a predecessor of 𝑥, then 𝑥 is called a successor of
the vertex 𝑦.

• If the last edge on the path from the root 𝑟 to the vertex 𝑥
is the edge (𝑦, 𝑥), then the vertex 𝑦 is called the parent of
the vertex 𝑥, and the vertex 𝑥 is a child of the vertex 𝑦.

• Two vertices that have the same parent are called siblings.
• A vertex without children is called an external vertex or a
leaf.

164/371

Rooted Tree – Basic Concepts (cont.)

• A non-leaf vertex is called an internal vertex of the tree.

Remarks
• Every vertex is, of course, a predecessor and successor of
itself.

• If 𝑦 is a predecessor of 𝑥 and at the same time 𝑥 ≠ 𝑦, then
𝑦 is a proper predecessor of the vertex 𝑥, and 𝑥 is a proper
successor of the vertex 𝑦.

• The root of the tree is the only vertex in the tree without a
parent.

• A vertex is a general concept. Every leaf and internal vertex
is also a (generic) vertex. Compare: human, woman, man.

165/371

Vertex Degree

Definition
The number of children of a vertex 𝑥 in a rooted tree is called
the degree of the vertex 𝑥.

Remarks
• The method of calculating the degree of a vertex in a
rooted tree differs from that in a free tree.

• In a rooted tree, the parent is not counted.
• In a free tree, the concept of a parent does not exist; there
are only neighboring vertices, so all vertices are counted.

166/371

Depth of a Vertex – Height of a Tree

Definition
The length of the path from
the root of the tree to a
vertex 𝑥 is called the depth of
the vertex 𝑥 in the tree 𝑇 .

Definition
The greatest depth of any
vertex is called the height of
the tree 𝑇 .

F
0

I
1

D
2

A
3

H
3

G
4

N
1

K
1

J
2

B
2

C
3

The height of the tree is 4.

167/371

Ordered Tree

Definition
A rooted tree in which the order of children is specified is
called an ordered tree.

Remarks
• Thus, if a vertex has 𝑘 children, it is possible to determine
the first child, second child, up to the 𝑘-th child.

• However, if, for example, we remove the first child, the
remaining children shift! The second child becomes the
first, the third becomes the second, and so on. There
cannot be an “empty position” among children.

168/371

Binary Tree

Definition
A binary tree is a structure defined over a finite set of nodes
𝑀, which:

• Rule 1
contains no nodes, i.e., 𝑀 = ∅, or

• Rule 2
is composed of three disjoint sets of nodes 𝐿, 𝑅, and {𝑟},
𝐿 ∪ 𝑅 ∪ {𝑟} = 𝑀:

• the root of the tree 𝑟,
• a binary tree over set 𝐿, called the left subtree, and
• a binary tree over set 𝑅, called the right subtree.

169/371

Binary Tree – Graphical Representation of Recursive Definition

Root

Left
subtree

Right
subtree

170/371

Binary Tree – Example

𝐹

𝐼

𝐷

𝐴 𝐻

𝐿 𝐸

𝐾

𝐽 𝐵

𝐶

171/371

Complete Binary Tree

𝐹

𝐼

𝑆

𝑇 𝑈

𝐷

𝐴 𝐻

𝐾

𝐽

𝑄 𝑃

𝐵

𝐶 𝑍

Complete Binary Tree – every internal node has exactly two
children.

172/371

Binary Search Tree

How to use binary trees as a
data structure? How to
organize data within them?

Arbitrarily? Nonsense – it
would be an unnecessarily
complicated list!

𝐹

𝐼

𝐷

𝐴 𝐻

𝐿 𝐸

𝐾

𝐽 𝐵

𝐶

The solution is to use the properties of the tree (connectivity
and uniqueness of the path from node to node) and
complement them with an appropriate “navigation rule”.

173/371

Binary Search Tree – “Navigation Rule”

Let 𝑦 be a node in a binary tree. Then for every node 𝑥 in the
left subtree of node 𝑦 and every node 𝑧 in the right subtree of
node 𝑦, the following holds:

𝑥𝑘𝑒𝑦 < 𝑦𝑘𝑒𝑦 < 𝑧𝑘𝑒𝑦 .

A binary tree, in which this rule applies to all its nodes, is
called a binary search tree.

174/371

Binary Search Tree – “Navigation Rule” (cont.)

Remarks
• The navigation rule thus determines how data should be
arranged in the binary search tree.

• Knowledge of data arrangement in the tree is used when
searching for them.

• Algorithms for insertion and deletion from the tree are
tied to the search algorithm.

• A binary search tree is therefore built from the outset with
this rule in mind.

175/371

Binary Search Tree

37

23

7

5 17

13 19

29

67

43

53

47 59

73

176/371

Binary Search Tree – Searching

Searching for a value 𝑎 begins at the root of the tree 𝑟. Then,
the following possibilities may occur:

1. The tree with root 𝑟 is empty; in this case, the tree cannot
contain a node with key 𝑎, and the search ends
unsuccessfully.

2. Otherwise, we compare the key 𝑎 with the key of the root
𝑟. In the case that:
2.1 𝑎 = 𝑟𝑘𝑒𝑦 , the tree contains a node with key 𝑎, and the search

ends successfully;
2.2 𝑎 < 𝑟𝑘𝑒𝑦 , all nodes with keys smaller than 𝑟𝑘𝑒𝑦 are in the left

subtree, so we continue recursively in the left subtree;
2.3 𝑎 > 𝑟𝑘𝑒𝑦 , all nodes with keys greater than 𝑟𝑘𝑒𝑦 are in the right

subtree, so we continue recursively in the right subtree.

177/371

Binary Search Tree

The efficiency of many algorithms that generally work with
binary trees, such as searching in a binary search tree,
depends on the height of the binary tree.

For the height ℎ of a binary tree with 𝑛 nodes, the inequality
holds:

⌊log2 𝑛⌋ ≤ ℎ ≤ 𝑛 − 1

178/371

Binary Search Tree – Insertion

• The insertion of a key must correspond to the search
algorithm.

• First, we must attempt to find the key being inserted in the
tree.

• If it is not found, then the place where the search ended
unsuccessfully corresponds to where this key should be in
the tree.

• This follows from the uniqueness of the path between the
root and any node.

• The new node is attached as a new leaf to the tree – the
tree grows through its leaves.

• The question is what to do with duplicates? The solution
depends on the nature of the specific problem being
solved.

179/371

Binary Tree – the standard implementation

9

5

1

4

7

12

10

9

5 12

1 7 10

4

180/371

Ordered Tree Representation

A

B

H I

N O

J

C D

K

P

L

Q

G

• Each node can have any number of children.
• Complex representation of a node – list of children

181/371

Ordered Tree Representation – first child – next sibling

A

B

H I

N O

J

C D

K

P

L

Q

G

First child – next sibling representation – each node contains
two pointers:

1. pointer to the first child, and
2. pointer to the sibling.

182/371

Ordered Tree Representation – Knuth’s transformation

A

B

H

I

N

O

J

C

D

K

P L

Q

G

First child – next sibling
representation rotated
by 45∘ clockwise.

183/371

Set

• We will understand the data structure set as an unordered
collection (even empty) of mutually distinct elements.

• A set can be defined in two ways:
1. by listing elements, e.g., 𝑀 = {2, 3, 5, 7} or
2. by properties that the elements must satisfy, e.g.,
𝑀 = {𝑛,prime numbers less than 10}.

• The most important set operations:
• membership query, i.e., the question “Is 𝑥 an element of
𝑀?”,

• union of two sets, and
• intersection of two sets.

184/371

Set – implementation

Bit vector

• universe 𝑈 = {𝑢0, 𝑢1, … , 𝑢𝑛−1}, |𝑈| = 𝑛
• any set 𝑀 is considered a subset of the universe 𝑈
• bit vector �⃗� of dimension 𝑛, where

�⃗�𝑖 = {
1 𝑢𝑖 ∈ 𝑀
0 otherwise

Example
𝑈 = {0, 1, 2, … , 8, 9}
𝑀 = {2, 3, 5, 7}
�⃗� = (0, 0, 1, 1, 0, 1, 0, 1, 0, 0)

185/371

Set – implementation

Listing elements

• a set is represented by listing the elements it contains
• depending on the circumstances, we can use arrays, linked
lists, binary search trees, hash tables, etc., to store the
elements

• it always depends on the specific problem which
operations are essential: maintaining order or other
considerations

186/371

Dictionary

• If an additional piece of information is associated with an
element of a set, we then talk about a dictionary.

• A dictionary maintains pairs (key, value), where the key
must be unique in the dictionary.

• Mathematically, it is a mapping.
• The most important operations:

• inserting a pair into the dictionary
• deleting a pair from the dictionary
• modifying a value in the dictionary
• finding a value for a given key

• For implementation, arrays, linked lists, binary search
trees, hash tables, etc., can be used.

187/371

Thanks for your attention

187/371

	Introduction
	What is an algorithm?
	Basics of algorithmic problem solving
	Important Types of Problems
	Fundamental Data Structures

