
Decrease and Conquer

Jiří Dvorský, Ph.D.
Presentation status to date February 24, 2025

Department of Computer Science
VSB – Technical University of Ostrava

300/326



Lecture outline

Decrease and Conquer

Sorting by insertion – Insertion Sort

Topological sorting

Generating combinatorial objects
Generating permutations

Generating subsets

Reduction by a constant factor

Reduction by a variable factor

301/326



Decrease and Conquer
Sorting by insertion – Insertion Sort



Decrease and Conquer
Topological sorting



Decrease and Conquer
Generating combinatorial objects



Generating combinatorial objects

• Generating combinations, variations, permutations,
subsets is part of various algorithms.

• Typically it involves selecting some alternative, option,
setting parameters...

• Examples – Traveling salesman problem, Knapsack
problem.

• Mathematics is more interested in counting these objects,
while computer science seeks algorithms to generate
them.

• The number of these objects grows exponentially or even
faster!

302/326



Generating permutations

• We will generate permutations of integers 1, 2, … , 𝑛.
• More generally, we can generate permutations of elements
{𝑎1, 𝑎2, … , 𝑎𝑛}.

• Using the decrease and conquer strategy:
1. Generating 𝑛! permutations for 𝑛 elements is reduced to
generating (𝑛 − 1)! permutations of 𝑛 − 1 elements.

2. Once we have solved the problem for 𝑛 − 1, we insert
element 𝑛 into all 𝑛 possible positions in each of the
(𝑛 − 1)! permutations.

3. In other words, we have (𝑛 − 1)! permutations, and for each
of them, we generate 𝑛 additional ones. Overall, we obtain
𝑛(𝑛 − 1)! = 𝑛! permutations.

303/326



Generating permutations – example

permutation of element 1 1

insertion of 2 into permutation 1 from right to left 12 21

insertion of 3 into permutation 12 from right to left 123 132 312
insertion of 3 into permutation 21 from left to right 321 231 213

What is evident from the example?

• All permutations are mutually distinct.
• Minimal change between permutations – two consecutive
permutations differ by swapping a single pair of elements
and even adjacent elements.

304/326



Johnson-Trotter algorithm

• Is there a possibility to generate permutations of 𝑛
elements? Without the need to generate permutations for
𝑛 − 1? Yes, there is.

• We assign an arrow (direction) to each of the 𝑛 elements
of the permutation, either to the left or to the right.

• We say that an element 𝑘 is mobile in a given permutation
if the neighboring element in the direction of the arrow of
element 𝑘 is smaller than 𝑘.

Example
Permutation with arrows

3⃗ 2⃖ 4⃗ 1⃗

Elements 3 and 4 are mobile, elements 2 and 1 are not
mobile. 305/326



Johnson-Trotter algorithm

Input : Natural number 𝑛
Output: List of all permutations of numbers {1, … , 𝑛}

1 𝜋 ← 1⃖ 2⃖ … �⃖�;
2 while 𝜋 contains a mobile element do
3 𝑘 ← largest mobile element in 𝜋;
4 swap in 𝜋 the element 𝑘 with its neighbor in the

direction of the arrow;
5 change the direction of the arrow for all elements

greater than 𝑘;
6 insert the newly created permutation (step 4) 𝜋 into

the resulting list;
7 end
8 return list of all permutations;

306/326



Johnson-Trotter algorithm – example

Example of generating permutations for 𝑛 = 3

1⃖ 2⃖ 3⃖
1⃖ 3⃖ 2⃖
3⃖ 1⃖ 2⃖
3⃗ 2⃖ 1⃖
2⃖ 3⃗ 1⃖
2⃖ 1⃖ 3⃗

We say that an element 𝑘 is mobile in a given permutation if
the neighboring element in the direction of the arrow of
element 𝑘 is smaller than 𝑘.

307/326



Johnson-Trotter algorithm – example, 𝑛 = 4

1⃖ 2⃖ 3⃖ 4⃖
1⃖ 2⃖ 4⃖ 3⃖
1⃖ 4⃖ 2⃖ 3⃖
4⃖ 1⃖ 2⃖ 3⃖
4⃗ 1⃖ 3⃖ 2⃖
1⃖ 4⃗ 3⃖ 2⃖

1⃖ 3⃖ 4⃗ 2⃖
1⃖ 3⃖ 2⃖ 4⃗
3⃖ 1⃖ 2⃖ 4⃖
3⃖ 1⃖ 4⃖ 2⃖
3⃖ 4⃖ 1⃖ 2⃖
4⃖ 3⃖ 1⃖ 2⃖

4⃗ 3⃗ 2⃖ 1⃖
3⃗ 4⃗ 2⃖ 1⃖
3⃗ 2⃖ 4⃗ 1⃖
3⃗ 2⃖ 1⃖ 4⃗
2⃖ 3⃗ 1⃖ 4⃖
2⃖ 3⃗ 4⃖ 1⃖

2⃖ 4⃖ 3⃗ 1⃖
4⃖ 2⃖ 3⃗ 1⃖
4⃗ 2⃖ 1⃖ 3⃗
2⃖ 1⃖ 4⃗ 3⃗
2⃖ 1⃖ 3⃗ 4⃗

308/326



Johnson-Trotter algorithm

• One of the most efficient algorithms for generating
permutations.

• The time complexity of the algorithm is Θ(𝑛!).
• The ”fearsome” complexity of the algorithm, however, is
not caused by the algorithm itself, which works very
quickly. It is caused by the enormous number of
permutations that must be generated...

309/326



Thanks for your attention

309/326


	Decrease and Conquer
	Sorting by insertion – Insertion Sort
	Topological sorting
	Generating combinatorial objects

	Reduction by a constant factor
	Reduction by a variable factor

