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Current version of presentations

The presentations are continuously, according to the needs of
teaching, supplemented and updated. The current version of
the presentations can always be found on the course website

www.cs.vsb.cz/dvorsky/Algorithms_Slides.html
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Brief outline of all lectures

Algorithms I

Algorithms I – Subject Syllabus

Introduction

Fundamentals of the Analysis of Algorithm Efficiency

Brute Force and Exhaustive Search

Decrease and Conquer
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Brief outline of all lectures (cont.)

Reduction by a constant factor

Reduction by a variable factor

Divide and Conquer

Algorithms II

Algorithms II – Subject Syllabus

Transform and Conquer
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Brief outline of all lectures (cont.)

Space and Time Trade-Offs

Dynamic Programming

Greedy Technique

Iterative Improvement

Limitations of Algorithm Power

Coping with Limitations of Algorithm Power
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Brief outline of all lectures (cont.)

Other slides

Appendices
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Overall outline of all lectures

Algorithms I
Algorithms I – Subject Syllabus

About Algorithms I

Fulltime Study
Teaching

Tasks and their Evaluation

Software

Study Literature

Introduction

What is an algorithm?
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Overall outline of all lectures (cont.)

Basics of algorithmic problem solving

Important Types of Problems

Fundamental Data Structures
Linear Data Structures

Graphs

Trees

Sets and dictionaries

Fundamentals of the Analysis of Algorithm Efficiency

Basics of algorithm complexity analysis

Worst, Best and Average Case
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Overall outline of all lectures (cont.)

Asymptotic Notation of Complexity

Analysis of Non-Recursive Algorithms

Analysis of Recursive Algorithms

Brute Force and Exhaustive Search

Sorting Algorithms
SelectSort

Sequential search

Brute force string matching

Closest pair problem
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Overall outline of all lectures (cont.)

Convex hull of a set

Exhaustive search
Traveling Salesman Problem

Knapsack problem

Graph traversal
Depth-first graph traversal

Breadth-first graph traversal

Decrease and Conquer

Sorting by insertion – Insertion Sort

Topological sorting
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Overall outline of all lectures (cont.)

Generating combinatorial objects
Generating permutations

Generating subsets

Reduction by a constant factor

Reduction by a variable factor

Divide and Conquer

Multiplication of Large Integers

Strassen’s Matrix Multiplication

Closest Pair Problem

Convex hull of a set
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Overall outline of all lectures (cont.)

Algorithms II
Algorithms II – Subject Syllabus

About Algorithms II

Software

Study Literature

Transform and Conquer

Presorting
Unity of elements in the array

Module Calculation

Search
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Overall outline of all lectures (cont.)

Gaussian Elimination Method
𝐿𝑈-decomposition of a matrix

Balanced Search Trees
AVL Trees

2-3 trees

Heap and Heap Sorting

Horner’s Scheme

Problem Reduction

Space and Time Trade-Offs

B-trees
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Overall outline of all lectures (cont.)

Searching for a key in a B-tree

Inserting a key into a B-tree

Deletion of a key from a B-tree

Dynamic Programming

Warshall’s algorithm

Greedy Technique

Minimum Spanning Tree of a Graph
Prime’s algorithm

Kruskal’s algorithm

Dijkstra’s algorithm
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Overall outline of all lectures (cont.)

Huffman code

Iterative Improvement

Limitations of Algorithm Power

Coping with Limitations of Algorithm Power

Other slides

Appendices
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Algorithms I – Subject Syllabus

Jiří Dvorský, Ph.D.

Department of Computer Science
VSB – Technical University of Ostrava
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Algorithms I – Subject Syllabus
About Algorithms I



About Algorithms I

Attention
For all the latest information on the subject, please see

http://www.cs.vsb.cz/dvorsky/

This presentation is for introductory lecture purposes only and
will not be updated.
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About Algorithms I

• The subject covers basic algorithmic problem solving
strategies (brute force, divide and conquer, etc.) and
typical examples of their use.

• Lectures are focused on theory.
• Seminars are focused on problem solution
implementation using a given strategy in C or C++.

• Algorithms I are related to other subjects:
• Introduction to programming – C language,
• Functional programming – recursion and
• Object-oriented programming – probably no commentary
needed.

18/670



Time Allocation, Evaluation of the subject

Time Allocation

• Subject is taught in the summer semester of the first year
of the bachelors study.

• There are
• 2 hours of lectures and 2 hours of exercises per week in
full-time form and

• 6 tutorials in the combined form of study.

Evaluation – marked credit

• Marked credit is not an exam, it follows different rules.
• Please read the Study and Examination Regulations for
Study in Bachelor’S and Master’S Degree Programmes at
VSB - Technical University of Ostrava, Article 12.
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Subject Guarantor

doc. Mgr. Jiří Dvorský, Ph.D.
Office: EA441
Email: jiri.dvorsky@vsb.cz
Web: www.cs.vsb.cz/dvorsky

What’s the subject guarantor for?
The guarantor is responsible for the course of the entire
subject, is responsible for teaching and correct evaluation of
the assignments.
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Prerequisities

• Prerequisites are a set of requirements that must be met
in order for a student to enrol in a subject. Prerequisites
are either formal or substantive.

• Formal prerequisites – none
• Substantive prerequisites:

• knowledge from Introduction to Programming,
• high school mathematics and
• general orientation in IT.

• The subject Algorithms I is a mandatory prerequisity of the
follow-up subject Algorithms II.
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Attendance

Lectures

• Attendance at the lectures is highly recommended.

Seminars

• Attendance is mandatory.
• Attendance and activity at the seminars are evaluated.
• Sufficient scores must be obtained.
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Consultation

• If you don’t understand something in class, need help with
something or solve a problem with a lecture, seminars,
tests, your absence from class, etc. it is possible to arrange
a individual consultation.

• The consultation must be arranged in advance, for
example by e-mail.

• If you need help with the material, prepare the materials
you have studied on the topic, write down what is clear to
you and where you are “stuck” and need advice.

• You don’t risk anything by consulting the teacher – at
most you will learn what you need.
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Algorithms I – Subject Syllabus
Fulltime Study



Lecture topics

1. General information about the subject
2. Introduction

2.1 What Is an Algorithm?
2.2 Fundamentals of Algorithmic Problem Solving
2.3 Important Problem Types
2.4 Fundamental Data Structures

3. Fundamentals of the Analysis of Algorithm Efficiency
3.1 The Analysis Framework
3.2 Asymptotic Notations and Basic Efficiency Classes
3.3 Mathematical Analysis of Nonrecursive Algorithms
3.4 Mathematical Analysis of Recursive Algorithms

4. Brute Force and Exhaustive Search
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Lecture topics (cont.)

4.1 Selection Sort and Bubble Sort
4.2 Sequential Search and Brute-Force String Matching
4.3 Closest-Pair and Convex-Hull Problems by Brute Force
4.4 Exhaustive Search
4.5 Depth-First Search and Breadth-First Search

5. Decrease-and-Conquer
5.1 Insertion Sort
5.2 Topological Sorting
5.3 Algorithms for Generating Combinatorial Objects
5.4 Decrease-by-a-Constant-Factor Algorithms
5.5 Variable-Size-Decrease Algorithms

6. Divide-and-Conquer
6.1 Mergesort
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Lecture topics (cont.)

6.2 Quicksort
6.3 Binary Tree Traversals and Related Properties
6.4 Multiplication of Large Integers and Strassen’s Matrix

Multiplication
6.5 The Closest-Pair and Convex-Hull Problems by

Divide-and-Conquer
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Seminars

• Semminars corresponds to lectures.
• In the seminar, students implement given tasks in C++
language.

• It is also possible to consult the lecture material.
• The seminar is not a substitute for lecture!

• The seminars are not a “brief lecture” for those who do not
attend lectures.

• It is necessary to be prepared for the seminars.
• The purpose of the seminar is not to prepare for the final
exam.
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Tasks

• The assessment consists of three parts:
1. Ongoing activities on seminars
2. Project defense
3. Final written test

• All assignments are mandatory.
• A minimum grade is required for each assignment.
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Tasks – Ongoing activities on seminars

• This part of the assessment is done ongoing throughout
the semester.

• At each exercise, your activity is evaluated by the teacher.
The activity is graded using a colour code:

• green – the student actively participated in the seminar,
was familiar with the material, he/she was able to carry
out the assigned tasks,

• orange – the student was rather passive in the seminar,
he/she was not very well prepared for the seminar, his/her
knowledge was limited, he/she had problems with the
implementation of the tasks, and
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Tasks – Ongoing activities on seminars (cont.)

• red – the student was rather passive in the seminar, he/she
was unable to complete the assignments. Unexcused
absence from the exercise also falls into this category.

• Each colour code corresponds to a certain weight, that is
reflected in the overall evaluation of all seminars.

Color code Weight
green 1
orange 0.5
red 0

• At the end of the semester, an average weight is
calculated, multiplied by the maximum number of points
possible (30), and the result is your score.

30/670



Tasks – Ongoing activities on seminars (cont.)

• It is clear that all green codes correspond to the maximum
number of points (30), while all red codes correspond to
zero points.

• Activity points cannot be redeemed.

Example
The student A received a green rating on five seminars,
orange on three and red on two ones. The average weight is
calculated as:

5 × 1 + 3 × 0.5 + 2 × 0
5 + 3 + 2 = 6.510 = 0.65.

So the final score is 0.65 × 30 = 19.5 ≈ 20 points.
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Tasks – Project defense

• The project assignment will be published on the subject
website at the beginning of April.

• Deadline for submission will be around credit week. The
exact date will be published in the project assignment.

• The method of submission will be determined later.
• Project defenses will take place during the credit week
and the exam period.

• Regardless of when the project defences take place, the
version that has been submitted by the deadline is
defended.

• The project defence cannot be repeated and the project
will not be returned for revision.
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Tasks – Final written test

• The test will take place during the exam period.
• All test dates will be announced in Edison system.
• Only students who have scored at least 10 points on their
first attempt will be allowed to retake the test.
Number of points in the first attempt Retake the test
0 to 9 no
10 to 20 yes
more than 21 not necessary

• You are allowed to write the final test a total of two times,
in other words you are entitled to one correction. The
course is completed with a marked credit not an exam –
the rules are different.
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Algorithms I – Subject Syllabus
Software



Software

Primary Software

• C++ Development Environment
• C++ Documentation

Additional Software

• Doxygen Documentation System, www.doxygen.org
• Typography System LATEX, www.ctan.org
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Development Environment for C++

• Microsoft Visual Studio Community 2022 is available for
classroom use.

• I recommend this development environment for home
study.

• In general, any development environment with a compiler
that supports at least the C++17 specification can be used.
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Development Environment for C++ (cont.)

Remarks
1. The Microsoft Visual C++ compiler and the C++17 language
specification will be used to evaluate your projects.

2. The C language is not identical to C++!
3. Beware of non-standard C++ language extensions
implemented in the GNU C++ compiler.

• For example, a variable length array is such an extension.
• It is recommended to compile with the
-pedantic-errors option enabled, see Options to
Request or Suppress Warnings.
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Algorithms I – Subject Syllabus
Study Literature



Study Literature

The study literature can be divided into two groups:

• mandatory literature – strategies of algorithmic problems
solving and

• recommended literature – C++ programming language.

The study literature is shared across Algorithms I and
Algorithms courses.
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Mandatory Study Literature

1. LEVITIN, Anany. Introduction to the Design and Analysis of
Algorithms. 3rd ed. Boston: Pearson, 2012. ISBN
978-0-13-231681-1.

2. CORMEN, Thomas H., Charles Eric LEISERSON, Ronald L.
RIVEST a Clifford STEIN, 2022. Introduction to algorithms.
Fourth edition. Cambridge, Massachusetts: The MIT Press.
ISBN 978-026-2046-305.

3. SEDGEWICK, Robert, 1998. Algorithms in C++. 3rd ed.
Reading, Mass: Addison-Wesley. ISBN 978-020-1350-883.
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Recommended study literature

1. STROUSTRUP, Bjarne., 2013. The C++ programming
language. Fourth edition. Upper Saddle River, NJ:
Addison-Wesley. ISBN 978-0321563842.

2. CADENHEAD, Rogers a Jesse LIBERTY, 2017. Sams teach
yourself C in 24 hours. Sixth edition. Indianapolis, Indiana:
Pearson Education. ISBN 978-0672337468.

39/670



Thanks for your attention
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Introduction

Jiří Dvorský, Ph.D.

Department of Computer Science
VSB – Technical University of Ostrava
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Introduction
What is an algorithm?



Why study algorithms?

• A professional developer/informatician should know
standard algorithms for solving basic problems, be able to
design new algorithms, and analyze the effectiveness of
algorithms.

• Algorithms lead to the development of analytical thinking
– it’s about finding a precise and formal procedure for
solving a problem.

• It’s a universally applicable mental tool – a person does
not fully understand a problem until they can explain it to
anyone else, let alone explain it to a computer.

• The ability to formalize solutions leads to a much deeper
understanding of the issue than if we simply tried to solve
the problem, say, in an ad-hoc way.
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What is an algorithm?

Algorithm
An algorithm is understood as a finite sequence of
unambiguous instructions leading to the solution of a
problem, i.e., leading to obtaining the desired output for any
correct input in a finite time.

Problem

Algorithm

ComputerInput Output
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What is an algorithm? (cont.)

• The previous description of the concept of an algorithm is
not a definition in the mathematical sense.

• We assume that there is something or someone who can
understand “unambiguous instructions” and is able to
follow them.

• For a correct definition, we would have to first clearly
define what an unambiguous instruction is.

• A formal definition of an algorithm does not at all exist!
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What is an algorithm? (cont.)

Remarks
• Automatic assumption – the algorithm will be executed by
an electronic computer.

• The word computer means:
1. today – electronic device,
2. formerly – calculator, a person involved in numerical
calculations.

• Although we will further assume that we will implement
algorithms on an electronic computer, the concept of an
algorithm itself does not depend on electronic computers.
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Example of an Algorithm

• Three algorithms for solving the same problem – finding
the greatest common divisor of two integers.

• Demonstration of several important facts:
• adherence to the requirement of uniqueness of
instructions,

• the range of input values must be precisely specified,
• the same algorithm can be represented in several different
ways,

• there can be multiple algorithms for solving one problem
and

• algorithms solving the same problem can be based on
entirely different ideas, principles, and can differ
significantly in the speed of solving the given problem.
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Greatest Common Divisor (GCD)

• Let’s have two non-negative integers 𝑚 and 𝑛, of which at
least one is also different from zero.

• The greatest common divisor gcd(𝑚, 𝑛) is defined as the
largest integer that divides both numbers 𝑚 and 𝑛 without
a remainder.

• An algorithm for finding it was described in the book
“Elements” by Euclid of Alexandria around the third
century before our era.
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Euclid’s Algorithm

The algorithm is based on the repeated application of the
relationship

gcd(𝑚, 𝑛) = gcd(𝑛,𝑚 mod 𝑛), (1)

until the remainder 𝑚 mod 𝑛 is equal to 0.
Because gcd(𝑚, 0) = 𝑚, the last value of 𝑚 is equal to the
desired greatest common divisor.
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Euclid’s Algorithm – Example

gcd(60, 24) = gcd(24, 12) = gcd(12, 0) = 12
gcd(24, 60) = gcd(60, 24) = gcd(24, 12) = gcd(12, 0) = 12
gcd(7, 3) = gcd(3, 1) = gcd(1, 1) = gcd(1, 0) = 1
gcd(3, 7) = gcd(7, 3) = gcd(3, 1) = gcd(1, 1) = gcd(1, 0) = 1
gcd(13, 0) = 13
gcd(0, 13) = gcd(13, 0) = 13
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Euclid’s Algorithm – Stepwise Description

Step 1 If 𝑛 = 0 then return the value 𝑚 as the result and
finish; otherwise continue with Step 2.

Step 2 Divide the number 𝑚 by the number 𝑛, assign the
remainder to 𝑟.

Step 3 Assign the value of the number 𝑛 to 𝑚, the value
of the number 𝑟 to 𝑛. Continue with Step 1.
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Euclid’s Algorithm – Pseudocode

Input : Two non-negative integers 𝑚 and 𝑛, at least
one of which is non-zero

Output: The greatest common divisor of the numbers
𝑚 and 𝑛, gcd(𝑚, 𝑛)

1 while 𝑛 ≠ 0 do
2 𝑟 ← 𝑚 mod 𝑛;
3 𝑚 ← 𝑛;
4 𝑛 ← 𝑟;
5 end
6 return m;
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Algorithm of Successive Division

• The algorithm is based directly on the definition of GCD –
GCD divides both given numbers 𝑚 and 𝑛 without a
remainder.

• GCD cannot be greater than the smaller of the given
numbers, so we can write 𝑡 = min(𝑚, 𝑛).

• If 𝑡 divides both numbers 𝑚 and 𝑛 without a remainder,
then gcd(𝑚, 𝑛) = 𝑡, otherwise the number 𝑡 is decreased by
1 and the process is repeated.

• When does the algorithm stop?
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Algorithm of Successive Division (cont.)

Example
For 𝑚 = 60 and 𝑛 = 24, we have 𝑡 = min(60, 24) = 24.
The algorithm first tries 𝑡 = 24, then 𝑡 = 23, and so on until it
finally stops at 𝑡 = 12.
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Algorithm of Successive Division – Stepwise Description

Step 1 Assign to 𝑡 the value of min(𝑚, 𝑛).
Step 2 Divide the number 𝑚 by the number 𝑡. If the

remainder is equal to 0, proceed to Step 3;
otherwise proceed to Step 4.

Step 3 Divide the number 𝑛 by the number 𝑡. If the
remainder is equal to 0, return the number 𝑡 as
the result and finish; otherwise proceed to Step 4.

Step 4 Decrease the value of the number 𝑡 by 1 and
proceed to Step 2.
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Algorithm of Successive Division – Stepwise Description (cont.)

Error in the Algorithm
• The algorithm in this form does not work correctly if one
of the numbers 𝑚 and 𝑛 is equal to 0. The number 𝑡 would
have a value of 0 and division by zero would occur.

• Requirements for values entering the algorithm must be
carefully specified!
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GCD – algorithm by prime factorization

Step 1 Perform the prime factorization of the number 𝑚.
Step 2 Perform the prime factorization of the number 𝑛.
Step 3 Find all common prime factors in the

decompositions obtained in Step 1 and Step 2.
The number of occurrences of a common prime
factor 𝑝 is equal to

min(𝑝𝑚, 𝑝𝑛),

where 𝑝𝑚 and 𝑝𝑛 are the numbers of occurrences
of 𝑝 in the decompositions of 𝑚 and 𝑛,
respectively,
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GCD – algorithm by prime factorization (cont.)

Step 4 Calculate the product of all common prime factors
and return this product as the result.
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GCD – algorithm by prime factorization (cont.)

Example
For 𝑚 = 60 and 𝑛 = 24, the algorithm will proceed as follows:

60 = 22 ⋅ 31 ⋅ 51

24 = 23 ⋅ 31

gcd(60, 24) = 22 ⋅ 31

= 12
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GCD – algorithm by prime factorization (cont.)

Problems
• The described algorithm is computationally much more
demanding than the Euclidean algorithm.

• Finding GCD using prime factorization is not an algorithm
– prime factorization of a number is not a “unique
instruction”.

• Prime factorization requires a list of primes.
• Step 3 is also unclear – how to find common elements in
the prime factorization? How to find common elements in
two sorted lists of numbers?
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The Sieve of Eratosthenes

• Solution to the problem of finding all prime numbers less
than or equal to a number 𝑛, where 𝑛 > 1.

• Origin in Greece, around 200 years before our era.
• First, we create a list of all natural numbers from 2 to 𝑛.
• Then, we take the numbers that remain in the list and
exclude their multiples.

• We continue this way until no more numbers can be
excluded from the list.

• The numbers that remain in the list are the desired prime
numbers.
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The Sieve of Eratosthenes (cont.)

Example
For 𝑛 = 25 we get

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
2 3 5 7 9 11 13 15 17 19 21 23 25
2 3 5 7 11 13 17 19 23 25
2 3 5 7 11 13 17 19 23
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The Sieve of Eratosthenes (cont.)

Stopping the Algorithm

• In the example, we last excluded multiples of the
number 5.

• What will be, for a given 𝑛, the largest number 𝑝 whose
multiples we will exclude from the list?

• The first multiple will be 𝑝 ⋅ 𝑝, i.e., 𝑝2.
• All lower multiples 2𝑝, 3𝑝,… , (𝑝 − 1)𝑝 have already been
eliminated as multiples of other numbers: 2𝑝 as a
multiple of 2, 3𝑝 as a multiple of 3, and so on.

• Furthermore, it is clear that 𝑝2 ≤ 𝑛 and thus 𝑝 = ⌊√𝑛⌋, where
⌊𝑥⌋ denotes the nearest smaller natural number to 𝑥.
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The Sieve of Eratosthenes (cont.)
Input: A natural number 𝑛
Output: The array of prime numbers ≤ 𝑛

1 for 𝑝 ← 2 to 𝑛 do
2 𝐴[𝑝] ← 𝑝
3 end
4 for 𝑝 ← 2 to ⌊√𝑛⌋ do
5 if 𝐴[𝑝] ≠ 0 then // 𝑝 has not been excluded yet
6 𝑗 ← 𝑝2;
7 while 𝑗 ≤ 𝑛 do
8 𝐴[𝑗] ← 0;
9 𝑗 ← 𝑗 + 𝑝;
10 end
11 end
12 end
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The Sieve of Eratosthenes (cont.)

13 // Numbers that were not excluded from array 𝐴 are
copied to array 𝐿

14 𝑖 ← 0;
15 for 𝑝 ← 2 to 𝑛 do
16 if 𝐴[𝑝] ≠ 0 then
17 𝐿[𝑖] ← 𝐴[𝑝];
18 𝑖 ← 𝑖 + 1;
19 end
20 end
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NSD – algorithm for decomposition into prime factors

• By incorporating the Sieve of Eratosthenes, we obtain a
regular algorithm for calculating the greatest common
divisor using prime factorization.

• It remains to solve the problem when one or both
numbers, for which we are calculating the greatest
common divisor, is equal to 1…
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Introduction
Basics of algorithmic problem solving



Basics of algorithmic problem solving

• We consider algorithms as an procedural, constructive
way to solve a given problem.

• Algorithms are not the solution to the problem
themselves, but are instructions on how to obtain the
solution.

• Computer science vs. mathematics – no existence of
“infinitely small 𝜀”, “limits for 𝑛 approaching infinity”.

• Similarity between computer science and ancient Greek
concept of geometry – solving using “ruler and compass”,
finite number of steps.
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Process of Algorithm Design and Analysis

Understanding the Problem

Decision on:
Computing Device

Exact or Approx. Algorithm
Design Technique

Algorithm Design

Proof of Correctness

Algorithm Analysis

Implementation
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Understanding the Problem

• At first glance, a banality – incorrect understanding can
backfire⇒ necessity to rework the algorithm.

• Solving sample cases, special cases of solutions.
• Input data define an instance of the problem. Definition
of permissible input data.

• A correct algorithm must work correctly for all
permissible input data, not just for the majority.

• Knowledge of professional literature is an advantage –
typical problems and their typical solutions.

• It’s not always necessary to “reinvent the wheel”.
• To select a suitable algorithm, it’s good to know its strong
and weak points.
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Computing Devices

• Computing devices – a computer doesn’t have to be just a
“laptop”.

• Parallel computing devices – multi-core processors, CUDA
accelerators, parallel supercomputers.

• So far, the von Neumann architecture (John von Neumann
1946) prevails.

• In the following explanation, we will deal with sequential
algorithms on the von Neumann architecture.

• Random Access Machine (RAM) – a theoretical model of
the von Neumann computer architecture.
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Computing Devices (cont.)

• For designing an algorithm and examining its
effectiveness, it is suitable to use RAM – HW and SW
independence.

• Practical implementation – it is necessary to take into
account the HW and SW limitations of a specific computer.

• Assumption of sufficient performance of the used
computer. Computer “stone age”.
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Computing Devices (cont.)

Warning
“The real problem is that programmers have spent far too
much time worrying about efficiency in the wrong places and
at the wrong times;

premature optimization is the root of all evil

(or at least most of it) in programming.”

Donald Knuth, The Art of Computer Programming
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Exact vs. Approximate Solution of the Problem

• Exact algorithm – provides an exact solution.
• Approximation algorithm – provides an approximate
solution.
Use of approximation algorithms:
1. There are important problems that we do not know how to
solve exactly, e.g., aerodynamic and hydrodynamic
problems.

2. Exact algorithms are inherently unacceptably slow due to
the enormous number of possible solutions, not due to a
poor algorithm or implementation.

3. An approximation algorithm is part of a sophisticated exact
algorithm.

Remark
If we do not need to strictly distinguish between an algorithm
for an exact and an approximate solution of the problem, we
usually omit the adjective ”exact”.
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Techniques of Algorithm Design

• We have everything we need: we understood the given
problem, chose a computing device, and decided whether
to use an exact or approximate algorithm.

• How do we proceed with designing an algorithm? What
technique should we use for algorithm design?

Definition
Algorithm design technique (algorithm design strategy or
paradigm) is a general approach to algorithmic
problem-solving that can be applied to a wide range of
problems from various areas of computer science.
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Techniques of Algorithm Design (cont.)

Usefulness of Algorithm Design Techniques

1. they provide guidance on how to design algorithms for
new problems, for which no satisfactory algorithm is
known, and

2. allow for a clear classification of various algorithms
according to their basic idea.
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Techniques of Algorithm Design (cont.)

However, Keep in Mind That

• designing a specific algorithm for solving a specific
problem can be a very challenging task,

• not all algorithm design techniques can be applied to a
specific problem; sometimes it is necessary to combine
techniques,

• it can be difficult to recognize which design technique an
algorithm is based on,

• even if the technique is clear, assembling the algorithm
often requires non-trivial effort and ingenuity, but
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Techniques of Algorithm Design (cont.)

• with increasing developer experience, everything becomes
easier and easier, although rarely easy.

Importance of Data Structures

• a suitable data structure has fundamental importance for
the designed algorithm – Eratosthenes’ sieve versus linked
list

• some algorithm design techniques strongly depend on the
structure or reorganization of the data that determine the
instance of the problem being solved,

• Niklaus Wirth: “Algorithms + Data Structures = Programs”
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Methods of Recording an Algorithm During its Design

Natural Language

• does not have to be a written record – an orally
formulated idea

• possible ambiguities – extreme case “The woman beats
the machine with a stick.”

• ability to precisely formulate thoughts, formulate them
logically correctly, define concepts describing the problem,
classify concepts into a thought schema etc.

76/670



Methods of Recording an Algorithm During its Design (cont.)

Pseudocode

• a mix of natural language and constructs similar to
programming languages.

• usually more precise and concise than natural language
• more concise notation of the proposed algorithm
• there are many mutually similar “dialects” of pseudocode
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Methods of Recording an Algorithm During its Design (cont.)

Programming Language

• another possible way of recording

• this record is considered more as an implementation
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Methods of Recording an Algorithm During its Design (cont.)

Development Diagram
• Engl. flowchart
• graphical form of
algorithm recording

• no longer used today

Start

Input

Process 1

Decision 1

Process 2a

Process 2b

Output

Stop

yes

no
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Proof of Algorithm Correctness

Definition
An algorithm is considered correct, if for every correct input it
provides a correct result in finite time. For incorrect input,
the behavior of a correct algorithm is not defined.

• The usual method of proof is mathematical induction.
• Proof of correctness vs. incorrectness of an algorithm

• For a correct proof of algorithm correctness, it is not
enough to prove correctness for some instance of the
problem, we must be able to prove correctness for all
instances of the problem, and vice versa
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Proof of Algorithm Correctness (cont.)

• as a proof of incorrectness of an algorithm, it is enough to
find one instance of the problem, so that we can declare
the algorithm faulty.

• Correctness of an approximation algorithm – the error of
the algorithm’s result does not exceed a predefined limit.
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Analysis of the Algorithm – Examined Properties

Correctness – already solved

Time Complexity (English: time complexity)

• ”how fast the algorithm works”
• speed is not measured in time units, but by the amount of
instructions performed by the algorithm (the same
algorithm on faster and slower HW)

Space Complexity (English: space complexity)

• ”how much memory the algorithm needs”
• measured in bytes and multiples
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Analysis of the Algorithm – Examined Properties (cont.)

Simplicity (English: simplicity)

• cannot be exactly defined, unlike complexity,
• rather a subjective matter – beauty, elegance (NSD Euclid’s
algorithm vs. prime factorization),

• simpler algorithm – easier to understand, implement,
likely fewer errors,

• simpler algorithm – does not necessarily have lower
complexity,

• use – typically software prototype. If it does not meet the
requirements – transition to an algorithm with lower
complexity. But! ”Premature optimization...”
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Analysis of the Algorithm – Examined Properties (cont.)

• terminology – the opposite of simplicity is not
”complexity” of the algorithm, but rather complicatedness,
incomprehensibility, inappropriateness of design.

Generality

1. generality of the proposed algorithmic solution – solve
the problem very generally or take into account possible
simplifications in a specific case?

• solving a more general problem is easier than a specific
one – e.g. inseparability of two numbers, solution via NSD,
NSD is a more general problem
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Analysis of the Algorithm – Examined Properties (cont.)

• solving a more general and specific problem at the same
level – e.g. finding the median, solution via sorting (more
general) and a specific algorithm

• solving a more general problem is significantly more
difficult – e.g. quadratic equation 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 versus a
general algebraic equation of degree 𝑛.

2. generality of the problem instance – the algorithm design
should handle all reasonably expected, natural instances
of the problem.

• For NSD, it is not natural to exclude the number 1, but
• for a quadratic equation, we usually assume that 𝑎, 𝑏, and
𝑐 are real numbers – more generally, we can also consider
complex numbers.
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Analysis of the Algorithm – Examined Properties (cont.)

If we are not satisfied with the complexity or simplicity of the
design or generality of the algorithm?

There is nothing else to do but go back to the beginning, sit
down at the table, take a pencil and paper in hand, and think,
draw, search in literature, and so on.

“The designer knows he has achieved perfection when he can
no longer add or remove anything.”

Antoine de Saint-Exupéry

“Keep It Simple, Stupid!”

Kelly Johnson
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Algorithm Coding

• Again, an underestimated phase – “We have the algorithm
figured out, so now we just rewrite it on the computer and
we’re done.”

• We implement the algorithm either incorrectly or
inefficiently, or even both options occur at the same time.

• In real life – the correctness of programs is verified by
testing.

• Program testing is “an artistic craft”.
• Another critical point – data entry.

• School – input data define a correct instance of the solved
problem.

• Practice – the question of controlling input data needs to
be addressed.
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Algorithm Robustness

Definition
We consider an algorithm to be robust if it is correct and for
every incorrect input, it issues an error report and is able to
recover from the error.

Robustness

Correctness
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Efficiency of Implementation

• Correctness of algorithm implementation is a necessity.
• But even a correct implementation can be done
inefficiently, the computer’s performance is not utilized as
it could be.

• Code optimization:
1. manual – calculation of loop invariant, replacement of
common subexpressions with a variable.

2. automatic – optimization algorithms built into compilers,
e.g. register allocation.

• By optimizing the code, the program’s efficiency can be
improved by some constant factor, e.g. 10%.
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Efficiency of Implementation (cont.)

• For radical, order-of-magnitude improvement, it is
necessary to implement an algorithm with lower
complexity.

• Searching for a better and better algorithm is an
interesting mental adventure...

• The question is when to stop. Perfection is an expensive
luxury. Engineering approach – resources allocated for the
project.

• Academic question of algorithm optimality: “What is the
smallest possible complexity of any algorithm that solves
a given problem?”
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Efficiency of Implementation (cont.)

• For example, a sequential algorithm for sorting an array
with 𝑛 elements – at least 𝑛 log2 𝑛 comparisons.

• Can every problem be solved by an algorithm?
Undecidable problems – cannot be solved by any
algorithm.

• Fortunately, most practical problems can be solved
algorithmically.
A good algorithm is the result of repeated effort and
multiple reworkings.
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Introduction
Important Types of Problems



Important Types of Problems

• Sorting
• Searching
• String Processing
• Graph Problems
• Combinatorial Problems
• Geometric Problems
• Numerical Problems
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Sorting

• Sorting in computer science – rearranging elements into a
non-decreasing sequence. Compare with waste sorting.

• A relation of order must be defined between the
elements, i.e., the relation ”less than or equal to”, ≤.

• In practice, we sort numbers, strings, or structured records.
• For a record, we must define a key, i.e., the part of the
record that we sort by, for which an order is defined. The
key does not have to be defined explicitly, e.g., for
numbers, it is the number itself.
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Arrangement

Definition
Let us have a binary homogeneous relation 𝜌 ⊆ 𝐴 × 𝐴 on the
set 𝐴.

• The relation 𝜌 is called (non-strict) partial ordering, if it is
simultaneously reflexive, antisymmetric and transitive.

• The relation 𝜌 is called (non-strict) total ordering, if it is
simultaneously reflexive, antisymmetric, transitive and
total.

• The relation 𝜌 is called (partial) strict ordering, if it is
simultaneously asymmetric (and therefore also
antisymmetric and irreflexive) and transitive.

• The relation 𝜌 is called total strict ordering, if it is
simultaneously asymmetric (and therefore also
antisymmetric and irreflexive), transitive and connected. 94/670



Arrangement – notes

• We standardly denote a non-strict arrangement by ≤, and
a strict arrangement by <.

• Instead of the term partial arrangement, we sometimes
use just arrangement.

• Instead of the term complete arrangement, we also use
the terms total or linear arrangement.

• If ≤ is an arrangement on a set 𝐴, then we call the
relational system (𝐴, ≤) an ordered set (Eng. poset –
partially ordered set). A completely ordered set is called a
chain (Eng. chain).
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Arrangement – notes (cont.)

• Two different elements 𝑥, 𝑦 are comparable in the
arrangement ≤, if (𝑥 ≤ 𝑦) ∨ (𝑦 ≤ 𝑥) holds. Otherwise, the
elements are incomparable. In a complete arrangement,
all pairs of elements are comparable.

• The intersection of arrangements is again an arrangement.
The union of arrangements does not have to be an
arrangement in general.

• The relationship between strict and non-strict
arrangements can be written as follows:
" ≤ " = " < " ∪ " = ", i.e., by adding the identity relation
(“equality”) to the strict arrangement.
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Used properties of binary homogeneous relations

Used properties of relation 𝜌 ⊆ 𝐴 × 𝐴 ∀𝑥, 𝑦, 𝑧 ∈ 𝐴:

• reflexivity: 𝑥𝜌𝑥,
• irreflexivity: ¬(𝑥𝜌𝑥),
• asymmetry: 𝑥𝜌𝑦 ⇒ ¬(𝑦𝜌𝑥),
• antisymmetry: 𝑥𝜌𝑦 ∧ 𝑦𝜌𝑥 ⇒ 𝑥 = 𝑦,
• transitivity: 𝑥𝜌𝑦 ∧ 𝑦𝜌𝑧 ⇒ 𝑥𝜌𝑧,
• connectivity: [𝑥 ≠ 𝑦 ⇒ 𝑥𝜌𝑦 ∨ 𝑦𝜌𝑥],
• completeness: 𝑥𝜌𝑦 ∨ 𝑦𝜌𝑥.
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Hasse Diagram

The ordering relation is typically represented using a Hasse
diagram, which

• represents the relation of immediate precedence without
transitive edges, which is the same for both strict and
non-strict orderings and which

• corresponds to a directed graph, where all edges are
oriented from bottom to top.

Example
{𝑎, 𝑏}

{𝑎} {𝑏}

∅

Hasse diagram for the ordering relation
“to be a subset” on the set {𝑎, 𝑏}. A
transitive edge, which is normally not
shown, is displayed dashed.
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Partial ordering – example

For any set 𝐴 we can define an ordering ≤ of inclusion on the
set of its subsets 𝑃(𝐴): 𝑋 ≤ 𝑌 if 𝑋 ⊆ 𝑌 , where 𝑋, 𝑌 ∈ 𝑃(𝐴).
The ordering defined in this way is not complete but only
partial, because it contains incomparable elements.
Example

{■, •,♦}

{■, •} {■,♦} {•,♦}

{■} {•} {♦}

∅

In 𝐴 = {■, •,♦} the
incomparable elements are
• all one-element subsets
among themselves and

• all two-element subsets
among themselves.
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Total Ordering – Example

2

1

0

-1

-2

• The usual relation < on the set of natural,
integer, rational, and real numbers is a total
ordering.

• Alphabetical, lexicographical ordering of
strings is also a total ordering.

• Properly nested matryoshka dolls are totally
ordered using the relation “being inside”. But
only under the condition that no more than
one smaller doll can fit inside another at a
time – otherwise, we get only a partial
ordering.
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Sorting – utilization

• A sorted list of values is the desired output – a race result
list, internet search results.

• For some tasks, it is better to solve for a sorted input –
typically search. Phone book. Geometric tasks. Data
compression. Greedy algorithms.
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Definition of the Sorting Problem

• Let’s assume a sequence of elements 𝐴 = 𝑎1, 𝑎2, … 𝑎𝑛. The
task of sorting is to find a permutation 𝜋 ∶ ℕ → ℕ such
that 𝑎𝜋𝑖 ≤ 𝑎𝜋𝑖+1 for all 1 ≤ 𝑖 < 𝑛.

• The permutation 𝜋 cannot be found directly, as there are
𝑛! permutations of 𝑛 elements.

• We will understand sorting algorithms as algorithms that
construct the permutation 𝜋 step by step, for example by
comparing and swapping elements.
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Definition of the sorting problem – example

Let us have a sequence 𝐴 = 𝑒𝑏𝑓𝑐𝑑𝑎 and the usual alphabetical
ordering of letters. The sought permutation is

𝜋 = ( 1 2 3 4 5 6
6 2 4 5 1 3 )

Then

𝑎𝜋1 < 𝑎𝜋2 < 𝑎𝜋3 < 𝑎𝜋4 < 𝑎𝜋5 < 𝑎𝜋6
𝑎6 < 𝑎2 < 𝑎4 < 𝑎5 < 𝑎1 < 𝑎3

𝑎 < 𝑏 < 𝑐 < 𝑑 < 𝑒 < 𝑓
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Sorting

• A number of sorting algorithms have been developed.
There is no single universal algorithm for all situations.

• simple and slow vs. complex and fast,
• random vs. nearly sorted sequence on input
• internal memory vs. external memory.

• Given 𝑛 elements, the minimum number of comparisons is
𝑛 log2 𝑛 for serial algorithms based on comparison and
swapping.
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Sorting (cont.)

• Stable sorting – preserves the relative positions of
elements. If we have two elements with the same key in
positions 𝑖 and 𝑗, where 𝑖 < 𝑗, then after sorting, these
elements will be in positions 𝑖′ and 𝑗′, where 𝑖′ < 𝑗′.

10 20 20 30 10

10 10 20 20 30

Hint: follow the relative positions of orange and green numbers.

Algorithms that sort using exchanges over long distances
are usually faster, but not stable.
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Sorting (cont.)

• In-situ sorting – a sorting algorithm only needs memory
for storing elements plus additional memory of constant
scope, i.e., this memory does not depend on the number
of sorted elements, typically variables for loop iteration,
logical flags, etc.

• Natural sorting – the complexity of the sorting algorithm
increases with the degree of unsortedness of the input
data.
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Degree of disorder of a data sequence

• The goal is to find a measure of disorder, ”messiness”, of a
sequence of 𝑛 elements that we need to sort.

• Sorted sequences should correspond to zero disorder.
• Sequences sorted in reverse order should correspond to
maximum disorder.

• Other sequences should fall between these extreme
possibilities
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Rate of non-monotonicity of a permutation

• Permutation of numbers 1…𝑛.
• Identity permutation – zero non-monotonicity

𝜋𝑖𝑑 = (
1 2 3 4 5 6
1 2 3 4 5 6 )

• Reverse permutation – maximum non-monotonicity

𝜋𝑟𝑒𝑣 = (
1 2 3 4 5 6
6 5 4 3 2 1 )

• Non-monotonicity of a permutation will be measured by
the number of inversions of the given permutation.
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Inverse in Permutation

Definition
Let’s have a permutation 𝜋 ∶ ℕ → ℕ. The inverse in the
permutation 𝜋 is a pair of elements 𝑖, 𝑗 such that 𝑖 < 𝑗 and
simultaneously 𝜋𝑖 > 𝜋𝑗.

The inverses in the permutation can be freely interpreted as “a
larger element is at a smaller index and at the same time a
smaller element is at a larger index”.

Example

𝜋 = ( 1 2 3 4
4 1 3 2 )

All permutations in 𝜋
1 < 2 ∧ 4 > 1 1 < 4 ∧ 4 > 2
1 < 3 ∧ 4 > 3 3 < 4 ∧ 3 > 2
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Number of inversions in a permutation

• Identity permutation – the total number of inversions is
zero

• Reverse permutation

Element Inversions with elements Number of inversions
𝑛 𝑛 − 1, 𝑛 − 2, 𝑛 − 3,… , 1 𝑛 − 1

𝑛 − 1 𝑛 − 2, 𝑛 − 3,… , 1 𝑛 − 2
⋮ ⋮ ⋮
3 2, 1 2
2 1 1
1 − 0

The total number of inversions is equal to

(𝑛 − 1) + (𝑛 − 2) + ⋯ + 2 + 1 + 0 = 12𝑛(𝑛 − 1)
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Average number of inversions in a permutation

• Let’s denote 𝐶𝑛 as the total number of inversions in all
permutations of 𝑛 elements. First, we derive a relationship
between 𝐶𝑛 and 𝐶𝑛−1.

• Consider all permutations of 𝑛 − 1 elements. To all these
permutations, we add 𝑛 after the last element of the
permutation. The number of inversions does not increase
and will be equal to 𝐶𝑛−1.

• To the permutations of 𝑛 − 1 elements, we add 𝑛 after the
second-to-last element of the permutation. The number
of inversions increases by one for each permutation, so
𝐶𝑛−1 + 1 ⋅ (𝑛 − 1)!
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Average number of inversions in a permutation (cont.)

• Finally, to the permutations of 𝑛 − 1 elements, we add 𝑛
before the first element of the permutation. The number
of inversions increases by 𝑛 − 1 for each permutation, so
𝐶𝑛−1 + (𝑛 − 1)(𝑛 − 1)!

Therefore

𝐶𝑛 = 𝐶𝑛−1 + 0 ⋅ (𝑛 − 1)! +
𝐶𝑛−1 + 1 ⋅ (𝑛 − 1)! +
𝐶𝑛−1 + 2 ⋅ (𝑛 − 1)! +

⋮ ⋮
𝐶𝑛−1 + (𝑛 − 1)(𝑛 − 1)!
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Average number of inversions in a permutation (cont.)

From this

𝐶𝑛 = 𝑛𝐶𝑛−1 + [0 + 1 + ⋯ + (𝑛 − 1)](𝑛 − 1)!

= 𝑛𝐶𝑛−1 + [
1
2𝑛(𝑛 − 1)] (𝑛 − 1)!

= 𝑛𝐶𝑛−1 +
1
2(𝑛 − 1)𝑛!

The average number of inversions 𝐼𝑛 is equal to

𝐼𝑛 =
𝐶𝑛
𝑛! .
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Average number of inversions in a permutation (cont.)

From this, we substitute 𝐶𝑛 = 𝑛!𝐼𝑛 and 𝐶𝑛−1 = (𝑛 − 1)!𝐼𝑛−1 to get

𝑛!𝐼𝑛 = 𝑛(𝑛 − 1)!𝐼𝑛−1 +
1
2(𝑛 − 1)𝑛!

= 𝑛!𝐼𝑛−1 +
1
2(𝑛 − 1)𝑛!

After cancelling 𝑛! we get

𝐼𝑛 = 𝐼𝑛−1 +
1
2(𝑛 − 1)
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Average number of inversions in a permutation (cont.)

Expanding the expression for 𝐼𝑛

𝐼𝑛 = 𝐼𝑛−2 +
1
2(𝑛 − 2) +

1
2(𝑛 − 1)

= 𝐼𝑛−3 +
1
2(𝑛 − 3) +

1
2(𝑛 − 2) +

1
2(𝑛 − 1)

⋮
= 𝐼𝑛−𝑖 +

1
2(𝑛 − 𝑖) + ⋯ +

1
2(𝑛 − 2) +

1
2(𝑛 − 1)

Furthermore, we know that a one-element permutation cannot
have an inversion, so 𝐼1 = 0.
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Average number of inversions in a permutation (cont.)

Now, we are looking for such 𝑖, so that the expression 𝑛 − 𝑖 in
the index 𝐼𝑛−𝑖 equals 1. Obviously, 𝑖 = 𝑛 − 1 and therefore

𝐼𝑛 = 𝐼𝑛−(𝑛−1) +
1
2[𝑛 − (𝑛 − 1)] +

1
2[𝑛 − (𝑛 − 2)] + ⋯ +

1
2(𝑛 − 2) +

1
2(𝑛 − 1)

= 𝐼1 +
1
2 ⋅ 1 +

1
2 ⋅ 2 + ⋯ +

1
2(𝑛 − 2) +

1
2(𝑛 − 1)

= 𝐼1 +
1
2[1 + 2 + ⋯ + (𝑛 − 2) + (𝑛 − 1)]

= 𝐼1 +
1
2 [
1
2𝑛(𝑛 − 1)]

= 𝐼1 +
1
4𝑛(𝑛 − 1)
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Average number of inversions in a permutation (cont.)

And since 𝐼1 = 0, we finally get

𝐼𝑛 =
1
4𝑛(𝑛 − 1)

Summary – number of inversions in a permutation of 𝑛
elements

Minimum 0

Average 1
4𝑛(𝑛 − 1)

Maximum 1
2𝑛(𝑛 − 1)
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Searching

• Basic task – finding an element 𝑎 in a given set 𝑀, or
multiset.

• Mathematically – does 𝑎 ∈ 𝑀 hold, or 𝑎 ∉ 𝑀?
• Mathematics does not deal with the complexity of this
operation.

• There are numerous search algorithms – sequential,
interval halving, hashing...

• There is no optimal algorithm for all situations, algorithms
have different assumptions – more memory for faster
work, sorted array...

• Important aspects:
• the mutual ratio of search, insert, and delete operations on
the set – does searching prevail or is the ratio balanced?

• organization of very large data.
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String Processing

• String – a sequence of characters from a given alphabet.
• Typical examples of strings:

• text strings, alphabet composed of letters, digits, and
punctuation,

• bit strings composed of 0 and 1 or
• genetic strings composed of the characters 𝐴, 𝐶, 𝐺, and 𝑇

• Applications
• text processing,
• data compression,
• programming languages and compilers or
• string searching (pattern matching) – finding one string,
pattern, or patterns in another string. A trivial example –
Ctrl+F in a text editor.
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Searching in Text – Pattern Matching

• When searching in text, we determine whether a given
pattern/patterns matches, coincides with, a part of a
given text. We can also say that we are looking for
occurrences of the pattern in the text.

• Applications:
• in text editors (moving in edited text, replacing strings),
• in utilities like grep, which allow finding all occurrences of
specified patterns in a set of text files,

• web search,
• when examining DNA,
• when analyzing images, sound, etc.
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Text Search – Classification of Search Algorithms

Text Preprocessing
no yes

Sa
m
pl
e
Pr
ep
ro
ce
ss
in
g

no

brute force
search

index-based methods, typically
web search engines, generally
known as Information Retrieval
Systems

ye
s advanced search
algorithms

signature-based search
methods
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Text Search – Additional Division Criteria

Number of searched patterns – one, finite number or infinite
number of patterns

Number of occurrences – first occurrence, all occurrences
Comparison method – exact search versus approximate

search, where deviations between the pattern and
text are allowed, e.g., one character may differ

Search direction – in text, we usually proceed from lower
indices to higher, “from left to right”
• symmetrical algorithms – the pattern is
traversed in the same direction

• asymmetrical algorithms – the pattern is
traversed in the opposite direction.
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Searching in Text – Notation

In the following text, we will use the following notation:

• 𝑝 the searched pattern, 𝑝 = 𝑝0𝑝1…𝑝𝑚−1, where |𝑝| = 𝑚 is
the length of the pattern,

• 𝑡 the searched text, 𝑡 = 𝑡0𝑡1… 𝑡𝑛−1, where |𝑡| = 𝑛 is the
length of the text,

• Σ – the alphabet from which the pattern and the text are
composed,

• 𝜎 – the size of the alphabet Σ (𝜎 = |Σ|),
• ̄𝐶𝑛 – the expected number of comparisons needed to find
the pattern in a text of length 𝑛.
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Graph Problems
Alice Bob

Charles Sanchez
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• Graph – informally, a set of points, vertices, some of which
are connected by line segments, edges.

• Applications – representation of transportation networks,
project management, social networks, electrical networks,
etc.

• Basic problems:
• graph traversal – can we reach all vertices in the graph?
• shortest path – the shortest path between two cities
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Graph Problems (cont.)

• topological sorting – organization of a project, activities
must depend on each other, can something be done in
parallel?

• Computationally complex problems
• Traveling Salesman Problem (TSP) – the task is to find the
shortest path between 𝑛 cities, visiting each one exactly
once. Logistics, microchip manufacturing.

• Graph Coloring Problem – the task is to find the smallest
number of colors for vertices such that no two adjacent
vertices have the same color. Planning – events
correspond to vertices, edges connect events that cannot
be performed simultaneously, solving the graph coloring
problem provides an optimal schedule.
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Combinatorial Problems

• The essence of problems – finding a permutation,
combination or subset from a given set of objects that
satisfies certain constraints and possibly has some other
property, such as minimizing or maximizing some function.

• The Traveling Salesman Problem – the order of visited
cities is a permutation, the minimized function is the total
distance.

• Perhaps the most complex problems in computer science
from both theoretical and practical perspectives:

• the number of possible candidate solutions (e.g.,
permutations) grows very rapidly and reaches enormous
values even for moderately sized problems
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Combinatorial Problems (cont.)

• no algorithm is known to find an exact solution in an
acceptable amount of time, and

• it is not even known whether such an algorithm exists; it is
assumed that it does not.

• However, some combinatorial problems can be solved
efficiently – for example, finding the shortest path.
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Geometric Problems

• They process points, line segments, polygons and similar
objects.

• These are actually the first algorithms – Euclidean
geometry, constructions with ”ruler and compass”.

• Applications:
• computer graphics,
• computer games,
• robotics,
• medicine.

• In our subject:
• closest pair problem – a set of points in a plane, find two
points with minimum distance,

• convex hull of a set of points – find the smallest convex
polygon containing the given points.
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Numerical Tasks

• Solving systems of equations, calculating function values,
definite integrals, etc.

• Most of these tasks require calculations with real
numbers. Typical problems:

• The computer can only capture a limited range of numbers
(not ∞) and with limited precision ( 13 , 𝜋) and

• Accumulation of rounding errors.

• Scientific and technical calculations – the classic
application of early computers. Engineering applications.

• Today – data storage and analysis, navigation, logistics...
• In our subject – several typical tasks, solving a system of
equations, matrices.
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Introduction
Fundamental Data Structures



Fundamental Data Structures

• A data structure can be defined as a way of organizing
interrelated data.

• The choice of data structure strongly depends on the
problem being solved.

• Several particularly important data structures exist:
• linear data structures – array, linked list, stack, queue,
priority queue

• graph
• tree
• set
• dictionary
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Array

• Finite sequence of 𝑛 values stored in a contiguous
memory block

• Access via index with constant time complexity
• Index:

• Non-negative integer
• Array with 𝑛 elements always has index range 0,… , 𝑛 − 1

a[0] a[1] ⋯ a[n-1]
• Applications:

• Direct use – vectors, buffers
• Foundation for other data structures – strings, matrices etc.
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Linked List

Characteristics
• Most general linear
data structure

• Operations not strictly
defined

• Many variants exist

Head

V

S

B

Attributes

• List attributes depend on implementation
• Simplest case: single reference to first element (head)
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Linked List (cont.)

List Variants

• Singly linked list – nodes contain next pointer
• Doubly linked list – nodes contain prev/next pointers
• Circular list – head and tail coincide
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Singly Linked List

• Composed of nodes containing data + next pointer
• Sequential access only
• Direct index access requires traversal
• End marked with special nil/null pointer
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Singly Linked List (Head Only)

Head

V

S

B
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Singly Linked List (Head & Tail)

Head

Tail
V

S

B
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Circular Singly Linked List

Head

V

S

B
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Doubly Linked List (Head Only)

Head

V

S

B
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Doubly Linked List (Head & Tail)

Head

Tail
V

S

B
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Circular Doubly Linked List

Head

V

S

B
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Stack

Characteristics
• LIFO (Last-In, First-Out)
principle

• Most recently pushed
element is first popped

Push Pop

Attributes

• Elements added/removed at stack top
• First inserted element – stack bottom
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Stack Operations

Core Operations

• Push – add element to top
• Pop – remove top element
• IsEmpty – check emptiness
• Top – peek top element

Additional Operations

• Init – initialization
• Clear – empty stack
• IsFull – check capacity (limited capacity stacks)

Properly implemented operations have constant time
complexity 𝑂(1), i.e., their time complexity does not depend on
the number of elements in the stack.
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Stack Visualization

A
B
C

A A
K
G
H
E

Push(A) Pop() Push(K)
Push(B) Pop() Push(G)
Push(C) Push(H)

Push(E)
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Stack

Stack Error States
• Underflow – popping empty stack
• Overflow – pushing full stack

Stack Applications
• Function call management
• Expression evaluation
• Recursion elimination
• Parenthesis/XML tag validation
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Queue

Characteristics
• Follows First-In,
First-Out (FIFO)
principle

• First element inserted
is first removed

Enqueue

Dequeue

Attributes

• First element – head
• Last element – tail
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Queue Operations

Core Operations

• Enqueue – add to tail
• Dequeue – remove from head
• Peek – inspect head element
• IsEmpty – check emptiness

Additional Operations

• Init – initialize
• Clear – empty queue
• IsFull – check capacity (limited capacity queues)

Properly implemented operations have constant time
complexity 𝑂(1), i.e., their time complexity does not depend on
the number of elements in the queue.
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Queue Visualization

C B A C E H G K C

Enqueue(A) Dequeue() Enqueue(K)
Enqueue(B) Dequeue() Enqueue(G)
Enqueue(C) Enqueue(H)

Enqueue(E)
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Queue

Queue Error States
• Underflow – dequeuing empty queue
• Overflow – enqueuing full queue, if queue capacity is
limited

Queue Applications
• Print job scheduling
• OS process scheduling
• Server request handling
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Priority Queue

Characteristics
• solving the task “Remove the largest
element from the set and process it.”

• unlike a regular queue, elements are
also associated with a priority,

• for elements with the same priority,
FIFO applies,

• an element with higher priority
overtakes those with lower priority
and leaves the queue earlier.

1 1 2

3

3

3Dequeue

Enqueue

Implementations

• using an array or a sorted array,
• more efficiently using a data structure called a heap. 149/670



Undirected Graph

Definition
An undirected graph is a pair
𝐺 = (𝑉, 𝐸) where 𝑉 is a finite
non-empty set of vertices, and 𝐸
is a set of one-element or
two-element subsets of 𝑉 .
Elements of set 𝐸 are called
edges of the graph.

2

3 4

1 5

6

Example
𝐺 = (𝑉, 𝐸)
𝑉 = {1, 2, 3, 4, 5, 6}
𝐸 = {{1, 2}, {1, 3}, {1, 5}, {1, 6}, {2, 3}, {2, 4}, {3, 4}, {4, 5}, {4, 6}}
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Edges in an Undirected Graph

Let us have an edge 𝑒 ∈ 𝐸, where 𝑒 = {𝑢, 𝑣}.

• We say that the edge 𝑒 connects the vertices 𝑢 and 𝑣.
• The vertices 𝑢 and 𝑣 are called the end vertices of the
edge 𝑒.

• Furthermore, we say that the vertices 𝑢 and 𝑣 are incident
(or that they incide) with the edge 𝑒. Similarly, we say that
the edge 𝑒 is incident to the vertices 𝑢 and 𝑣.

• Since the edge 𝑒 connects the vertices 𝑢 and 𝑣, we say
that they are adjacent (neighboring) vertices.

Definition
An edge that connects a vertex to itself is called a loop.
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Undirected graph – Vertex Degree

Definition
The degree of a vertex in an undirected graph is the number
of edges incident to the vertex, i.e., 𝑑(𝑣) = |{𝑒 ∈ 𝐸 | 𝑣 ∈ 𝑒}|.

Example
2

3 4

1 5

6

𝑣 𝑑(𝑣)
1 4
2 3
3 3
4 4
5 2
6 2
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Undirected graph – Vertex Degree (cont.)

Theorem
The sum of the degrees of the vertices of any undirected
graph 𝐺 = (𝑉, 𝐸) is equal to twice the number of its edges.

∑
𝑣∈𝑉

𝑑(𝑣) = 2|𝐸|

Proof.
Obvious (each edge is counted twice in the sum).
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Number of Edges in an Undirected Graph

Theorem
For any undirected graph 𝐺 = (𝑉, 𝐸) without loops, the
following holds:

0 ≤ |𝐸| ≤ 12|𝑉|(|𝑉| − 1)

Proof.
The maximum number of edges in a graph is achieved by
connecting each of the |𝑉| vertices with all other vertices,
which are |𝑉| − 1. The product |𝑉|(|𝑉| − 1) must be divided by
two because each edge is counted twice.
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Complete Graph

Definition
An undirected graph 𝐺 = (𝑉, 𝐸) in which for every pair of
vertices 𝑢 and 𝑣 there exists an edge is called a complete
graph and is denoted by 𝐾|𝑉|

Example

𝐾1 𝐾2 𝐾3 𝐾6
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Dense vs. Sparse Graph

• Dense graph – a graph that is “almost” complete, missing
only a “relatively” small number of edges to reach the
maximum number.

• Sparse graph – a graph with a “very small” number of
edges, where a “relatively” large number of edges do not
exist.

• There is no precise definition; terms like “almost”,
“relatively”, or “very small” are subjective.

• It always depends on the specific situation.
• When choosing a graph representation in a computer, it is
necessary to consider whether the graph is dense or
sparse. This subsequently affects the time complexity of
the implemented algorithms.
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Subgraph

Definition
Graph 𝐻 = (𝑉𝐻, 𝐸𝐻) is a subgraph of 𝐺 = (𝑉𝐺, 𝐸𝐺) if:

1. 𝑉𝐻 ⊆ 𝑉𝐺
2. 𝐸𝐻 ⊆ 𝐸𝐺
3. The edges of graph 𝐻 have both vertices in 𝐻.
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Subgraph (cont.)

Remarks
• In other words, a subgraph is obtained by deleting some
vertices of the original graph, all edges incident to these
vertices, and possibly some additional edges.

• The term subgraph is used in graph theory as a kind of
analogy to the concept of a subset.
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Subgraph (cont.)

Example

2

3 4

1 5

6

Graph 𝐺

2

4

1 5

6

Subgraph 𝐻
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Directed Graph

Definition
A directed graph is defined as a
pair 𝐺 = (𝑉, 𝐸), where 𝑉 is a finite
non-empty set of vertices, 𝐸 is a
set of ordered pairs (𝑢, 𝑣), edges,
from the Cartesian product 𝑉 × 𝑉 ,
i.e., (𝑢, 𝑣) ∈ 𝑉 × 𝑉 .

2

3 4

1 5

6

Example
𝐺 = (𝑉, 𝐸)
𝑉 = {1, 2, 3, 4, 5, 6}
𝐸 = {(1, 2), (1, 3), (1, 6), (2, 3), (3, 4), (4, 2), (4, 5), (5, 1),
{(6, 1), (6, 4)}
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Methods of Representing a Graph

• Graphical form
• simply as a picture,
• probably the most understandable form for humans,
• suitable for graphs with a small number of vertices,
• practically impossible to use for computer processing.

• Matrix
• Lists of adjacent vertices
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Incidence Matrix

• The number of rows in the matrix corresponds to the
number of vertices, and the number of columns
corresponds to the number of edges.

• If a vertex is incident with an edge, there is a 1 at the
given position; otherwise, there is a 0.

2

3 4

1 5

6

𝑒2 𝑒7
𝑒8𝑒3

𝑒1
𝑒5

𝑒6

𝑒4

𝑒9
⎛⎜⎜⎜⎜

⎝

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7 𝑒8 𝑒9
1 1 1 1 1 0 0 0 0 0
2 1 0 0 0 1 1 0 0 0
3 0 1 0 0 1 0 1 0 0
4 0 0 0 0 0 1 1 1 1
5 0 0 1 0 0 0 0 1 0
6 0 0 0 1 0 0 0 0 1

⎞⎟⎟⎟⎟

⎠
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Adjacency Matrix

• Square matrix where the number of rows and columns
corresponds to the number of vertices.

• Contains 1 if vertices are adjacent, 0 otherwise.

2

3 4

1 5

6

⎛⎜⎜⎜⎜

⎝

1 2 3 4 5 6
1 0 1 1 0 1 1
2 1 0 1 1 0 0
3 1 1 0 1 0 0
4 0 1 1 0 1 1
5 1 0 0 1 0 0
6 1 0 0 1 0 0

⎞⎟⎟⎟⎟

⎠
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Lists of Neighboring Vertices

2

3 4

1 5

6

1

2

3

4

5

6

2 3 5 6

1 3 4

1 2 4

2 3 5 6

1 4

1 4
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Dense vs. Sparse Graph and their representations

Lists of Neighboring Vertices

• Pointers in lists take up additional memory.
• Suitable for sparse graphs.
• More convenient modifications of the graph structure
(insertion or deletion of a vertex, as well as an edge).

Matrix Representation

• Suitable for dense graphs.
• Vertex insertion/deletion is complex, while edge operation
are easy.
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Weighted Graphs

• Each edge is assigned a number referred to as the weight
or cost of the edge.

• Real-world motivation – length of a path, capacity of a
data link, etc.

• Weighted graphs can be directed or undirected.
• Representation:

• adjacency matrix – the value in the matrix indicates the
weight of the edge or a special value for a non-existent
edge, e.g. ∞

• adjacency list – the weight of a specific edge is also stored
in the list of neighbors.
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Weighted Graphs – Example

Weighted Graph

a b

c d

5

1
7

4

2

Adjacency Matrix

(

∞ 5 1 ∞
5 ∞ 7 4
1 7 ∞ 2
∞ 4 2 ∞

)

167/670



Trail

Definition
A sequence of consecutive vertices and edges
𝑣1, 𝑒1, 𝑣2, … , 𝑣𝑛, 𝑒𝑛, 𝑣𝑛+1, where 𝑒𝑖 = {𝑣𝑖, 𝑣𝑖+1} for 1 ≤ 𝑖 ≤ 𝑛, is
called an (undirected) trail.

2

3 4

1 5

6

Trail
4 {4, 3} 3 {3, 1} 1 {1, 3} 3 {3, 2} 2

In oriented graphs these are called oriented trails.
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Path

Definition
A trail in which no vertex is repeated is called a path. That is,
𝑣𝑖 ≠ 𝑣𝑗, ∀ 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. The number 𝑛 is then called the length
of the path.

2

3 4

1 5

6

Path
4 3 2

From the fact that vertices do
not repeat in a path, it follows
that edges do not repeat either.
Therefore, every path is also a
trail.
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Graph Connectivity

Definition
A graph is called connected if there exists a path between
every pair of vertices.

A disconnected graph consists of several connected parts,
called connected components.

Definition
A connected component of a graph is the maximal connected
subgraph of the given graph.
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Graph Connectivity (cont.)

a b c d

e f g

Theorem
Let 𝐺 = (𝑉, 𝐸) be a connected graph. Then it holds that
|𝐸| ≥ |𝑉| − 1.

Proof.
Obvious.
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Closed trail

Definition
A trail that has at least one edge and whose starting and
ending vertices coincide is called a closed trail.

2

3 4

1 5

6

Closed trail
4 {4, 3} 3 {3, 1} 1 {1, 3} 3 {3, 2}
2 {2, 4} 4
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Cycle

Definition
A closed path is a closed trail in which neither vertices nor
edges are repeated. A closed path is also called a cycle.

2

3 4

1 5

6

Cycle
4 3 2

In the definition of a cycle, we
had to prohibit not only the
repetition of vertices but also
the repetition of edges to
ensure that the sequence
𝑣1, 𝑒1, 𝑣2, 𝑒1, 𝑣1 cannot be
considered a cycle.
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Acyclicity of a Graph

Definition
A graph is called acyclic if it does not contain a cycle.
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Free Tree

Definition
A connected, acyclic, undirected graph is called a free tree.

C

M I B

A D F K

L H N J

E G

Remark
An empty graph
can be
considered a
tree, known as
an empty tree.
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Free Tree (cont.)

Terminology

• In graph theory, the objects connected by edges are
usually called vertices.

• When discussing trees, the term node can also be used for
a vertex.

• The terms vertex and node are equivalent; it is more a
matter of convention.
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Forest

Definition
An acyclic graph that is not connected is called a forest.

Each connected component of a forest is a free tree.

C

M I B

A D F K

L H N J

E G
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Free tree properties

Theorem
Let 𝐺 = (𝑉, 𝐸) be an undirected graph, then the following
statements are equivalent

1. 𝐺 is a free tree.
2. Every two vertices in 𝐺 are connected by exactly one path.
3. 𝐺 is connected, but if we remove any edge, we obtain a
disconnected graph.

4. 𝐺 is connected, and |𝐸| = |𝑉| − 1.
5. 𝐺 is acyclic, and |𝐸| = |𝑉| − 1.
6. 𝐺 is acyclic. Adding a single edge to the set of edges 𝐸 will
result in a graph containing a cycle.
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Spanning Tree

Definition
A spanning tree of a connected graph 𝐺 is called a subgraph
of 𝐺 on the set of all its vertices that is a tree.

2

3 4

1 5

6

2

3 4

1 5

6

2

3 4

1 5

6

Remarks
• A spanning tree must contain all the vertices of the
original graph 𝐺.

• A graph can have multiple spanning trees.
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Rooted Tree

Definition
A free tree that contains one distinguished vertex is called a
rooted tree. The distinguished vertex is called the root of the
tree.

C

M I B

A D F K

L H N J

E G
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Rooted tree – a Common Visualization

Visualization 1
F

I

D

A M H

G

L E

N K

J B

C

Visualization 2
F

K

J B

C

N I

D

A H

G

L E

M

Both visualizations are equivalent rooted trees! There is no
“left” or “right”.
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Rooted Tree – Basic Concepts

Consider a vertex 𝑥 in a rooted tree 𝑇 with root 𝑟.

• Any vertex 𝑦 on the unique path from the root 𝑟 to the
vertex 𝑥 is called a predecessor of the vertex 𝑥.

• If 𝑦 is a predecessor of 𝑥, then 𝑥 is called a successor of
the vertex 𝑦.

• If the last edge on the path from the root 𝑟 to the vertex 𝑥
is the edge (𝑦, 𝑥), then the vertex 𝑦 is called the parent of
the vertex 𝑥, and the vertex 𝑥 is a child of the vertex 𝑦.

• Two vertices that have the same parent are called siblings.
• A vertex without children is called an external vertex or a
leaf.
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Rooted Tree – Basic Concepts (cont.)

• A non-leaf vertex is called an internal vertex of the tree.

Remarks
• Every vertex is, of course, a predecessor and successor of
itself.

• If 𝑦 is a predecessor of 𝑥 and at the same time 𝑥 ≠ 𝑦, then
𝑦 is a proper predecessor of the vertex 𝑥, and 𝑥 is a proper
successor of the vertex 𝑦.

• The root of the tree is the only vertex in the tree without a
parent.

• A vertex is a general concept. Every leaf and internal vertex
is also a (generic) vertex. Compare: human, woman, man.
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Vertex Degree

Definition
The number of children of a vertex 𝑥 in a rooted tree is called
the degree of the vertex 𝑥.

Remarks
• The method of calculating the degree of a vertex in a
rooted tree differs from that in a free tree.

• In a rooted tree, the parent is not counted.
• In a free tree, the concept of a parent does not exist; there
are only neighboring vertices, so all vertices are counted.
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Depth of a Vertex – Height of a Tree

Definition
The length of the path from
the root of the tree to a
vertex 𝑥 is called the depth of
the vertex 𝑥 in the tree 𝑇 .

Definition
The greatest depth of any
vertex is called the height of
the tree 𝑇 .

F
0

I
1

D
2

A
3

H
3

G
4

N
1

K
1

J
2

B
2

C
3

The height of the tree is 4.
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Ordered Tree

Definition
A rooted tree in which the order of children is specified is
called an ordered tree.

Remarks
• Thus, if a vertex has 𝑘 children, it is possible to determine
the first child, second child, up to the 𝑘-th child.

• However, if, for example, we remove the first child, the
remaining children shift! The second child becomes the
first, the third becomes the second, and so on. There
cannot be an “empty position” among children.
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Binary Tree

Definition
A binary tree is a structure defined over a finite set of nodes
𝑀, which:

• Rule 1
contains no nodes, i.e., 𝑀 = ∅, or

• Rule 2
is composed of three disjoint sets of nodes 𝐿, 𝑅, and {𝑟},
𝐿 ∪ 𝑅 ∪ {𝑟} = 𝑀:

• the root of the tree 𝑟,
• a binary tree over set 𝐿, called the left subtree, and
• a binary tree over set 𝑅, called the right subtree.
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Binary Tree – Graphical Representation of Recursive Definition

Root

Left
subtree

Right
subtree
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Binary Tree – Example

𝐹

𝐼

𝐷

𝐴 𝐻

𝐿 𝐸

𝐾

𝐽 𝐵

𝐶
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Complete Binary Tree

𝐹

𝐼

𝑆

𝑇 𝑈

𝐷

𝐴 𝐻

𝐾

𝐽

𝑄 𝑃

𝐵

𝐶 𝑍

Complete Binary Tree – every internal node has exactly two
children.
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Binary Search Tree

How to use binary trees as a
data structure? How to
organize data within them?

Arbitrarily? Nonsense – it
would be an unnecessarily
complicated list!

𝐹

𝐼

𝐷

𝐴 𝐻

𝐿 𝐸

𝐾

𝐽 𝐵

𝐶

The solution is to use the properties of the tree (connectivity
and uniqueness of the path from node to node) and
complement them with an appropriate “navigation rule”.
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Binary Search Tree – “Navigation Rule”

Let 𝑦 be a node in a binary tree. Then for every node 𝑥 in the
left subtree of node 𝑦 and every node 𝑧 in the right subtree of
node 𝑦, the following holds:

𝑥𝑘𝑒𝑦 < 𝑦𝑘𝑒𝑦 < 𝑧𝑘𝑒𝑦 .

A binary tree, in which this rule applies to all its nodes, is
called a binary search tree.
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Binary Search Tree – “Navigation Rule” (cont.)

Remarks
• The navigation rule thus determines how data should be
arranged in the binary search tree.

• Knowledge of data arrangement in the tree is used when
searching for them.

• Algorithms for insertion and deletion from the tree are
tied to the search algorithm.

• A binary search tree is therefore built from the outset with
this rule in mind.
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Binary Search Tree

37

23

7

5 17

13 19

29

67

43

53

47 59

73

194/670



Binary Search Tree – Searching

Searching for a value 𝑎 begins at the root of the tree 𝑟. Then,
the following possibilities may occur:

1. The tree with root 𝑟 is empty; in this case, the tree cannot
contain a node with key 𝑎, and the search ends
unsuccessfully.

2. Otherwise, we compare the key 𝑎 with the key of the root
𝑟. In the case that:
2.1 𝑎 = 𝑟𝑘𝑒𝑦 , the tree contains a node with key 𝑎, and the search

ends successfully;
2.2 𝑎 < 𝑟𝑘𝑒𝑦 , all nodes with keys smaller than 𝑟𝑘𝑒𝑦 are in the left

subtree, so we continue recursively in the left subtree;
2.3 𝑎 > 𝑟𝑘𝑒𝑦 , all nodes with keys greater than 𝑟𝑘𝑒𝑦 are in the right

subtree, so we continue recursively in the right subtree.
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Binary Search Tree

The efficiency of many algorithms that generally work with
binary trees, such as searching in a binary search tree,
depends on the height of the binary tree.

For the height ℎ of a binary tree with 𝑛 nodes, the inequality
holds:

⌊log2 𝑛⌋ ≤ ℎ ≤ 𝑛 − 1
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Binary Search Tree – Insertion

• The insertion of a key must correspond to the search
algorithm.

• First, we must attempt to find the key being inserted in the
tree.

• If it is not found, then the place where the search ended
unsuccessfully corresponds to where this key should be in
the tree.

• This follows from the uniqueness of the path between the
root and any node.

• The new node is attached as a new leaf to the tree – the
tree grows through its leaves.

• The question is what to do with duplicates? The solution
depends on the nature of the specific problem being
solved.
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Binary Tree – the standard implementation
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Ordered Tree Representation

A

B

H I
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• Each node can have any number of children.
• Complex representation of a node – list of children
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Ordered Tree Representation – first child – next sibling

A

B

H I

N O

J

C D

K

P
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G

First child – next sibling representation – each node contains
two pointers:

1. pointer to the first child, and
2. pointer to the sibling.
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Ordered Tree Representation – Knuth’s transformation
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First child – next sibling
representation rotated
by 45∘ clockwise.
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Set

• We will understand the data structure set as an unordered
collection (even empty) of mutually distinct elements.

• A set can be defined in two ways:
1. by listing elements, e.g., 𝑀 = {2, 3, 5, 7} or
2. by properties that the elements must satisfy, e.g.,
𝑀 = {𝑛,prime numbers less than 10}.

• The most important set operations:
• membership query, i.e., the question “Is 𝑥 an element of
𝑀?”,

• union of two sets, and
• intersection of two sets.
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Set – implementation

Bit vector

• universe 𝑈 = {𝑢0, 𝑢1, … , 𝑢𝑛−1}, |𝑈| = 𝑛
• any set 𝑀 is considered a subset of the universe 𝑈
• bit vector �⃗� of dimension 𝑛, where

�⃗�𝑖 = {
1 𝑢𝑖 ∈ 𝑀
0 otherwise

Example
𝑈 = {0, 1, 2, … , 8, 9}
𝑀 = {2, 3, 5, 7}
�⃗� = (0, 0, 1, 1, 0, 1, 0, 1, 0, 0)
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Set – implementation

Listing elements

• a set is represented by listing the elements it contains
• depending on the circumstances, we can use arrays, linked
lists, binary search trees, hash tables, etc., to store the
elements

• it always depends on the specific problem which
operations are essential: maintaining order or other
considerations
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Dictionary

• If an additional piece of information is associated with an
element of a set, we then talk about a dictionary.

• A dictionary maintains pairs (key, value), where the key
must be unique in the dictionary.

• Mathematically, it is a mapping.
• The most important operations:

• inserting a pair into the dictionary
• deleting a pair from the dictionary
• modifying a value in the dictionary
• finding a value for a given key

• For implementation, arrays, linked lists, binary search
trees, hash tables, etc., can be used.
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Thanks for your attention

205/670



Fundamentals of the Analysis of Algorithm
Efficiency

Jiří Dvorský, Ph.D.

Department of Computer Science
VSB – Technical University of Ostrava

206/670



Fundamentals of the Analysis of Algorithm
Efficiency

Basics of algorithm complexity analysis



Algorithm analysis

What to analyze?

• correctness
• time complexity
• space complexity
• optimality

Possible approaches

• empirical and
• theoretical
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Time and Space Complexity of an Algorithm

• Time complexity – how long the algorithm will run.
• Space complexity – how much extra memory the
algorithm will need in addition to the storage required for
the data itself.

• Previously, both resources were critical.
• Thanks to advances in computing technology, memory is
relatively abundant.

• We will examine time complexity – significant progress can
be made here.

• It turns out that space complexity can be studied using
the same apparatus as time complexity.
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Measuring Input Size

• Trivial observation – larger data usually takes an
algorithm longer to process.

• We introduce the parameter 𝑛 denoting the size of the
input data, which represents for example:

• searching in a list, array – length of the array
• evaluating the polynomial 𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + ⋯ + 𝑎1𝑥 + 𝑎0 at
point 𝑥 – degree of the polynomial

• multiplying matrices of type 𝑛 × 𝑛 – dimension of the
matrix. The actual number of input numbers is 𝑛2, but this
still depends on 𝑛

• spell checking – number of characters or number of words,
depending on what the algorithm works with
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Measuring Input Size (cont.)

• primality testing – the input is always a single number, the
running time depends on the size of the number (compare
testing 23 and 264), the input size will be the number of
bits required to write the number

𝑛 = ⌊log2 𝑎⌋ + 1 (2)

• graph problems – number of vertices and/or number of
edges – here we already have two parameters
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Empirical Measurement of Complexity

• We provide suitable input data and measure the
program’s running time in standard units of time.

• Disadvantages:
• Dependence on specific hardware, implementation
method, and compiler.

• We want to measure algorithm complexity – we do not
have the means to capture the aforementioned influences.

• Hardware development – does this mean algorithms are
accelerating? No, they remain the same.

• The number of operations performed by the program can
be difficult to determine.

• We want to avoid implementation – after all, we are
examining algorithms.
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Time complexity of the algorithm

Time complexity of the algorithm will be expressed
(measured) by the number of performed basic operations with
respect to (as a function of) the size of the input 𝑛:

𝑇(𝑛) ≈ 𝑐𝑜𝑝𝐶(𝑛),

where

• 𝑛 is the size of the input,
• 𝑇(𝑛) is the running time of the algorithm,
• 𝑐𝑜𝑝 is the time to perform one basic operation and
• 𝐶(𝑛) is the number of basic operations.
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Basic Operations

Typical operations for a given algorithm that significantly
contribute to the overall “running time” of the algorithm.

Problem Input size Basic operation
Searching for an
element in a list

Number of ele-
ments in the list

Comparing ele-
ments

Matrix multiplica-
tion

Matrix dimensions Arithmetic opera-
tions (multiplica-
tion)

Primality testing Number of bits of
the number

Dividing numbers

Graph problems Number of vertices
and/or edges

Processing a ver-
tex or traversing an
edge

213/670



Order of Growth of Complexity

Regarding the relationship

𝑇(𝑛) ≈ 𝑐𝑜𝑝𝐶(𝑛),

we must approach it with caution, because

1. 𝐶(𝑛) does not take into account the influence of
operations other than basic ones and

2. 𝑐𝑜𝑝 cannot be reliably determined.

We understand this relationship as a reasonable estimate of
the algorithm’s running time, except for extremely small 𝑛.
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Order of Growth of Complexity (cont.)

Problem

How many times faster will my algorithm run on a computer
that is 10× faster than my current computer?

Solution

Of course, 10×, 𝑐𝑜𝑝 is one-tenth.
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Order of Growth of Complexity (cont.)

Problem

How many times longer will my algorithm run for a
twice-as-large input when 𝐶(𝑛) = 1

2𝑛(𝑛 − 1)?

Solution

We approximate from above the number of operations 𝐶(𝑛)

𝐶(𝑛) = 12𝑛(𝑛 − 1) =
1
2𝑛

2 − 12𝑛

However, in the context of order of growth, lower-order terms
like −12𝑛 are typically ignored. Thus,

𝐶(𝑛) = 12𝑛
2
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Order of Growth of Complexity (cont.)

and
𝐶(2𝑛) = 12(2𝑛)

2 = 2𝑛2

Therefore,
𝐶(2𝑛)
𝐶(𝑛) =

2𝑛2
1
2𝑛2

= 4
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Order of Growth of Complexity (cont.)

Remarks
• The base of the logarithm is not significant:
log𝑎 𝑛 = log𝑎 𝑏 ⋅ log𝑏 𝑛.

• A computer with a speed of 1012 (one trillion) operations
per second would take approximately 40 billion years to
perform 2100 ≈ 1.3 ⋅ 1030 operations. The age of the Earth
is approximately 4.4 billion years.

• We will not even consider performing 100! operations...

Algorithms with exponential or factorial order of complexity
are only usable for very small input sizes!

218/670



Order of Growth of Complexity (cont.)

Problem

How many times longer will my algorithm run for a
twice-as-large input, for algorithms with different orders of
growth?

𝑛 log2 𝑛 𝑛 𝑛 log2 𝑛 𝑛2 𝑛3 2𝑛 𝑛!
2𝑛 +1 2× ≈ 2× 4× 8× (… )2 n/a

because
log2(2𝑛) = log2 2 + log2 𝑛 = 1 + log2 𝑛

22𝑛 = (2𝑛)2
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Fundamentals of the Analysis of Algorithm
Efficiency

Worst, Best and Average Case



Worst, Best and Average Case

• The number of basic operations is expressed as a function
with one parameter 𝑛, the input size.

• Some algorithms may have different numbers of basic
operations even for the same 𝑛, such as the linear search
algorithm.

Input : Array 𝐴[0…𝑛 − 1] and the target element 𝑥
Output: Index of the first occurrence of element 𝑥 in

array 𝐴, otherwise -1
1 for 𝑖 ← 0 to 𝑛 − 1 do
2 if 𝐴[𝑖] = 𝑥 then
3 return i;
4 end
5 end
6 return -1; 220/670



Worst, Best and Average Case (cont.)

Significant numbers of basic operations:

• 𝐶𝑤𝑜𝑟𝑠𝑡(𝑛) – worst case, highest number of operations
• 𝐶𝑏𝑒𝑠𝑡(𝑛) – best case, lowest number of operations
• 𝐶𝑎𝑣𝑔(𝑛) – average case, average number of operations.
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Worst-case scenario 𝐶𝑤𝑜𝑟𝑠𝑡(𝑛)

• We analyze the algorithm and look for an input of size 𝑛
that results in the maximum possible number of
operations.

• The worst-case scenario provides an upper bound on
complexity, all other cases are either the same or better.

• A low number of operations in the worst case – good news.

Example
Linear search: element 𝑥 in array 𝐴 is not found or is found at
the end, thus 𝐶𝑤𝑜𝑟𝑠𝑡(𝑛) = 𝑛.
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Best-case scenario 𝐶𝑏𝑒𝑠𝑡(𝑛)

• Generally, we seek an input of size 𝑛 for which the
algorithm performs the smallest number of operations.

• The average best-case scenario is not as crucial as the
worst-case scenario.

• Inputs are ”similar” and ”close” to the best case. Sorting
nearly sorted sequences.

• A best-case scenario with a ”frightening” number of
operations – generally bad news and ”final” for the
algorithm. But for an encryption algorithm, a ”frightening”
number of cryptanalysis operations is necessary even in
the best case.

Example
Linear search: element 𝑥 is the first element in array 𝐴,
𝐶𝑏𝑒𝑠𝑡(𝑛) = 1. 223/670



Average case 𝐶𝑎𝑣𝑔(𝑛)

• Number of operations in the average, “typical”, “random”
case (best and worst cases are extremes).

• It is not the average of the best and worst case!
• We must take into account the probabilities of individual
possible inputs of size 𝑛.

• Analysis of the average case is thus more complicated
than the previous two.

• There are algorithms where the worst and average number
of operations differ significantly, for example QuickSort.
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Average Case 𝐶𝑎𝑣𝑔(𝑛) – Linear Search

Assumptions

1. probability of successful search 𝑝, where 0 ≤ 𝑝 ≤ 1
2. probability of finding at all positions in the array is the
same and equals 𝑝

𝑛
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Average Case 𝐶𝑎𝑣𝑔(𝑛) – Linear Search (cont.)

Successful Search

• finding at the first position – one comparison with
probability 𝑝

𝑛 ,
• finding at the second position – two comparisons with
probability 𝑝

𝑛 , and so on, thus

1𝑝𝑛 + 2
𝑝
𝑛 + ⋯ + 𝑖

𝑝
𝑛 + ⋯ + 𝑛

𝑝
𝑛
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Average Case 𝐶𝑎𝑣𝑔(𝑛) – Linear Search (cont.)

Unsuccessful Search

• probability of failure is 1 − 𝑝 and we perform 𝑛
comparisons, i.e., 𝑛(1 − 𝑝)

From this

𝐶𝑎𝑣𝑔(𝑛) = (1𝑝𝑛 + 2
𝑝
𝑛 + ⋯ + 𝑖

𝑝
𝑛 + ⋯ + 𝑛

𝑝
𝑛) + 𝑛(1 − 𝑝)

= 𝑝
𝑛 (1 + 2 + ⋯ + 𝑖 + ⋯ + 𝑛) + 𝑛(1 − 𝑝)

= 𝑝
𝑛 [
1
2𝑛(𝑛 + 1)] + 𝑛(1 − 𝑝)

= 1
2𝑝(𝑛 + 1) + 𝑛(1 − 𝑝)
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Average Case 𝐶𝑎𝑣𝑔(𝑛) – Linear Search (cont.)

Analysis

• always successful search, 𝑝 = 1 and thus 𝐶𝑎𝑣𝑔(𝑛) =
1
2 (𝑛 + 1)

• unsuccessful search, 𝑝 = 0 and thus 𝐶𝑎𝑣𝑔(𝑛) = 𝑛
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Amortized Complexity

• We do not examine a single, isolated run of the algorithm,
but rather examine a “set” of runs with different inputs of
the same size.

• We are interested in the total number of operations for
the set.

• The number of operations for one input from the set may
be high, but it is balanced, “amortized” by a significantly
smaller number of operations for other inputs from the
set.

• For example, one of the inputs causes a significant change
in the data structure, making the processing of
subsequent inputs easier.

• In industry, for example, the purchase of an expensive
machine is amortized by cheaper production of products.
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Sources for Independent Study

• Book [2], chapter 2.1, pages 42 – 51
• Book [3], chapter 2.2, pages 25 – 34 partially
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Big O Notation

Definition
Let us have functions 𝑡(𝑛) and 𝑔(𝑛), where 𝑡(𝑛), 𝑔(𝑛) ∶ ℕ → ℕ.
We say that function 𝑡(𝑛) belongs to 𝑂(𝑔(𝑛)), if there exists a
positive non-zero real constant 𝑐 and a natural number
𝑛0 ≥ 0 such that

𝑡(𝑛) ≤ 𝑐𝑔(𝑛)

for all 𝑛 ≥ 𝑛0.

Remark
Instead of saying ”𝑡(𝑛) belongs to 𝑂(𝑔(𝑛))”, we can say that
”𝑡(𝑛) is of order 𝑂(𝑔(𝑛))”.
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Big O notation graphically

𝑛0

ne
za
jím

av
é

𝑛

𝑡(𝑛) ∈ 𝑂(𝑔(𝑛))

𝑡(𝑛)
𝑐𝑔(𝑛)
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Big O notation – formally correct graph

Formally, the domain
of definition and the
range of values of
functions 𝑡(𝑛) and
𝑔(𝑛) are natural
numbers⇒ the graph
should consist only of
points, not curves. 𝑛0

ne
za
jím

av
é

𝑛

𝑡(𝑛)
𝑐𝑔(𝑛)

If we interpolate the points with a curve⇒ we obtain
continuous functions⇒ we can use mathematical analysis
(limits, derivatives, etc.) for calculations.
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Big O notation – example 1

Problem statement
Prove that 3𝑛 + 7 ∈ 𝑂(𝑛).

Solution
1. We seek constants 𝑐
and 𝑛0 such that

3𝑛 + 7 ≤ 𝑐𝑛

holds for all 𝑛 ≥ 𝑛0.
2. It is clear that
necessarily 𝑐 > 3. If we
choose, for example,
𝑐 = 4, then 𝑛0 = 7.
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40

60
3𝑛 + 7
4𝑛
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Big O notation – example 2

Problem statement
Prove that 3𝑛 + 7 ∈ 𝑂(𝑛2).

Solution
1. We are looking for
constants 𝑐 and 𝑛0
such that

3𝑛 + 7 ≤ 𝑐𝑛2

holds for all 𝑛 ≥ 𝑛0.
2. If we choose 𝑐 = 1,
then 𝑛0 = 5.

0 5 10 150

20

40
3𝑛 + 7
𝑛2
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Big O notation – example 3

Problem statement
Prove that 100𝑛 + 5 ∈ 𝑂(𝑛2).

Solution
1. It holds that
100𝑛 + 5 ≤ 100𝑛 + 𝑛 for all
𝑛 ≥ 5.

2. Furthermore, it holds that
101𝑛 ≤ 101𝑛2.

3. From this

100𝑛 + 5 ≤ 101𝑛 ≤ 101𝑛2

and thus 𝑐 = 101 and
𝑛0 = 5.

0 2 4 60
1000
2000
3000
4000

100𝑛 + 5
101𝑛2
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Big O notation – example 3 (cont.)

The proof can also be conducted as follows:

100𝑛 + 5 ≤ 100𝑛 + 5𝑛 = 105𝑛

for all 𝑛 ≥ 1. This implies that

105𝑛 ≤ 105𝑛2

and thus 𝑐 = 105 and 𝑛0 = 0.
The definition of Big O notation does not say anything about
the uniqueness of the values 𝑐 and 𝑛0, it only requires their
existence.
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Omega notation

Definition
Given functions 𝑡(𝑛) and 𝑔(𝑛), where 𝑡(𝑛), 𝑔(𝑛) ∶ ℕ → ℕ. We
say that function 𝑡(𝑛) belongs to Ω(𝑔(𝑛)), if there exists a
positive non-zero real constant 𝑐 and a natural number
𝑛0 ≥ 0 such that

𝑡(𝑛) ≥ 𝑐𝑔(𝑛)

for all 𝑛 ≥ 𝑛0.
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Lower bound notation graphically

𝑛0

ne
za
jím

av
é

𝑛

𝑡(𝑛) ∈ Ω(𝑔(𝑛))

𝑡(𝑛)
𝑐𝑔(𝑛)
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Ω-notation – example 1

Problem statement
Prove that 𝑛3 ∈ Ω(𝑛2).

Solution
1. Clearly, it holds that
𝑛3 ≥ 𝑛2 for all 𝑛 ≥ 0.

2. Thus we can choose 𝑐 = 1
and 𝑛0 = 0.

0 2 4 6 8 100
200
400
600
800
1000

𝑛3

𝑛2
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Omega notation – example 2

Problem statement
Prove that 3𝑛 + 7 ∈ Ω(𝑛).

Solution
1. We are looking for
constants 𝑐 and 𝑛0 such
that

3𝑛 + 7 ≥ 𝑐𝑛

holds for all 𝑛 ≥ 𝑛0.
2. The expression 3𝑛 + 7 ≥ 3𝑛
is valid for all 𝑛 ≥ 0, so
𝑐 = 3 and 𝑛0 = 0.
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3𝑛 + 7
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Theta notation

Definition
Given functions 𝑡(𝑛) and 𝑔(𝑛), where 𝑡(𝑛), 𝑔(𝑛) ∶ ℕ → ℕ. We
say that the function 𝑡(𝑛) belongs to Θ(𝑔(𝑛)), if there exist
positive nonzero real constants 𝑐1, 𝑐2 and a natural number
𝑛0 ≥ 0 such that

𝑐1𝑔(𝑛) ≤ 𝑡(𝑛) ≤ 𝑐2𝑔(𝑛)

for all 𝑛 ≥ 𝑛0.
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Theta notation graphically

𝑛0

ne
za
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𝑡(𝑛) ∈ Θ(𝑔(𝑛))

𝑡(𝑛)
𝑐1𝑔(𝑛)
𝑐2𝑔(𝑛)
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Θ-notation – example

Problem Statement

Prove that 12𝑛(𝑛 − 1) ∈ Θ(𝑛
2).

Solution

1. First, we prove the right inequality 𝑡(𝑛) ≤ 𝑐2𝑔(𝑛) (upper
bound)

1
2𝑛(𝑛 − 1) =

1
2𝑛

2 − 12𝑛 ≤
1
2𝑛

2

for all 𝑛 ≥ 0.
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Θ-notation – example (cont.)

2. The left inequality 𝑐1𝑔(𝑛) ≤ 𝑡(𝑛) (lower bound) can be
proven as follows:

𝑡(𝑛) = 12𝑛(𝑛 − 1) = 1
2𝑛

2 − 12𝑛

≥ 1
2𝑛

2 − 12𝑛
1
2𝑛

≥ 1
2𝑛

2 − 14𝑛
2

≥ 1
4𝑛

2

In summary, 14𝑛
2 ≤ 1

2𝑛(𝑛 − 1) for all 𝑛 ≥ 2.
3. From the previous inequalities, it follows that 𝑐1 =

1
4 ,

𝑐2 =
1
2 , and 𝑛0 = 2.
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Θ-notation – example (cont.)
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1
4 𝑛

2
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Properties of asymptotic notation

Basic properties:

1. 𝑓(𝑛) ∈ 𝑂(𝑓(𝑛))
2. 𝑓(𝑛) ∈ 𝑂(𝑔(𝑛)) ⟺ 𝑔(𝑛) ∈ Ω(𝑓(𝑛))
3. 𝑓(𝑛) ∈ 𝑂(𝑔(𝑛)) ∧ 𝑔(𝑛) ∈ 𝑂(ℎ(𝑛)) ⟹ 𝑓(𝑛) ∈ 𝑂(ℎ(𝑛))
4. Θ(𝑓(𝑛)) = 𝑂(𝑓(𝑛)) ∧ Ω(𝑓(𝑛))
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Properties of Asymptotic Notation – Application

Task
Prove that 3𝑛 + 7 ∈ Θ(𝑛).

Solution
1. From previous examples,
we know that 3𝑛 + 7 ∈ 𝑂(𝑛)
and simultaneously
3𝑛 + 7 ∈ Ω(𝑛).

2. Therefore, it holds that
3𝑛 + 7 ∈ Θ(𝑛).

3. Specifically, 𝑐1 = 3, 𝑐2 = 4
and 𝑛0 = 7.

0 2 4 6 8 100
10
20
30
40

3𝑛 + 7
4𝑛
3𝑛
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Properties of Asymptotic Notation – Computing Complexity

• Algorithm 𝐴 consists of parts 𝐴1 and 𝐴2.
• The parts of the algorithm are executed sequentially, i.e.,
after completing 𝐴1, 𝐴2 begins execution.

• The complexity of part 𝐴1 is 𝑡1(𝑛) ∈ 𝑂(𝑔1(𝑛)), the
complexity of part 𝐴2 is 𝑡2(𝑛) ∈ 𝑂(𝑔2(𝑛)).

• The question is – what is the overall complexity of
algorithm 𝐴?
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Properties of asymptotic notation – auxiliary lemma

Lemma
Let us have arbitrary real numbers 𝑎1, 𝑎2, 𝑏1, 𝑏2. Then the
following holds:

𝑎1 ≤ 𝑏1 ∧ 𝑎2 ≤ 𝑏2 ⟹ 𝑎1 + 𝑎2 ≤ 2max(𝑏1, 𝑏2).
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Properties of asymptotic notation – auxiliary lemma (cont.)
Proof.
From the assumption, we know that

𝑎1 ≤ 𝑏1
𝑎2 ≤ 𝑏2

𝑎1 + 𝑎2 ≤ 𝑏1 + 𝑏2.

Furthermore, it holds that

𝑏1 + 𝑏2 ≤ 2max(𝑏1, 𝑏2).

From this, we obtain

𝑎1 + 𝑎2 ≤ 𝑏1 + 𝑏2 ≤ 2max(𝑏1, 𝑏2).
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Properties of asymptotic notation – computation of complexity

Theorem
If 𝑡1(𝑛) ∈ 𝑂(𝑔1(𝑛)) and simultaneously 𝑡2(𝑛) ∈ 𝑂(𝑔2(𝑛)), then

𝑡1(𝑛) + 𝑡2(𝑛) ∈ 𝑂(max(𝑔1(𝑛), 𝑔2(𝑛))).

Remark
The same statement can be expressed for Ω and Θ notation.
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Properties of asymptotic notation – computation of complexity
(cont.)

Proof.
Since 𝑡1(𝑛) ∈ 𝑂(𝑔1(𝑛)), there exists a positive non-zero
constant 𝑐1 and a non-negative constant 𝑛1 such that

𝑡1(𝑛) ≤ 𝑐1𝑔1(𝑛) ∀𝑛 ≥ 𝑛1.

Similarly,
𝑡2(𝑛) ≤ 𝑐2𝑔2(𝑛) ∀𝑛 ≥ 𝑛2.
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Properties of asymptotic notation – computation of complexity
(cont.)

Proof.
Let 𝑐3 = max(𝑐1, 𝑐2) and 𝑛0 ≥ max(𝑛1, 𝑛2). Then,

𝑡1(𝑛) + 𝑡2(𝑛) ≤ 𝑐1𝑔1(𝑛) + 𝑐2𝑔2(𝑛)
≤ 𝑐3𝑔1(𝑛) + 𝑐3𝑔2(𝑛) = 𝑐3[𝑔1(𝑛) + 𝑔2(𝑛)]
≤ 2𝑐3max(𝑔1(𝑛), 𝑔2(𝑛)).

Thus, 𝑡1(𝑛) + 𝑡2(𝑛) ∈ 𝑂(max(𝑔1(𝑛), 𝑔2(𝑛))), since there exist
constants 𝑐 = 2𝑐3 = 2max(𝑐1, 𝑐2) and 𝑛0 = max(𝑛1, 𝑛2).

The overall complexity of an algorithm is determined by the
part with the highest complexity.
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Properties of asymptotic notation – complexity calculation, ex-
ample

Problem statement

Test whether two identical values occur in the array.

Solution

1. Sorting the array requires no more than 1
2𝑛(𝑛 − 1)

comparisons, i.e., a complexity of class 𝑂(𝑛2).
2. Comparing all pairs of adjacent elements will require 𝑛 − 1
comparisons, i.e., a complexity of class 𝑂(𝑛).

The overall complexity of the algorithm is therefore
𝑂(max(𝑛2, 𝑛)) = 𝑂(𝑛2).
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Utilization of limits for computations

The growth rate of functions can be more easily calculated
using limits:

lim
𝑛→∞

𝑡(𝑛)
𝑔(𝑛) = {

0 𝑡(𝑛) 𝑔𝑟𝑜𝑤𝑠𝑠𝑙𝑜𝑤𝑒𝑟𝑡ℎ𝑎𝑛 𝑔(𝑛)
𝑐 𝑡(𝑛) 𝑔𝑟𝑜𝑤𝑠𝑎𝑡𝑡ℎ𝑒𝑠𝑎𝑚𝑒𝑟𝑎𝑡𝑒𝑎𝑠 𝑔(𝑛)
∞ 𝑡(𝑛) 𝑔𝑟𝑜𝑤𝑠𝑓𝑎𝑠𝑡𝑒𝑟𝑡ℎ𝑎𝑛 𝑔(𝑛)

It is clear that:
𝑡(𝑛) ∈ 𝑂(𝑔(𝑛)) ⇔ 𝑡(𝑛) grows slower or at the same rate as 𝑔(𝑛)
𝑡(𝑛) ∈ Ω(𝑔(𝑛)) ⇔ 𝑡(𝑛) grows at the same rate or faster than 𝑔(𝑛)
𝑡(𝑛) ∈ Θ(𝑔(𝑛)) ⇔ 𝑡(𝑛) grows at the same rate as 𝑔(𝑛)
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Utilization of limits for computations (cont.)

Some useful formulas
L’Hospital’s rule

lim
𝑛→∞

𝑡(𝑛)
𝑔(𝑛) = lim𝑛→∞

𝑡′(𝑛)
𝑔′(𝑛)

Stirling’s formula
𝑛! ≈ √2𝜋𝑛 (𝑛𝑒 )

𝑛
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Using limits for calculations – example I

Compare the growth rate of functions 1
2𝑛(𝑛 − 1) and 𝑛

2.

lim
𝑛→∞

1
2𝑛(𝑛 − 1)
𝑛2 = 1

2 lim
𝑛→∞

𝑛2 − 𝑛
𝑛2

= 1
2 lim
𝑛→∞

(1 − 1𝑛)

= 1
2 ( lim𝑛→∞

1 − lim
𝑛→∞

1
𝑛)

= 1
2(1 − 0) =

1
2 > 0

The functions 1
2𝑛(𝑛 − 1) and 𝑛

2 grow at the same rate, so

1
2𝑛(𝑛 − 1) ∈ Θ(𝑛

2)

.
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Utilization of limits for computations – example II

Compare the growth rate of functions log2 𝑛 and √𝑛.

lim
𝑛→∞

log2 𝑛
√𝑛

= lim
𝑛→∞

(log2 𝑛)
′

(√𝑛)′

= lim
𝑛→∞

(log2 𝑒)
1
𝑛

1
2√𝑛

= (log2 𝑒) lim𝑛→∞

1
𝑛
1
2√𝑛

= log2 𝑒 lim𝑛→∞
2√𝑛
𝑛

= 2 log2 𝑒 lim𝑛→∞
1
√𝑛

= 0

The function log2 𝑛 therefore grows more slowly than √𝑛.
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Using limits for computations – example III

Compare the growth rate of the functions 𝑛! and 2𝑛.

lim
𝑛→∞

𝑛!
2𝑛 = lim

𝑛→∞

√2𝜋𝑛 (𝑛𝑒 )
𝑛

2𝑛

= √2𝜋 lim
𝑛→∞

√𝑛 𝑛𝑛
2𝑛𝑒𝑛

= √2𝜋 lim
𝑛→∞

√𝑛 ( 𝑛2𝑒)
𝑛
= ∞

Remarks

• The function 𝑛! therefore grows faster than 2𝑛.
• The definition of Θ-notation does not exclude that
𝑛! ∈ Ω(2𝑛), but the limit calculation clearly states that 𝑛!
grows faster than 2𝑛
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Basic Complexity Classes

Although theoretically there are infinitely many complexity
classes, the complexity of most algorithms falls into a few
classes.

Class Name Note
1 constant complexity does not depend on the

size of the input; very few algorithms
log𝑛 logarithmic typically algorithms reducing the size

of the input by a constant factor; in-
terval halving search

𝑛 linear algorithms processing a list of 𝑛 ele-
ments; e.g. sequential search

𝑛 log𝑛 linearithmic divide and conquer algorithms; aver-
age complexity of QuickSort, Merge-
Sort
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Basic Complexity Classes (cont.)

Class Name Note
𝑛2 quadratic generally algorithms with two

nested loops; elementary sorting
methods, summing 𝑛 × 𝑛 matrices

𝑛3 cubic generally algorithms with three
nested loops; multiplying 𝑛×𝑛 ma-
trices

2𝑛 exponential
typically generating all subsets of
an 𝑛-element set

𝑛! factorial
typically generating all permuta-
tions of an 𝑛-element set
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Influence of the Multiplicative Constant

• The complexity class is given up to a multiplicative
constant, which is usually not precisely specified.

• Could an algorithm with a higher complexity class
therefore run faster than an algorithm from a better class
for some reasonable 𝑛? For example:
Algorithm Running Time
𝐴 𝑛3
𝐵 106𝑛2

𝐴 will be better
than 𝐵 for 𝑛 < 106.

• Multiplicative constants usually take on similar, relatively
small values.

• It can be expected that algorithms with lower complexity
will be better than those with higher complexity already
for moderately large inputs.
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Sources for Independent Study

• Book [2], chapter 2.2, pages 52 – 61
• Book [3], chapters 3.1 and 3.2, pages 49 – 63
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Fundamentals of the Analysis of Algorithm
Efficiency

Analysis of Non-Recursive Algorithms



Finding the Largest Element in an Array of 𝑛 Numbers

Input : Array 𝐴[0…𝑛 − 1] of integers
Output: Largest element of array 𝐴

1 𝑚𝑎𝑥 ← 𝐴[0];
2 for 𝑖 ← 1 to 𝑛 − 1 do
3 if 𝐴[𝑖] > 𝑚𝑎𝑥 then
4 𝑚𝑎𝑥 ← 𝐴[𝑖];
5 end
6 end
7 return 𝑚𝑎𝑥;
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Finding the Largest Element in an Array of 𝑛 Numbers (cont.)

Working Procedure

1. Input size – size of array 𝑛
2. Basic operation:

• most frequently performed operations are inside the loop
– comparison 𝐴[𝑖] > 𝑚𝑎𝑥 and assignment 𝑚𝑎𝑥 ← 𝐴[𝑖]

• basic operation will be comparison, because it
• is performed in each iteration of the loop,
• is the key operation for the algorithm, “How many pairs of
elements must I compare to find the maximum?”

3. Number of comparisons is the same for all inputs of size
𝑛, it is not necessary to distinguish between the best,
average, and worst case
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Finding the Largest Element in an Array of 𝑛 Numbers (cont.)

4. Number of basic operations, comparisons, 𝐶(𝑛) will be
equal to

𝐶(𝑛) =
𝑛−1
∑
𝑖=1
1 = 𝑛 − 1 ∈ Θ(𝑛).

5. Conclusion: Finding the largest element in an array of 𝑛
numbers is a linear algorithm.
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Finding the largest element in an array of 𝑛 numbers, all opera-
tions

Number of operations Description
1 assignment 𝑚𝑎𝑥 ← 𝐴[0]
1 assignment 𝑖 ← 1

𝑛 − 1 comparison 𝑖 ≤ 𝑛 − 1
𝑛 − 1 increment 𝑖 by 1
𝑛 − 1 comparison 𝐴[𝑖] > 𝑚𝑎𝑥
𝑛 − 1 assignment 𝑚𝑎𝑥 ← 𝐴[𝑖]
1 return result return 𝑚𝑎𝑥

4(𝑛 − 1) + 3 = 4𝑛 − 1 ∈ Θ(𝑛)

Conclusion: Finding the largest element in an array of 𝑛
numbers is a linear algorithm.
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General procedure for determining the time complexity of non-
recursive algorithms

1. Selection of a parameter, or parameters, representing the
size of the input 𝑛.

2. Identification of the basic operations of the algorithm
(these are the ones in the most nested loop!).

3. Does the number of basic operations depend only on the
size of the input? If it depends on something else as well,
we must examine the worst, best, and average cases
separately.

4. Establishment of a relationship, or relationships, (i.e.,
”formulas”) expressing the number, or numbers, of
executions of the basic operations.

5. Simplification of the established relationships and, at
least, determination of the order of growth.
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Useful Summation Formulas

∑(𝑎𝑖 ± 𝑏𝑖) = ∑𝑎𝑖 ±∑𝑏𝑖 (3)

∑𝑐𝑎𝑖 = 𝑐∑𝑎𝑖 (4)

𝑛
∑
𝑖=1
𝑎𝑖 =

𝑚
∑
𝑖=1
𝑎𝑖 +

𝑛
∑
𝑖=𝑚+1

𝑎𝑖 (5)

𝑢
∑
𝑖=𝑙
1 = 1 + 1 + ⋯ + 1 = 𝑢 − 𝑙 + 1 (6)

Specifically
𝑛
∑
𝑖=1
1 = 𝑛 ∈ Θ(𝑛) (7)
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Useful Summation Formulas (cont.)
𝑛
∑
𝑖=1
𝑖 = 1 + 2 + ⋯ + 𝑛 = 12𝑛(𝑛 + 1) ≈

1
2𝑛

2 ∈ Θ(𝑛2) (8)

𝑛
∑
𝑖=1
𝑖2 = 12 + 22 + ⋯ + 𝑛2 = 16𝑛(𝑛 + 1)(2𝑛 + 1) ≈

1
3𝑛

3 ∈ Θ(𝑛3) (9)

𝑛
∑
𝑖=0
𝑎𝑖 = 1 + 𝑎 + 𝑎2 + ⋯ + 𝑎𝑛 = 𝑎

𝑛+1 − 1
𝑎 − 1 , for 𝑎 ≠ 1 (10)

Specifically

𝑛
∑
𝑖=0
2𝑖 = 20 + 21 + ⋯ + 2𝑛 = 2𝑛+1 − 1 ∈ Θ(2𝑛) (11)
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Uniqueness of elements in an array

Given is an array of 𝑛 elements. Our task is to analyze the
algorithm that determines whether all elements in the array
are mutually distinct, i.e., unique.

Input : Array 𝐴[0…𝑛 − 1]
Output: Returns true if all elements are unique,

otherwise returns false
1 for 𝑖 ← 0 to 𝑛 − 2 do
2 for 𝑗 ← 𝑖 + 1 to 𝑛 − 1 do
3 if 𝐴[𝑖] = 𝐴[𝑗] then
4 return false;
5 end
6 end
7 end
8 return true;
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Uniqueness of elements in an array (cont.)

Visualization of the algorithm
0 𝑛

−1

0

𝑛 − 1

𝑗

𝑖

Legend
pairs that must be

tested

an element with itself
does not need to be
tested

pairs already tested in
previous iterations of the
cycle
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Uniqueness of elements in an array (cont.)

Procedure

1. Input size – size of the array 𝑛
2. Basic operation – the most nested cycle contains a single
operation, comparison 𝐴[𝑖] = 𝐴[𝑗]

3. Dependence only on 𝑛? No, the number of basic
operations depends also on whether a duplicate element
appears in the array. Thus, we perform analysis of the
worst, best, and average case.

4. Establishing relationships. For the worst case, it is clear
from the inner cycle that premature termination of the
cycle must not occur, either:
4.1 because all elements are unique or
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Uniqueness of elements in an array (cont.)

4.2 a duplicate appears only in the last pair.
Thus, we perform:

• one comparison for each iteration of the inner cycle, i.e.,
𝑗 = 𝑖 + 1, … , 𝑛 − 1

• the outer cycle iterates 𝑛 − 1 times
Establishing relationships. For the worst case, it is clear
from the inner cycle that premature termination of the
cycle must not occur. Thus, we will perform:

• one comparison for each iteration of the inner cycle, i.e.,
𝑗 = 𝑖 + 1, … , 𝑛 − 1

• the outer cycle iterates 𝑛 − 1 times
Thus, we perform:
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Uniqueness of elements in an array (cont.)

• one comparison for each iteration of the inner cycle, i.e.,
𝑗 = 𝑖 + 1, … , 𝑛 − 1

• outer cycle runs 𝑛 − 1 times
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Uniqueness of elements in an array (cont.)

=
𝑛−2
∑
𝑖=0
[(𝑛 − 1) − (𝑖 + 1) + 1] =

𝑛−2
∑
𝑖=0
(𝑛 − 1 − 𝑖)

=
𝑛−2
∑
𝑖=0
(𝑛 − 1) −

𝑛−2
∑
𝑖=0
𝑖 by (3)

= (𝑛 − 1)
𝑛−2
∑
𝑖=0
1 − (𝑛 − 2)(𝑛 − 1)2 by (4) and (8)

= (𝑛 − 1)2 − (𝑛 − 2)(𝑛 − 1)2 by (6)

= 12𝑛(𝑛 − 1) ≈
1
2𝑛

2 ∈ Θ(𝑛2)
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Multiplication of Square Matrices

Our task is to perform an analysis of the algorithm for
computing the product 𝐶 = 𝐴𝐵 of two square matrices 𝐴 and 𝐵
of order 𝑛.
By definition, the elements of the matrix are equal to the scalar
products of the rows of matrix 𝐴 with the columns of matrix 𝐵.

A B C

col. j

C i, j[ ]row i
* =

𝑐𝑖,𝑗 =
𝑛−1
∑
𝑘=0

𝑎𝑖,𝑘𝑏𝑘,𝑗

for all
0 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1
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Multiplication of Square Matrices (cont.)

𝐶[𝑖, 𝑗] = 𝐴[𝑖, 0]×𝐵[0, 𝑗]+⋯+𝐴[𝑖, 𝑘]×𝐵[𝑘, 𝑗]+⋯+𝐴[𝑖, 𝑛 −1]×𝐵[𝑛−1, 𝑗]

Input : Two square matrices 𝐴 and 𝐵 of order 𝑛
Output: Square matrix 𝐶 of order 𝑛

1 for each element 𝑐𝑖,𝑗 of matrix 𝐶 do
2 𝑐𝑖,𝑗 = 0;
3 for 𝑘 from 0 to 𝑛 − 1 do
4 𝑐𝑖,𝑗 = 𝑐𝑖,𝑗 + 𝑎𝑖,𝑘 × 𝑏𝑘,𝑗;
5 end
6 end

1. The algorithm must compute 𝑛 × 𝑛 elements of matrix 𝐶
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Multiplication of Square Matrices (cont.)

2. Each element of matrix 𝐶 is computed as the scalar
product of the 𝑖-th row of matrix 𝐴 and the 𝑗-th column of
matrix 𝐵

3. The rows and columns have 𝑛 elements that must be
multiplied

4. Therefore, there are a total of 𝑛2 × 𝑛 = 𝑛3 multiplications
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Multiplication of Square Matrices (cont.)

Informal Procedure

1. The algorithm must compute 𝑛 × 𝑛 elements of matrix 𝐶
2. Each element of matrix 𝐶 is computed as the scalar
product of the 𝑖-th row of matrix 𝐴 and the 𝑗-th column of
matrix 𝐵

3. The rows and columns have 𝑛 elements that must be
multiplied

4. Therefore, there are a total of 𝑛2 × 𝑛 = 𝑛3 multiplications
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Multiplication of Square Matrices (cont.)

The running time of the algorithm on a specific computer

𝑇(𝑛) ≈ 𝑐𝑚𝑀(𝑛) = 𝑐𝑚𝑛3

if we also count additions

𝑇(𝑛) ≈ 𝑐𝑚𝑀(𝑛) + 𝑐𝑎𝐴(𝑛) = 𝑐𝑚𝑛3 + 𝑐𝑎𝑛3 = (𝑐𝑚 + 𝑐𝑎)𝑛3,

where 𝑐𝑚 and 𝑐𝑎 are the times required for multiplication and
addition, respectively, and 𝐴(𝑛) is the number of additions,
which satisfies 𝐴(𝑛) = 𝑀(𝑛).
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Multiplication of Square Matrices (cont.)

Summary
The running time of the algorithm may vary depending on the
specific computer, but the order of complexity of the
algorithm (𝑛3) remains the same.
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Number of bits in the binary representation of a number

Our task is to analyze the algorithm that for a given natural
number 𝑛 calculates the number of bits necessary for writing
the number 𝑛 in binary.

Input : Natural number 𝑛
Output: Number of bits in the binary representation of

the number 𝑛
1 𝑐𝑜𝑢𝑛𝑡 ← 1;
2 while 𝑛 > 1 do
3 𝑐𝑜𝑢𝑛𝑡 ← 𝑐𝑜𝑢𝑛𝑡 + 1;
4 𝑛 ← ⌊𝑛/2⌋;
5 end
6 return 𝑐𝑜𝑢𝑛𝑡;
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Number of bits in the binary representation of a number (cont.)

• Input size – one number?
• Basic operation – addition, division, comparison with 1?
• Most importantly, in this case, we need to determine the
number of loop iterations. The number of comparisons is
one more than the number of loop iterations.

• The value of the number 𝑛 decreases by half with each
loop iteration, leading to the relation

⌊log2 𝑛⌋ + 1

and which corresponds to the relation (2).
• To derive this, we will need to be able to solve recursive
equations...
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Sources for Independent Study

• Book [2], chapter 2.3, pages 61 – 70
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Fundamentals of the Analysis of Algorithm
Efficiency

Analysis of Recursive Algorithms



Calculation of Factorial

Our task is to analyze the recursive algorithm that calculates
the factorial 𝑛! for a given natural number 𝑛.

𝑛! = { 1 for 𝑛 = 0
𝑛(𝑛 − 1)! otherwise

1 Function F(𝑛)
Input: Natural number 𝑛
Result: Result

2 if 𝑛 = 0 then
3 return 1;
4 end
5 else
6 return 𝑛 ⋅ 𝐹(𝑛 − 1);
7 end
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Calculation of Factorial (cont.)

• The size of the input is 𝑛.
• We need to find a function 𝑀(𝑛) that represents the
number of multiplications performed by the algorithm.

• The algorithm has a recursive structure, so we can write a
recurrence relation for 𝑀(𝑛).

Remark
To solve the recurrence relation, we need to find an explicit
expression for 𝑀(𝑛). We will use the method of backward
substitution to solve the recurrence relation.

• The recurrence relation is 𝑀(𝑛) = 𝑀(𝑛 − 1) + 1 for 𝑛 > 0.
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Calculation of Factorial (cont.)

• We need to find an initial condition to make the
recurrence relation unique.

• From the algorithm, we can see that when 𝑛 = 0, no
multiplications are performed, so 𝑀(0) = 0.

• Therefore, the complete recurrence relation is

𝑀(𝑛) = 𝑀(𝑛 − 1) + 1 for 𝑛 > 0
𝑀(0) = 0

289/670



Calculation of Factorial (cont.)

• We will solve the recurrence relation using backward
substitution. Substituting 𝑀(𝑛 − 1) = 𝑀(𝑛 − 2) + 1 into
𝑀(𝑛) = 𝑀(𝑛 − 1) + 1, we get

𝑀(𝑛) = [𝑀(𝑛 − 2) + 1] + 1 = 𝑀(𝑛 − 2) + 2

Substituting 𝑀(𝑛 − 2) = 𝑀(𝑛 − 3) + 1 into the previous
equation, we get

𝑀(𝑛) = [𝑀(𝑛 − 3) + 1] + 2 = 𝑀(𝑛 − 3) + 3.
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Calculation of Factorial (cont.)

We can see a pattern emerging: 𝑀(𝑛) = 𝑀(𝑛 − 𝑖) + 𝑖. Using
this formula, we can find an explicit expression for 𝑀(𝑛) by
setting 𝑖 = 𝑛, which gives

𝑀(𝑛) = 𝑀(0) + 𝑛 = 0 + 𝑛 = 𝑛 .
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Calculation of Factorial (cont.)

Summary
1. The result 𝑀(𝑛) = 𝑛 was more or less expected.
2. An iterative algorithm performs the same number of
multiplications as a recursive algorithm, without the
overhead of function calls.

3. However, the approach used to solve the recurrence
relation is important and can be applied to other
problems.
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General procedure for determining the time complexity of recur-
sive algorithms

1. Selection of a parameter, or parameters, representing the
size of the input 𝑛.

2. Identification of the basic operations of the algorithm.
3. Does the number of basic operations depend only on the
size of the input? If it depends on something else as well,
we must examine the worst, best, and average cases
separately.

4. Construction of a recursive relation and suitable initial
conditions, expressing the number of executions of basic
operations.

293/670



General procedure for determining the time complexity of recur-
sive algorithms (cont.)

5. Simplification of the constructed relations and, at least,
determination of the order of growth.

294/670



Resources for Independent Study

• Book [2], chapter 2.4, pages 70 – 79
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Thanks for your attention
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Brute Force and Exhaustive Search

Jiří Dvorský, Ph.D.

Department of Computer Science
VSB – Technical University of Ostrava
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Brute Force Strategy

Characteristics
Brute force is a straightforward approach to solving a
problem, usually directly based on the problem definition
and definitions of the concepts involved.
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Brute Force Strategy – examples

Exponentiation problem

Compute an for a nonzero number 𝑎 and a nonnegative integer
𝑛. By the definition of exponentiation

𝑎𝑛 = 𝑎 × 𝑎 × ⋯ × 𝑎⏟
𝑛 times

Brute force solution – simply computing an by multiplying 1 by
𝑎 𝑛 times.

More examples

• the consecutive integer checking algorithm for computing
GCD, and

• the definition-based algorithm for matrix multiplication
from previous presentation.
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Brute Force Strategy

1. general strategy – it is difficult to find a problem where
“doesn’t work”,

2. does not generally lead to efficient algorithms, but for
some problems, e.g., matrix multiplication, pattern
matching, algorithms based on this strategy are applicable
to larger inputs,

3. is an acceptable strategy when it is not worthwhile to deal
with more sophisticated algorithms – ad hoc problem
solving,

4. it’s always a useful strategy for solving problems with
small input sizes, and

5. it’s also important as a benchmark against which to
compare more efficient algorithms solving the same
problem.
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Brute Force and Exhaustive Search
Sorting Algorithms



Sorting Algorithms

• We are given an array of 𝑛 elements for which an ordering
relation is defined (i.e. the relation “less than”), for
example let’s take integers.

• The task is to rearrange the elements of the array into a
non-decreasing sequence – the element of the array at
the lower index must be less than or equal to the element
at the higher index.

• The question is: is there a sorting algorithm that solves the
problem in a brute force, completely straightforward way?
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SelectSort – Initial consideration

Question

Which element in the array do we know exactly where it
belongs?

Answer

The smallest! It belongs at the beginning of the array, at the
lowest index! (Note: The same applies to the largest element.)
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SelectSort – Algorithm Principle

1. Select the smallest element of the 𝑛 array elements and
replace it with the first element of the array.

2. Select the smallest element from the remaining 𝑛 − 1
elements of the array and replace it with the second
element of the array.

3. In general, in the 𝑖-th step, select the smallest element
from the remaining 𝑛 − 𝑖 elements and replace it with the
𝑖-th element.

4. After 𝑛 − 1 steps, the array is sorted.
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SelectSort – Example

89 45 68 90 29 34 17
17 45 68 90 29 34 89
17 29 68 90 45 34 89
17 29 34 90 45 68 89
17 29 34 45 90 68 89
17 29 34 45 68 90 89
17 29 34 45 68 89 90
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SelectSort – pseudocode

Input : Array 𝐴[0…𝑛 − 1] with ordering defined on
array elements

Output: Sorted array 𝐴
1 for 𝑖 ← 0 to 𝑛 − 2 do
2 𝑚𝑖𝑛 ← 𝑖;
3 for 𝑗 ← 𝑖 + 1 to 𝑛 − 1 do
4 if 𝐴[𝑗] < 𝐴[𝑚𝑖𝑛] then
5 𝑚𝑖𝑛 ← 𝑗;
6 end
7 end
8 Swap (𝐴[𝑖], 𝐴[𝑚𝑖𝑛]);
9 end
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Exchanging values of two variables

1 Procedure Swap(𝑥, 𝑦)
Input : Parameters 𝑥 and 𝑦 of the same data type
Output: Interchanged values of 𝑥 and 𝑦

2 𝑎𝑢𝑥 ← 𝑥;
3 𝑥 ← 𝑦;
4 𝑦 ← 𝑎𝑢𝑥;
5 end
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SelectSort – Analysis

1. Input size – number of elements 𝑛.
2. Basic operations – element comparison (sometimes
number of element swaps).

3. The number of basic operations depends only on 𝑛 –
worst, best and average cases merge.

4. Constructing equations

𝐶(𝑛) =
𝑛−2
∑
𝑖=0

𝑛−1
∑
𝑗=𝑖+1

1 =
𝑛−2
∑
𝑖=0
[(𝑛 − 1) − (𝑖 + 1) + 1]

=
𝑛−2
∑
𝑖=0
(𝑛 − 1 − 𝑖) = 12𝑛(𝑛 − 1) ≈

1
2𝑛

2 = Θ(𝑛2)
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SelectSort – Analysis (cont.)

Remarks
• The detailed calculation of the sum can be found in the
example “Uniqueness of elements” in the previous lesson.

• The complexity of the algorithm does not depend on the
unorderedness of the input array. So the algorithm is not
natural.

• But the algorithm is stable – the first of several identical
elements is always taken as the minimum.

• The algorithm is in situ – only a constant amount of extra
memory is needed.
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SelectSort

Animation
An animation of the SelectSort algorithm is available in a
separate file.
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Brute Force and Exhaustive Search
Sequential search



Sequential search

• Typical example of a brute force strategy solution.
• Strong side of the algorithm – simplicity.
• Weak side of the algorithm – high complexity.

Input : Array 𝐴[0…𝑛 − 1] and searched element 𝑥
Output: Index of the first occurrence of element 𝑥 in

array 𝐴, otherwise -1
1 for 𝑖 ← 0 to 𝑛 − 1 do
2 if 𝐴[𝑖] = 𝑥 then
3 return 𝑖;
4 end
5 end
6 return -1;

The algorithm is also referred to as linear search.
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Linear search – complexity

Number of comparisons

Worst-case scenario 𝑛

Best-case scenario 1

Average-case scenario 1
2𝑝(𝑛 + 1) + 𝑛(1 − 𝑝)

where 𝑝 is the probability of successful search
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Linear search – using a sentinel

Input : Array 𝐴[0…𝑛] and searched element 𝑥
Output: Index of the first occurrence of element 𝑥 in

array 𝐴, otherwise -1
1 𝐴[𝑛] ← 𝑥;
2 𝑖 ← 0;
3 while 𝐴[𝑖] ≠ 𝑥 do
4 𝑖 ← 𝑖 + 1;
5 end
6 if 𝑖 < 𝑛 then return 𝑖;
7 return -1;
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Brute Force and Exhaustive Search
Brute force string matching



Brute force string matching

Task

Find the pattern 𝑝 in the text 𝑡.

Brute Force Solution

1. Attach the pattern to the beginning of the text.
2. Start comparing characters in the pattern and the text.
3. If all characters of the pattern match the text – found.
4. If we find a mismatch, move the pattern one position
forward and continue with point 2

𝑡0 ⋯ 𝑡𝑖 ⋯ 𝑡𝑖+𝑗 ⋯ 𝑡𝑖+𝑚−1 ⋯ 𝑡𝑛−1
↕ ↕ ↕
𝑝0 ⋯ 𝑝𝑗 ⋯ 𝑝𝑚−1
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Brute force search – pseudocode

Input : Pattern 𝑝, text 𝑡 and starting position 𝑠
Output: Position of the first occurrence of 𝑝 in text 𝑡 or

-1
1 for 𝑖 ← 𝑠 to |𝑡| − |𝑝| do
2 𝑗 ← 0;
3 while 𝑗 < |𝑝| do
4 if 𝑝[𝑗] ≠ 𝑡[𝑖 + 𝑗] then break;
5 𝑗 ← 𝑗 + 1;
6 end
7 if 𝑗 = |𝑝| then return 𝑖;
8 end
9 return -1;
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Brute force search – example

First attempt
G C A T C G C A G A G A G T A T A C A G T A C G
1 2 3 4

G C A G A G A G

Shift by 1 character

Second attempt
G C A T C G C A G A G A G T A T A C A G T A C G

1

G C A G A G A G

Shift by 1 character
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Brute force search – example (cont.)

Third attempt
G C A T C G C A G A G A G T A T A C A G T A C G

1

G C A G A G A G

Shift by 1 character

Fourth attempt
G C A T C G C A G A G A G T A T A C A G T A C G

1

G C A G A G A G

Shift by 1 character
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Brute force search – example (cont.)

Fifth attempt
G C A T C G C A G A G A G T A T A C A G T A C G

1

G C A G A G A G

Shift by 1 character

Sixth attempt
G C A T C G C A G A G A G T A T A C A G T A C G

1 2 3 4 5 6 7 8

G C A G A G A G

Shift by 1 character
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Brute force search – example (cont.)

Seventh attempt
G C A T C G C A G A G A G T A T A C A G T A C G

1

G C A G A G A G

Shift by 1 character

Eighth attempt
G C A T C G C A G A G A G T A T A C A G T A C G

1

G C A G A G A G

Shift by 1 character
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Brute force search – example (cont.)

Ninth attempt
G C A T C G C A G A G A G T A T A C A G T A C G

1 2

G C A G A G A G

Shift by 1 character

Tenth attempt
G C A T C G C A G A G A G T A T A C A G T A C G

1

G C A G A G A G

Shift by 1 character
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Brute force search – example (cont.)

Eleventh attempt
G C A T C G C A G A G A G T A T A C A G T A C G

1 2

G C A G A G A G

Shift by 1 character

Twelfth attempt
G C A T C G C A G A G A G T A T A C A G T A C G

1

G C A G A G A G

Shift by 1 character

319/670



Brute force search – example (cont.)

Thirteenth attempt
G C A T C G C A G A G A G T A T A C A G T A C G

1 2

G C A G A G A G

Shift by 1 character

Fourteenth attempt
G C A T C G C A G A G A G T A T A C A G T A C G

1

G C A G A G A G

Shift by 1 character
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Brute force search – example (cont.)

Fifteenth attempt
G C A T C G C A G A G A G T A T A C A G T A C G

1

G C A G A G A G

Shift by 1 character

Sixteenth attempt
G C A T C G C A G A G A G T A T A C A G T A C G

1

G C A G A G A G

Shift by 1 character
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Brute force search – example (cont.)

Seventeenth attempt
G C A T C G C A G A G A G T A T A C A G T A C G

1

G C A G A G A G

Shift by 1 character

The algorithm performed a total of 30 character comparisons.
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Brute force string matching – algorithm complexity

• Input size – length of the text 𝑛 and length of the sample
𝑚.

• Basic operation – comparison of the sample character and
the text character.

• Dependency only on input size – no, it also depends on
when the first mismatch is found.

• Worst-case scenario – text 𝑎𝑛−1𝑏, sample 𝑎𝑚−1𝑏
• in each attempt we perform all 𝑚 comparisons of the
sample with the text

• at the same time, we make all 𝑛 − 𝑚 + 1 attempts.
• In total, we perform 𝑚(𝑛 − 𝑚 + 1) comparisons, the
algorithm falls into 𝑂(𝑚𝑛).

• Best-case scenario – sample is found at the beginning of
the text, complexity 𝑂(𝑚).

• Natural languages – shift occurs after several (𝑘𝐿)
comparisons, worst-case complexity 𝑂(𝑘𝐿𝑛) = 𝑂(𝑛).
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Brute Force and Exhaustive Search
Closest pair problem



Closest pair problem

Problem definition
Find two mutually closest points from a set of 𝑛 points.

• This is one of the problems of computational geometry.
• Points can lie in a plane or generally in some
multidimensional space.

• Points can represent real-world objects or records in a
database, texts...

• Examples of applications:
• Air traffic control – we are looking for the two closest
aircraft in airspace.

• Clustering – hierarchical clustering algorithms gradually
merge the closest clusters into one larger cluster.
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Closest pair problem – assumptions

Let’s assume a set of 𝑛 points {𝑃1, … , 𝑃𝑛}, to each point 𝑃𝑖
corresponds a vector ⃗𝑝𝑖 with components

⃗𝑝𝑖 = (𝑥𝑖, 𝑦𝑖)

in the usual Cartesian coordinates.

The distance of points ⃗𝑝𝑖 and ⃗𝑝𝑗 will be calculated using the
Euclidean distance

𝑑( ⃗𝑝𝑖, ⃗𝑝𝑗) = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2
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Closest pair problem – solution by brute force

• Calculate the distance of all pairs of points
⃗𝑝𝑖 and ⃗𝑝𝑗 and find the minimum.

• It is sufficient to calculate only pairs of
points for 𝑗 = 𝑖 + 1, …𝑛.

𝑗

𝑖

Input : Set of points { ⃗𝑝1, ⃗𝑝2, … , ⃗𝑝𝑛}
Output: Distance of the two closest points

1 Minimum distance←∞;
2 for 𝑖 ← 1 to 𝑛 − 1 do
3 for 𝑗 ← 𝑖 + 1 to 𝑛 do
4 Minimum distance←

min (Minimum distance, √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2);
5 end
6 end
7 return Minimum distance;
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Closest pair problem – solution by brute force, complexity

1. Input size – number of points 𝑛
2. Basic operation

• Calculation of square root – not a trivial matter1.
• Calculation of square root can be avoided – it is an
increasing function, we can look for the minimum of
“squares” of distances.

• We will take the exponentiation of differences of
coordinates as the basic operation.

3. Number of basic operations depends only on 𝑛 – worst,
best and average case are the same.
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Closest pair problem – solution by brute force, complexity
(cont.)

4. Establishment of relationships

𝐶(𝑛) =
𝑛−1
∑
𝑖=1

𝑛
∑
𝑗=𝑖+1

2 = 2
𝑛−1
∑
𝑖=1
(𝑛 − 𝑖)

= 2[(𝑛 − 1) + (𝑛 − 2) + ⋯ + 1] = (𝑛 − 1)𝑛 ∈ Θ(𝑛2)

5. Removal of square root – reduction of complexity by a
constant factor, no improvement in asymptotic complexity,
still Θ(𝑛2) algorithm.

6. Later we will show an algorithm with linear logarithmic
complexity.

1https://en.wikipedia.org/wiki/Methods_of_computing_
square_roots
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Brute Force and Exhaustive Search
Convex hull of a set



Convex Hull

Problem Statement
The task is to find the convex
hull of a set of points in space.

• This is one of the problems of computational geometry.
• Points can lie in a plane or generally in some
multidimensional space.

• Examples of applications:
• Collision detection – computer graphics, autonomous
vehicles,

• GIS – point sensors, creating an area from this data,
• Optimization tasks – the vertices of the convex hull are
extreme in some way; a convex polygon is created as the
intersection of a finite number of half-spaces; a half-space
is defined by an inequality…
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Convex set of points

Definition
A set of points 𝑀 in a plane is called convex, if for any pair of
points 𝑝, 𝑞 ∈ 𝑀 the line segment connecting points 𝑝 and 𝑞
belongs to the set 𝑀.

A set that is not convex is called non-convex.

If we imagine the boundary of the set as opaque, the convexity
of the set means intuitively that from each of its points every
point is visible.
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Convex set of points – examples

Convex shapes
Nonconvex shapes
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Convex hull

Definition
The convex hull of a set of points 𝑀 is called the smallest
convex set that contains 𝑀.

The expression ”smallest” means that the convex hull of the
set 𝑀 must be a subset of any other convex subset containing
the set 𝑀.

Convex hull

• two-element set – line segment connecting both points.
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Convex hull (cont.)

• three-element set – triangle, if the points do not lie on a
line, otherwise it is a line segment connecting the most
distant points.

Theorem
The convex hull of a set of points
𝑀 with more than two points
that do not lie on one line is a
convex polygon, whose vertices
belong to 𝑀. 𝑝1

𝑝2

𝑝3
𝑝4

𝑝5

𝑝6𝑝7

𝑝8

The points of the set 𝑀 that specify the convex hull 𝑀 are
called extreme points.
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Convex hull (cont.)

The problem of finding the convex hull of a set 𝑀 is reduced to
finding the extreme points.
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Convex hull – brute force solution

The line segment ⃗𝑝𝑖 ⃗𝑝𝑗 belongs to the convex hull of the set 𝑀 if
and only if all other points from 𝑀 lie in one of the half-planes
defined by the line ⃗𝑝𝑖 ⃗𝑝𝑗.

𝑝1

𝑝2

𝑝3
𝑝4

𝑝5

𝑝6𝑝7

𝑝8

𝑝1

𝑝2

𝑝3
𝑝4

𝑝5

𝑝6𝑝7

𝑝8
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Convex hull – brute force solution (cont.)

The general equation of the line passing through points ⃗𝑝𝑖 and
⃗𝑝𝑗 can be written as

𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0,

where

𝑎 = 𝑦𝑗 − 𝑦𝑖
𝑏 = 𝑥𝑖 − 𝑥𝑗
𝑐 = 𝑦𝑖𝑥𝑗 − 𝑥𝑖𝑦𝑗
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Convex hull – brute force solution (cont.)

The line defines two half-planes:

𝑎𝑥 + 𝑏𝑦 + 𝑐 < 0 (12)
𝑎𝑥 + 𝑏𝑦 + 𝑐 > 0 (13)

It is therefore sufficient to verify that for the remaining 𝑛 − 2
points, either inequality (12) or (13) holds.
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Convex hull – complexity analysis

• We must check all 12𝑛(𝑛 − 1) pairs of points and
simultaneously

• for each line defined by one pair of points we must verify
the validity of inequalities (??) and (??) for the remaining
𝑛 − 2 points.

• Overall, therefore [12𝑛(𝑛 − 1)] (𝑛 − 2) ∈ 𝑂(𝑛
3).
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Brute Force and Exhaustive Search
Exhaustive search



Exhaustive search

• Part of solving many problems – finding one element, with
some specific property, from a set of elements, so-called
domain, which exponentially or faster grows with the
problem size.

• The searched element is typically of combinatorial nature
– permutation, combination, subset.

• Typically it is about optimization tasks – typically we
search for maximum, minimum. For example, we minimize
path length, maximize profit.

Exhaustive search is a problem-solving strategy based on
brute force, consisting of testing all elements of the
considered domain.
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Traveling Salesman Problem – example

a b

c d

2

5
7 8

3

1

Route Route length 𝑙
𝑎 → 𝑏 → 𝑐 → 𝑑 → 𝑎 2 + 8 + 1 + 7 = 18
𝑎 → 𝑏 → 𝑑 → 𝑐 → 𝑎 2 + 3 + 1 + 5 = 11
𝑎 → 𝑐 → 𝑏 → 𝑑 → 𝑎 5 + 8 + 3 + 7 = 23
𝑎 → 𝑐 → 𝑑 → 𝑏 → 𝑎 5 + 1 + 3 + 2 = 11
𝑎 → 𝑑 → 𝑏 → 𝑐 → 𝑎 7 + 3 + 8 + 5 = 23
𝑎 → 𝑑 → 𝑐 → 𝑏 → 𝑎 7 + 1 + 8 + 2 = 18
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Exhaustive search
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Traveling Salesman Problem
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Knapsack problem
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Brute Force and Exhaustive Search
Graph traversal



Depth first and breadth first graph traversal
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Algorithm for depth-first graph traversal

Input : Graph 𝐺(𝑉, 𝐸), initial vertex 𝑠 ∈ 𝑉
Output: DF-tree

1 Init(𝑉 , 𝑠);
2 while stack ≠ ∅ do
3 𝑢 ← Top(stack);
4 switch state [u] do
5 case discovered do
6 ProcessDiscoveredVertex(u);
7 end
8 case current do
9 ProcessCurrentVertex(u);
10 end
11 end
12 end
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Algorithm for depth-first graph traversal (cont.)

1 Procedure Init(𝑉 , 𝑠)
Input : Vertices set 𝑉 , initial vertex 𝑠 ∈ 𝑉

2 foreach 𝑣 ∈ 𝑉 do
3 state [v]← unknown;
4 d [v]← undefined;
5 f [v]← undefined;
6 𝜋 [v]← undefined;
7 end
8 stack←∅;
9 state [s]← discovered;
10 Push(stack, 𝑠);
11 time← 0;
12 end
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Algorithm for depth-first graph traversal (cont.)

1 Procedure ProcessDiscoveredVertex(𝑢)
Input : Vertex 𝑢 ∈ 𝑉

2 state [u]← current;
3 d [u]← time← time + 1;
4 foreach 𝑣 ∈ Adj(G, u) do
5 if state [v] = unknown then
6 state [v]← discovered;
7 𝜋 [v]← u;
8 Push(stack, v);
9 end
10 end
11 end
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Algorithm for depth-first graph traversal (cont.)

1 Procedure ProcessCurrentVertex (𝑢)
Input : Vertex 𝑢 ∈ 𝑉

2 state [u]← finished;
3 f [u]← time← time + 1;
4 Pop(stack);
5 end
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Animation of depth-first graph traversal – legend

Graph vertices
gray vertex in unknown state
yellow vertex in discovered state
red vertex in current state
blue vertex in finished state

Graph edges
gray edge between vertices in unknown state or edge

not belonging to the DF-tree
yellow edge incident with vertices in discovered state
red edge incident with vertex in current state
blue edge between vertices in finished state
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Depth-first graph traversal, step 1

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A ∞ ∞ /
B ∞ ∞ /
C ∞ ∞ /
D ∞ ∞ /
E ∞ ∞ /

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ /
G ∞ ∞ /
H ∞ ∞ /
I ∞ ∞ /
J ∞ ∞ /

𝑆
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Depth-first graph traversal, step 2

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A ∞ ∞ /
B ∞ ∞ /
C ∞ ∞ /
D ∞ ∞ /
E ∞ ∞ /

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ /
G ∞ ∞ /
H ∞ ∞ /
I ∞ ∞ /
J ∞ ∞ /

A
𝑆
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Depth-first graph traversal, step 3

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ /
C ∞ ∞ /
D ∞ ∞ /
E ∞ ∞ /

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ /
G ∞ ∞ /
H ∞ ∞ /
I ∞ ∞ /
J ∞ ∞ /

A
𝑆
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Depth-first graph traversal, step 4

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C ∞ ∞ /
D ∞ ∞ /
E ∞ ∞ /

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ /
G ∞ ∞ /
H ∞ ∞ /
I ∞ ∞ /
J ∞ ∞ /

B
A
𝑆
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Depth-first graph traversal, step 5

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C ∞ ∞ /
D ∞ ∞ /
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ /
G ∞ ∞ /
H ∞ ∞ /
I ∞ ∞ /
J ∞ ∞ /

E
B
A
𝑆
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Depth-first graph traversal, step 6

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C ∞ ∞ /
D ∞ ∞ /
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ /
G ∞ ∞ A
H ∞ ∞ /
I ∞ ∞ /
J ∞ ∞ /

G
E
B
A
𝑆
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Depth-first graph traversal, step 7

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C ∞ ∞ /
D ∞ ∞ /
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ /
G 2 ∞ A
H ∞ ∞ /
I ∞ ∞ /
J ∞ ∞ /

G
E
B
A
𝑆
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Depth-first graph traversal, step 8

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C ∞ ∞ /
D ∞ ∞ /
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ /
G 2 ∞ A
H ∞ ∞ G
I ∞ ∞ /
J ∞ ∞ /

H
G
E
B
A
𝑆
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Depth-first graph traversal, step 9

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C ∞ ∞ /
D ∞ ∞ /
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ /
G 2 ∞ A
H 3 ∞ G
I ∞ ∞ /
J ∞ ∞ /

H
G
E
B
A
𝑆
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Depth-first graph traversal, step 10

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C ∞ ∞ /
D ∞ ∞ /
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ /
G 2 ∞ A
H 3 ∞ G
I ∞ ∞ H
J ∞ ∞ /

I
H
G
E
B
A
𝑆
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Depth-first graph traversal, step 11

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C ∞ ∞ /
D ∞ ∞ /
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ /
G 2 ∞ A
H 3 ∞ G
I 4 ∞ H
J ∞ ∞ /

I
H
G
E
B
A
𝑆
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Depth-first graph traversal, step 12

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C ∞ ∞ /
D ∞ ∞ /
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ I
G 2 ∞ A
H 3 ∞ G
I 4 ∞ H
J ∞ ∞ /

F
I
H
G
E
B
A
𝑆
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Depth-first graph traversal, step 13

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C ∞ ∞ /
D ∞ ∞ /
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ I
G 2 ∞ A
H 3 ∞ G
I 4 ∞ H
J ∞ ∞ I

J
F
I
H
G
E
B
A
𝑆
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Depth-first graph traversal, step 14

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C ∞ ∞ /
D ∞ ∞ /
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ I
G 2 ∞ A
H 3 ∞ G
I 4 ∞ H
J 5 ∞ I

J
F
I
H
G
E
B
A
𝑆
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Depth-first graph traversal, step 15

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C ∞ ∞ /
D ∞ ∞ J
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ I
G 2 ∞ A
H 3 ∞ G
I 4 ∞ H
J 5 ∞ I

D
J
F
I
H
G
E
B
A
𝑆
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Depth-first graph traversal, step 16

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C ∞ ∞ /
D 6 ∞ J
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ I
G 2 ∞ A
H 3 ∞ G
I 4 ∞ H
J 5 ∞ I

D
J
F
I
H
G
E
B
A
𝑆
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Depth-first graph traversal, step 17

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C ∞ ∞ D
D 6 ∞ J
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ I
G 2 ∞ A
H 3 ∞ G
I 4 ∞ H
J 5 ∞ I

C
D
J
F
I
H
G
E
B
A
𝑆
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Depth-first graph traversal, step 18

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C 7 ∞ D
D 6 ∞ J
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ I
G 2 ∞ A
H 3 ∞ G
I 4 ∞ H
J 5 ∞ I

C
D
J
F
I
H
G
E
B
A
𝑆
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Depth-first graph traversal, step 19

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C 7 8 D
D 6 ∞ J
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ I
G 2 ∞ A
H 3 ∞ G
I 4 ∞ H
J 5 ∞ I

D
J
F
I
H
G
E
B
A
𝑆
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Depth-first graph traversal, step 20

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C 7 8 D
D 6 9 J
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ I
G 2 ∞ A
H 3 ∞ G
I 4 ∞ H
J 5 ∞ I

J
F
I
H
G
E
B
A
𝑆

369/670



Depth-first graph traversal, step 21

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C 7 8 D
D 6 9 J
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F ∞ ∞ I
G 2 ∞ A
H 3 ∞ G
I 4 ∞ H
J 5 10 I

F
I
H
G
E
B
A
𝑆
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Depth-first graph traversal, step 22

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C 7 8 D
D 6 9 J
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F 11 ∞ I
G 2 ∞ A
H 3 ∞ G
I 4 ∞ H
J 5 10 I

F
I
H
G
E
B
A
𝑆
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Depth-first graph traversal, step 23

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C 7 8 D
D 6 9 J
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F 11 12 I
G 2 ∞ A
H 3 ∞ G
I 4 ∞ H
J 5 10 I

I
H
G
E
B
A
𝑆
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Depth-first graph traversal, step 24

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C 7 8 D
D 6 9 J
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F 11 12 I
G 2 ∞ A
H 3 ∞ G
I 4 13 H
J 5 10 I

H
G
E
B
A
𝑆
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Depth-first graph traversal, step 25

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C 7 8 D
D 6 9 J
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F 11 12 I
G 2 ∞ A
H 3 14 G
I 4 13 H
J 5 10 I

G
E
B
A
𝑆
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Depth-first graph traversal, step 26

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C 7 8 D
D 6 9 J
E ∞ ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F 11 12 I
G 2 15 A
H 3 14 G
I 4 13 H
J 5 10 I

E
B
A
𝑆
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Depth-first graph traversal, step 27

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C 7 8 D
D 6 9 J
E 16 ∞ A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F 11 12 I
G 2 15 A
H 3 14 G
I 4 13 H
J 5 10 I

E
B
A
𝑆
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Depth-first graph traversal, step 28

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B ∞ ∞ A
C 7 8 D
D 6 9 J
E 16 17 A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F 11 12 I
G 2 15 A
H 3 14 G
I 4 13 H
J 5 10 I

B
A
𝑆
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Depth-first graph traversal, step 29

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B 18 ∞ A
C 7 8 D
D 6 9 J
E 16 17 A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F 11 12 I
G 2 15 A
H 3 14 G
I 4 13 H
J 5 10 I

B
A
𝑆
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Depth-first graph traversal, step 30

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 ∞ /
B 18 19 A
C 7 8 D
D 6 9 J
E 16 17 A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F 11 12 I
G 2 15 A
H 3 14 G
I 4 13 H
J 5 10 I

A
𝑆
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Depth-first graph traversal, step 31

A
B

C D

E
F

G
H

I
J

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
A 1 20 /
B 18 19 A
C 7 8 D
D 6 9 J
E 16 17 A

𝑣 𝑑[𝑣] 𝑓[𝑣] 𝜋[𝑣]
F 11 12 I
G 2 15 A
H 3 14 G
I 4 13 H
J 5 10 I

𝑆
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Algorithm for breadth-first graph traversal

Input : Graph 𝐺(𝑉, 𝐸), initial vertex 𝑠 ∈ 𝑉
Output: BF tree

1 foreach 𝑢 ∈ 𝑉/{𝑠} do
2 state [u]← unknown;
3 d [u]←∞;
4 𝜋 [u]← nothing;
5 end
6 Q←∅;
7 state [s]← discovered;
8 d [s]← 0;
9 𝜋 [s]← nothing;
10 Enqueue(Q, s);
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Algorithm for breadth-first graph traversal (cont.)

11 while Q ≠ ∅ do
12 𝑢 ← Dequeue(Q);
13 foreach 𝑣 ∈ Adj(G, u) do
14 if state [v] = unknown then
15 state [v]← discovered;
16 d [v]← d [u] + 1;
17 𝜋 [v]← u;
18 Enqueue (Q,v);
19 end
20 end
21 state [u]← finished;
22 end
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Animation of breadth-first graph traversal – legend

Graph vertices
grey vertex in unknown state
yellow vertex in discovered state
red currently processed vertex
blue vertex in finished state

Graph edges
grey edge between vertices in unknown state or edge

not belonging to the BF-tree
yellow edge incident with vertices in discovered state
red edge incident with currently processed vertex
blue edge between vertices in finished state
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Breadth-first graph traversal, step 1

A
B

C D

E
F

G
H

I
J

𝑄

𝑣 𝑑[𝑣] 𝜋[𝑣]
A ∞ /
B ∞ /
C ∞ /
D ∞ /
E ∞ /
F ∞ /
G ∞ /
H ∞ /
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 2

A
B

C D

E
F

G
H

I
J

𝑄 A

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B ∞ /
C ∞ /
D ∞ /
E ∞ /
F ∞ /
G ∞ /
H ∞ /
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 3

A
B

C D

E
F

G
H

I
J

𝑄

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B ∞ /
C ∞ /
D ∞ /
E ∞ /
F ∞ /
G ∞ /
H ∞ /
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 4

A
B

C D

E
F

G
H

I
J

𝑄 B

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C ∞ /
D ∞ /
E ∞ /
F ∞ /
G ∞ /
H ∞ /
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 5

A
B

C D

E
F

G
H

I
J

𝑄 B E

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C ∞ /
D ∞ /
E 1 A
F ∞ /
G ∞ /
H ∞ /
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 6

A
B

C D

E
F

G
H

I
J

𝑄 B E G

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C ∞ /
D ∞ /
E 1 A
F ∞ /
G 1 A
H ∞ /
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 7

A
B

C D

E
F

G
H

I
J

𝑄 B E G

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C ∞ /
D ∞ /
E 1 A
F ∞ /
G 1 A
H ∞ /
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 8

A
B

C D

E
F

G
H

I
J

𝑄 E G

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C ∞ /
D ∞ /
E 1 A
F ∞ /
G 1 A
H ∞ /
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 9

A
B

C D

E
F

G
H

I
J

𝑄 E G C

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D ∞ /
E 1 A
F ∞ /
G 1 A
H ∞ /
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 10

A
B

C D

E
F

G
H

I
J

𝑄 E G C

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D ∞ /
E 1 A
F ∞ /
G 1 A
H ∞ /
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 11

A
B

C D

E
F

G
H

I
J

𝑄 G C

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D ∞ /
E 1 A
F ∞ /
G 1 A
H ∞ /
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 12

A
B

C D

E
F

G
H

I
J

𝑄 G C F

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D ∞ /
E 1 A
F 2 E
G 1 A
H ∞ /
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 13

A
B

C D

E
F

G
H

I
J

𝑄 G C F H

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D ∞ /
E 1 A
F 2 E
G 1 A
H 2 E
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 14

A
B

C D

E
F

G
H

I
J

𝑄 G C F H

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D ∞ /
E 1 A
F 2 E
G 1 A
H 2 E
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 15

A
B

C D

E
F

G
H

I
J

𝑄 C F H

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D ∞ /
E 1 A
F 2 E
G 1 A
H 2 E
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 16

A
B

C D

E
F

G
H

I
J

𝑄 C F H

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D ∞ /
E 1 A
F 2 E
G 1 A
H 2 E
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 17

A
B

C D

E
F

G
H

I
J

𝑄 F H

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D ∞ /
E 1 A
F 2 E
G 1 A
H 2 E
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 18

A
B

C D

E
F

G
H

I
J

𝑄 F H D

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D 3 C
E 1 A
F 2 E
G 1 A
H 2 E
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 19

A
B

C D

E
F

G
H

I
J

𝑄 F H D

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D 3 C
E 1 A
F 2 E
G 1 A
H 2 E
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 20

A
B

C D

E
F

G
H

I
J

𝑄 H D

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D 3 C
E 1 A
F 2 E
G 1 A
H 2 E
I ∞ /
J ∞ /
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Breadth-first graph traversal, step 21

A
B

C D

E
F

G
H

I
J

𝑄 H D I

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D 3 C
E 1 A
F 2 E
G 1 A
H 2 E
I 3 F
J ∞ /

404/670



Breadth-first graph traversal, step 22

A
B

C D

E
F

G
H

I
J

𝑄 H D I

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D 3 C
E 1 A
F 2 E
G 1 A
H 2 E
I 3 F
J ∞ /
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Breadth-first graph traversal, step 23

A
B

C D

E
F

G
H

I
J

𝑄 D I

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D 3 C
E 1 A
F 2 E
G 1 A
H 2 E
I 3 F
J ∞ /
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Breadth-first graph traversal, step 24

A
B

C D

E
F

G
H

I
J

𝑄 D I

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D 3 C
E 1 A
F 2 E
G 1 A
H 2 E
I 3 F
J ∞ /
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Breadth-first graph traversal, step 25

A
B

C D

E
F

G
H

I
J

𝑄 I

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D 3 C
E 1 A
F 2 E
G 1 A
H 2 E
I 3 F
J ∞ /
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Breadth-first graph traversal, step 26

A
B

C D

E
F

G
H

I
J

𝑄 I J

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D 3 C
E 1 A
F 2 E
G 1 A
H 2 E
I 3 F
J 4 D
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Breadth-first graph traversal, step 27

A
B

C D

E
F

G
H

I
J

𝑄 I J

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D 3 C
E 1 A
F 2 E
G 1 A
H 2 E
I 3 F
J 4 D
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Breadth-first graph traversal, step 28

A
B

C D

E
F

G
H

I
J

𝑄 J

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D 3 C
E 1 A
F 2 E
G 1 A
H 2 E
I 3 F
J 4 D
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Breadth-first graph traversal, step 29

A
B

C D

E
F

G
H

I
J

𝑄 J

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D 3 C
E 1 A
F 2 E
G 1 A
H 2 E
I 3 F
J 4 D
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Breadth-first graph traversal, step 30

A
B

C D

E
F

G
H

I
J

𝑄

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D 3 C
E 1 A
F 2 E
G 1 A
H 2 E
I 3 F
J 4 D

413/670



Breadth-first graph traversal, step 31

A
B

C D

E
F

G
H

I
J

𝑄

𝑣 𝑑[𝑣] 𝜋[𝑣]
A 0 /
B 1 A
C 2 B
D 3 C
E 1 A
F 2 E
G 1 A
H 2 E
I 3 F
J 4 D
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Depth-first and breadth-first graph traversal

Animation
For both graph traversal algorithms, two animations are
available:

• path search in a maze and
• application in computer graphics – area filling.

The animations are available as separate file animations.
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Sources for independent study

• Brute force problem solving strategies
• book [2], chapter 3, pages 97 – 98

• Selection sort
• book [2], chapter 3.1, pages 98 – 100

• Bubble sort
• book [2], chapter 3.1, pages 100 – 101

• Shaker sort
• book [4], chapter 4, pages 78 – 79

• Sequential search
• book [2], chapter 3.2, pages 104 – 104

• Brute force string matching
• book [2], chapter 3.2, pages 105 – 106
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Sources for independent study (cont.)

• Closest pair problem
• book [2], chapter 3.3, pages 108 – 109

• Convex hull problem
• book [2], chapter 3.3, pages 109 – 113

• Exhaustive search
• book [2], chapter 3.4, page 115

• Traveling salesman problem
• book [2], chapter 3.4, page 116

• Knapsack problem
• book [2], chapter 3.4, pages 116 – 117

• Depth-first graph traversal
• book [2], chapter 3.5, pages 122 – 125

• Breadth-first graph traversal
• book [2], chapter 3.5, pages 125 – 128
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Thanks for your attention
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Decrease and Conquer

Jiří Dvorský, Ph.D.

Department of Computer Science
VSB – Technical University of Ostrava
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Decrease and Conquer
Sorting by insertion – Insertion Sort



Decrease and Conquer
Topological sorting



Decrease and Conquer
Generating combinatorial objects



Generating combinatorial objects

• Generating combinations, variations, permutations,
subsets is part of various algorithms.

• Typically it involves selecting some alternative, option,
setting parameters...

• Examples – Traveling salesman problem, Knapsack
problem.

• Mathematics is more interested in counting these objects,
while computer science seeks algorithms to generate
them.

• The number of these objects grows exponentially or even
faster!
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Generating permutations

• We will generate permutations of integers 1, 2, … , 𝑛.
• More generally, we can generate permutations of elements
{𝑎1, 𝑎2, … , 𝑎𝑛}.

• Using the decrease and conquer strategy:
1. Generating 𝑛! permutations for 𝑛 elements is reduced to
generating (𝑛 − 1)! permutations of 𝑛 − 1 elements.

2. Once we have solved the problem for 𝑛 − 1, we insert
element 𝑛 into all 𝑛 possible positions in each of the
(𝑛 − 1)! permutations.

3. In other words, we have (𝑛 − 1)! permutations, and for each
of them, we generate 𝑛 additional ones. Overall, we obtain
𝑛(𝑛 − 1)! = 𝑛! permutations.
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Generating permutations – example

permutation of element 1 1

insertion of 2 into permutation 1 from right to left 12 21

insertion of 3 into permutation 12 from right to left 123 132 312
insertion of 3 into permutation 21 from left to right 321 231 213

What is evident from the example?

• All permutations are mutually distinct.
• Minimal change between permutations – two consecutive
permutations differ by swapping a single pair of elements
and even adjacent elements.
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Johnson-Trotter algorithm

• Is there a possibility to generate permutations of 𝑛
elements? Without the need to generate permutations for
𝑛 − 1? Yes, there is.

• We assign an arrow (direction) to each of the 𝑛 elements
of the permutation, either to the left or to the right.

• We say that an element 𝑘 is mobile in a given permutation
if the neighboring element in the direction of the arrow of
element 𝑘 is smaller than 𝑘.

Example
Permutation with arrows

3⃗ 2⃖ 4⃗ 1⃗

Elements 3 and 4 are mobile, elements 2 and 1 are not
mobile. 422/670



Johnson-Trotter algorithm

Input : Natural number 𝑛
Output: List of all permutations of numbers {1, … , 𝑛}

1 𝜋 ← 1⃖ 2⃖ … �⃖�;
2 while 𝜋 contains a mobile element do
3 𝑘 ← largest mobile element in 𝜋;
4 swap in 𝜋 the element 𝑘 with its neighbor in the

direction of the arrow;
5 change the direction of the arrow for all elements

greater than 𝑘;
6 insert the newly created permutation (step 4) 𝜋 into

the resulting list;
7 end
8 return list of all permutations;
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Johnson-Trotter algorithm – example

Example of generating permutations for 𝑛 = 3

1⃖ 2⃖ 3⃖
1⃖ 3⃖ 2⃖
3⃖ 1⃖ 2⃖
3⃗ 2⃖ 1⃖
2⃖ 3⃗ 1⃖
2⃖ 1⃖ 3⃗

We say that an element 𝑘 is mobile in a given permutation if
the neighboring element in the direction of the arrow of
element 𝑘 is smaller than 𝑘.
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Johnson-Trotter algorithm – example, 𝑛 = 4

1⃖ 2⃖ 3⃖ 4⃖
1⃖ 2⃖ 4⃖ 3⃖
1⃖ 4⃖ 2⃖ 3⃖
4⃖ 1⃖ 2⃖ 3⃖
4⃗ 1⃖ 3⃖ 2⃖
1⃖ 4⃗ 3⃖ 2⃖

1⃖ 3⃖ 4⃗ 2⃖
1⃖ 3⃖ 2⃖ 4⃗
3⃖ 1⃖ 2⃖ 4⃖
3⃖ 1⃖ 4⃖ 2⃖
3⃖ 4⃖ 1⃖ 2⃖
4⃖ 3⃖ 1⃖ 2⃖

4⃗ 3⃗ 2⃖ 1⃖
3⃗ 4⃗ 2⃖ 1⃖
3⃗ 2⃖ 4⃗ 1⃖
3⃗ 2⃖ 1⃖ 4⃗
2⃖ 3⃗ 1⃖ 4⃖
2⃖ 3⃗ 4⃖ 1⃖

2⃖ 4⃖ 3⃗ 1⃖
4⃖ 2⃖ 3⃗ 1⃖
4⃗ 2⃖ 1⃖ 3⃗
2⃖ 1⃖ 4⃗ 3⃗
2⃖ 1⃖ 3⃗ 4⃗
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Johnson-Trotter algorithm

• One of the most efficient algorithms for generating
permutations.

• The time complexity of the algorithm is Θ(𝑛!).
• The ”fearsome” complexity of the algorithm, however, is
not caused by the algorithm itself, which works very
quickly. It is caused by the enormous number of
permutations that must be generated...
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Thanks for your attention
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Divide and Conquer

Jiří Dvorský, Ph.D.

Department of Computer Science
VSB – Technical University of Ostrava
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Divide and Conquer Solution Strategy
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Master Theorem
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Divide and Conquer
Multiplication of Large Integers



Multiplication of Large Integers

• Multiplication of ”ordinary” integers is
handled by the processor.

• What about multiplying much larger
numbers, with hundreds of digits? For
example, in cryptography.

• Certainly, it would be possible to
implement an algorithm similar to
manual multiplication.

• Its implementation requires 𝑛2 digit
multiplications, where 𝑛 is the number
of digits.

2 3
1 4
9 2

2 3 0
3 2 2

Question to Solve
Can this be done faster? Or is this the best possible
algorithm? 430/670



Multiplication of large integers – multiplication of 23 and 14

We determine the decimal expansion of numbers

23 = 2 ⋅ 101 + 3 ⋅ 100

14 = 1 ⋅ 101 + 4 ⋅ 100

And multiply both expansions with each other

23 × 14 = (2 ⋅ 101 + 3 ⋅ 100) × (1 ⋅ 101 + 4 ⋅ 100)
= (2 × 1) ⋅ 102 + (2 × 4 + 3 × 1) ⋅ 101 + (3 × 4) ⋅ 100

= 322

For the computation, we needed 4 multiplications (denoted by
×), i.e., 𝑛2 multiplications.
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Multiplication of large integers – multiplication of 23 and 14
(cont.)

The middle term (tens) can also be evaluated as follows

2 × 4 + 3 × 1 = (2 + 3) × (1 + 4) − 2 × 1 − 3 × 4

Have we not seen the expressions 2 × 1 and 3 × 4 somewhere
else?

More generally, let 𝑎 = 𝑎1𝑎0 and 𝑏 = 𝑏1𝑏0 then

𝑐 = 𝑎 × 𝑏 = 𝑐2 ⋅ 102 + 𝑐1 ⋅ 101 + 𝑐0,

where

• 𝑐2 = 𝑎1 × 𝑏1 is the product of the first digits,
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Multiplication of large integers – multiplication of 23 and 14
(cont.)

• 𝑐0 = 𝑎0 × 𝑏0 is the product of the second digits and
• 𝑐1 = (𝑎1 + 𝑎0) × (𝑏1 + 𝑏0) − (𝑐2 + 𝑐0) is the product of the
sums of digits 𝑎 and 𝑏 minus the digits 𝑐2 and 𝑐0.
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Multiplication of large integers – divide and conquer

Let us have two 𝑛-digit numbers 𝑎 and 𝑏, where 𝑛 is an even
natural number.

We will denote the first half of the digits of the number 𝑎 as 𝑎1,
the second half as 𝑎0. The notation 𝑎 = 𝑎1𝑎0 will be
understood as

𝑎 = 𝑎1𝑎0 = 𝑎1 ⋅ 10𝑛/2 + 𝑎0
A similar relationship holds for 𝑏 = 𝑏1𝑏0.
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Multiplication of large integers – divide and conquer

The product 𝑐 = 𝑎 × 𝑏 can be written as
𝑐 = (𝑎1 ⋅ 10𝑛/2 + 𝑎0) × (𝑏1 ⋅ 10𝑛/2 + 𝑏0)

= (𝑎1 × 𝑏1) ⋅ 10𝑛 + (𝑎1 × 𝑏0 + 𝑎0 × 𝑏1) ⋅ 10𝑛/2 + (𝑎0 × 𝑏0)
= 𝑐2 ⋅ 10𝑛 + 𝑐1 ⋅ 10𝑛/2 + 𝑐0,

where

• 𝑐2 = 𝑎1 × 𝑏1 is the product of the first halves,
• 𝑐0 = 𝑎0 × 𝑏0 is the product of the second halves and
• 𝑐1 = (𝑎1 + 𝑎0) × (𝑏1 + 𝑏0) − (𝑐2 + 𝑐0) is the product of the sums
of halves of numbers 𝑎 and 𝑏 minus the sum of 𝑐2 and 𝑐0.

The numbers 𝑐2, 𝑐1 and 𝑐0 are computed in the same way –
recursive algorithm.

Termination of recursion: 𝑛 = 1 or numbers 𝑎, 𝑏 can be
multiplied using hardware.
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Multiplication of large integers – number of multiplications

• The number of multiplications necessary for computing
the product of two 𝑛-digit numbers will be denoted as
𝑀(𝑛).

• Computing the product requires 3 multiplications of
numbers of half the size. Multiplication of numbers for
𝑛 = 1 requires one multiplication. Thus

𝑀(𝑛) = 3𝑀 (𝑛2) for 𝑛 > 1
𝑀(1) = 1
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Multiplication of large integers – number of multiplications
(cont.)

• By the method of backward substitution for 𝑛 = 2𝑘 we get

𝑀 (2𝑘) = 3𝑀 (2𝑘−1) = 3 [3𝑀 (2𝑘−2)] = 32𝑀 (2𝑘−2)
⋮
= 3𝑖𝑀(2𝑘−𝑖)
⋮
= 3𝑘𝑀(2𝑘−𝑘) = 3𝑘
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Multiplication of large integers – number of multiplications
(cont.)

• Since 𝑘 = log2 𝑛 we further get

𝑀(𝑛) = 3log2 𝑛 = 𝑛𝑙𝑜𝑔23 ≈ 𝑛1,585

Remarks
1. For logarithms, the property 𝑎log𝑏 𝑐 = 𝑐log𝑏 𝑎 holds.
2. The recursion does not necessarily have to continue until 𝑛 = 1,
it can be stopped earlier and for small 𝑛 the standard algorithm
can be used.
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Multiplication of large integers – number of additions and sub-
tractions

• But what about addition and subtraction? Is the lower
number of multiplications offset by a higher number of
additions and multiplications?

• Let us denote 𝐴(𝑛) as the number of additions and
subtractions when multiplying two 𝑛-digit numbers.

• In addition to 3𝐴 (𝑛2 ) operations necessary for the recursive
computation of 𝑐2, 𝑐1 and 𝑐0, we need 5 additions and 1
subtraction (marked in color on slide 435), so

𝐴(𝑛) = 3𝐴 (𝑛2) + 𝑐𝑛 for 𝑛 > 1
𝐴(1) = 1
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Multiplication of large integers – number of additions and sub-
tractions (cont.)

• According to the relation (??), the Master theorem, we get

𝐴(𝑛) ∈ Θ (𝑛log2 3)

• The total number of additions and subtractions grows
asymptotically at the same rate as the number of
multiplications.
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Multiplication of large integers – history

• The author of the algorithm is Soviet mathematician
Anatolij Alexejevič Karacuba (1937 – 2008), who presented
it in 1960.

• Until then, the prevailing opinion was that the traditional
algorithm is asymptotically optimal.

• So it makes sense to deal with already “resolved”
problems :-)

• The question is when to use the standard algorithm and
when to use the algorithm based on the divide and
conquer strategy.
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Divide and Conquer
Strassen’s Matrix Multiplication



Strassen’s Matrix Multiplication

• Is brute force matrix multiplication the best possible
strategy?

• The complexity of brute force multiplication is Θ(𝑛3).
• An asymptotically better algorithm was introduced by
Volker Strassen in 1969.

• The initial “discovery” – multiplying square matrices of
order 2 can be done with 7 multiplications, unlike 8 for
brute force.
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Strassen’s matrix multiplication of order 2

(𝑐0,0 𝑐0,1
𝑐1,0 𝑐1,1

) = (𝑎0,0 𝑎0,1
𝑎1,0 𝑎1,1

) × (𝑏0,0 𝑏0,1
𝑏1,0 𝑏1,1

)

= (𝑚1 + 𝑚4 − 𝑚5 + 𝑚7 𝑚3 + 𝑚5
𝑚2 + 𝑚4 𝑚1 + 𝑚3 − 𝑚2 + 𝑚6

)

𝑚1 = (𝑎0,0 + 𝑎1,1)(𝑏0,0 + 𝑏1,1)
𝑚2 = (𝑎1,0 + 𝑎1,1)𝑏0,0
𝑚3 = 𝑎0,0(𝑏0,1 − 𝑏1,1)
𝑚4 = 𝑎1,1(𝑏1,0 − 𝑏0,0)

𝑚5 = (𝑎0,0 + 𝑎0,1)𝑏1,1
𝑚6 = (𝑎1,0 − 𝑎0,0)(𝑏0,0 + 𝑏0,1)
𝑚7 = (𝑎0,1 − 𝑎1,1)(𝑏1,0 + 𝑏1,1)
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Strassen’s Matrix Multiplication

• Operation counts for 2 × 2 matrices:

Brute Force Strassen
Number of multiplications 8 7

Number of additions and subtractions 4 18
• Multiplying 2 × 2 matrices in this way is obviously
nonsense. But!
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Strassen’s Matrix Multiplication (cont.)

• We can reformulate the relationships to convert matrix
multiplication of 𝑛 × 𝑛 matrices into submatrices of order
𝑛
2 ×

𝑛
2 as follows:

( 𝐶0,0 𝐶0,1
𝐶1,0 𝐶1,1

) = ( 𝐴0,0 𝐴0,1
𝐴1,0 𝐴1,1

) × ( 𝐵0,0 𝐵0,1
𝐵1,0 𝐵1,1

)

• The submatrix 𝐶0,0 can be computed either as

𝐶0,0 = 𝐴0,0 × 𝐵0,0 + 𝐴0,1 × 𝐵1,0
or as

𝐶0,0 = 𝑀1 + 𝑀4 − 𝑀5 + 𝑀7
• The matrices 𝑀1, …𝑀7 are computed in the same recursive
manner.
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Strassen’s matrix multiplication – complexity analysis

The number of multiplications 𝑀(𝑛) for 𝑛 × 𝑛 matrices is given
by the recursive equation:

𝑀(𝑛) = 7𝑀 (𝑛2) for 𝑛 > 1
𝑀(1) = 1

Assuming 𝑛 = 2𝑘, we obtain
𝑀 (2𝑘) = 7𝑀 (2𝑘−1) = 7 [7𝑀 (2𝑘−2)] = 72𝑀 (2𝑘−2)

⋮
= 7𝑖𝑀 (2𝑘−𝑖)
⋮
= 7𝑘𝑀(2𝑘−𝑘) = 7𝑘.

Since 𝑘 = log2 𝑛 and thus
𝑀(𝑛) = 7log2 𝑛 = 𝑛log2 7 ≈ 𝑛2.807 < 𝑛3 446/670



Strassen’s matrix multiplication – complexity analysis, addition

• But does the number of additions 𝐴(𝑛) for 𝑛 × 𝑛 matrices
not grow too quickly?

• For multiplying 𝑛 × 𝑛 matrices we need:
1. to compute 7 submatrices of order 𝑛

2 ×
𝑛
2 and

2. to perform 18 additions/subtractions of submatrices of
order 𝑛

2 ×
𝑛
2 .

So

𝐴(𝑛) = 7𝐴 (𝑛2) + 18 (
𝑛
2)

2
for 𝑛 > 1

𝐴(1) = 0
• According to the relation (??), Master theorem, we get

𝐴(𝑛) ∈ Θ (𝑛log2 7)
• It follows that Strassen’s matrix multiplication has an
asymptotic complexity of Θ (𝑛log2 7), which is less than the
brute force solution.
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Divide and Conquer
Convex hull of a set



Thanks for your attention
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Algorithms II – Subject Syllabus
Software



Software

Primary Software

• C++ Development Environment
• C++ Documentation

Additional Software

• Doxygen Documentation System, www.doxygen.org
• Typography System LATEX, www.ctan.org
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Development Environment for C++

• Microsoft Visual Studio Community 2022 is available for
classroom use.

• I recommend this development environment for home
study.

• In general, any development environment with a compiler
that supports at least the C++17 specification can be used.
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Development Environment for C++ (cont.)

Remarks
1. The Microsoft Visual C++ compiler and the C++17 language
specification will be used to evaluate your projects.

2. The C language is not identical to C++!
3. Beware of non-standard C++ language extensions
implemented in the GNU C++ compiler.

• For example, a variable length array is such an extension.
• It is recommended to compile with the
-pedantic-errors option enabled, see Options to
Request or Suppress Warnings.
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Study Literature

The study literature can be divided into two groups:

• mandatory literature – strategies of algorithmic problems
solving and

• recommended literature – C++ programming language.

The study literature is shared across Algorithms I and
Algorithms courses.
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Mandatory Study Literature

1. LEVITIN, Anany. Introduction to the Design and Analysis of
Algorithms. 3rd ed. Boston: Pearson, 2012. ISBN
978-0-13-231681-1.

2. CORMEN, Thomas H., Charles Eric LEISERSON, Ronald L.
RIVEST a Clifford STEIN, 2022. Introduction to algorithms.
Fourth edition. Cambridge, Massachusetts: The MIT Press.
ISBN 978-026-2046-305.

3. SEDGEWICK, Robert, 1998. Algorithms in C++. 3rd ed.
Reading, Mass: Addison-Wesley. ISBN 978-020-1350-883.
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Recommended study literature

1. STROUSTRUP, Bjarne., 2013. The C++ programming
language. Fourth edition. Upper Saddle River, NJ:
Addison-Wesley. ISBN 978-0321563842.

2. CADENHEAD, Rogers a Jesse LIBERTY, 2017. Sams teach
yourself C in 24 hours. Sixth edition. Indianapolis, Indiana:
Pearson Education. ISBN 978-0672337468.

454/670



Thanks for your attention
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Solution strategy transform and solve

Biphasic strategy
1. transformation
2. solution

Instance
problem

simple instance of problem
or

other representation of problem
or

instance other problem

Solution
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Transform and Conquer
Presorting



Data sorting

• A relatively old idea that motivated, among other things,
research into sorting algorithms.

• Sorted data lead to significantly simpler algorithms, “order
must be”.

• Prerequisites:
1. data is stored in an array – sorting an array is easier than
sorting a list for s do

o
end
rting we use an algorithm with complexity Θ(𝑛 log𝑛) –
typically QuickSort, MergeSort.

• Usage: geometric algorithms, graph algorithms, caustic
algorithms.
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Unity of elements in the array

Background
We are given an array 𝐴 with 𝑛 elements. We have to
determine whether each element occurs exactly once in the
array 𝐴.

Rough force solution – compare all pairs of elements until:

1. does not find a pair of the same elements or
2. tested all pairs of elements.

The time complexity is in the worst case Θ(𝑛2).
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Unity of elements in the array

ALGORITHM PresortElementUniqueness(A[0..n − 1])

//Solves the element uniqueness problem by sorting the array first
//Input: An array A[0..n − 1] of orderable elements
//Output: Returns “true” if A has no equal elements, “false” otherwise
sort the array A

for i ← 0 to n − 2 do
if A[i] = A[i + 1] return false

return true

Algorithm time complexity

𝑇(𝑛) = 𝑇𝑠𝑜𝑟𝑡(𝑛) + 𝑇𝑠𝑐𝑎𝑛(𝑛) ∈ Θ(𝑛 log𝑛) + Θ(𝑛) = Θ(𝑛 log𝑛)
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Module count

Background
We are given an array 𝐴 with 𝑛 elements. We have to
determine which element occurs most often in the array. This
element is called modus.

For simplicity, we will assume that there is only one modus in
the array 𝐴.

Rough force solution

For each element 𝑎𝑖 ∈ 𝐴, search the auxiliary list 𝐿:
1. If we find a match, we increment the corresponding
frequency,

2. otherwise, insert the element 𝑎𝑖 at the end of the list with
frequency 1.
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Mod calculation – time complexity of brute force solution

• Worst case – all elements in array 𝐴 are different.
• For 𝑎𝑖 we have to do 𝑖 − 1 comparison with elements in the
list 𝐿 before we add a new element to the end of it.

• The number of comparisons is equal to

𝐶(𝑛) =
𝑛
∑
𝑖=1
(𝑖 − 1) = 0 + 1 + ⋯ + (𝑛 − 1) = 12𝑛(𝑛 − 1) ∈ Θ(𝑛

2)

• Finding the maximum requires 𝑛 − 1 comparisons, which
does not affect the quadratic complexity of the algorithm.
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Mod calculation – data presort

• If we sort the array 𝐴, the identical elements in the array 𝐴
will be next to each other.

• To calculate the mode, it is enough to find the longest run
of identical elements in 𝐴.

• Time complexity

𝑇(𝑛) = 𝑇𝑠𝑜𝑟𝑡(𝑛) + 𝑇𝑠𝑐𝑎𝑛(𝑛) ∈ Θ(𝑛 log𝑛) + Θ(𝑛) = Θ(𝑛 log𝑛)
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Module count

ALGORITHM PresortMode(A[0..n − 1])

//Computes the mode of an array by sorting it first
//Input: An array A[0..n − 1] of orderable elements
//Output: The array’s mode
sort the array A

i ← 0 //current run begins at position i

modef requency ← 0 //highest frequency seen so far
while i ≤ n − 1 do

runlength ← 1; runvalue ← A[i]
while i + runlength ≤ n − 1 and A[i + runlength] = runvalue

runlength ← runlength + 1
if runlength > modef requency

modef requency ← runlength; modevalue ← runvalue

i ← i + runlength

return modevalue
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Search for element 𝑥 in array 𝐴 of length 𝑛

• The brute force solution leads to an algorithm requiring 𝑛
comparisons in the worst case.

• After sorting the array, the interval halving algorithm can
be used, which requires ⌊log2 𝑛⌋ + 1 comparison in the
worst case.

• The time complexity of the algorithm will then be

𝑇(𝑛) = 𝑇𝑠𝑜𝑟𝑡(𝑛) + 𝑇𝑠𝑒𝑎𝑟𝑐ℎ(𝑛) = Θ(𝑛 log𝑛) +Θ(log𝑛) = Θ(𝑛 log𝑛),

which is more than the complexity of sequential search!!!
• But for repeated searches it is already worth sorting the 𝐴
field.
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Resources for self-study

• Book [2], chapter 6.1, pages 202 – 205
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Gaussian Elimination Method – Motivation

A system of two equations with two unknowns

𝑎11𝑥 + 𝑎12𝑦 = 𝑏1
𝑎21𝑥 + 𝑎22𝑦 = 𝑏2

can be solved relatively easily – for example, we can express
the variable 𝑥 as a function of 𝑦, substitute it into the second
equation, and solve the equation.

Problem
How to solve a system of 𝑛 equations with 𝑛 unknowns? In
the same way?
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Gaussian elimination method

System of 𝑛 linear equations with 𝑛 unknowns
𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯ + 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

is transformed into an equivalent system of equations, where
all coefficients below the main diagonal are zero

𝑎′11𝑥1 + 𝑎′12𝑥2 + ⋯ + 𝑎′1𝑛𝑥𝑛 = 𝑏′1
𝑎′22𝑥2 + ⋯ + 𝑎′2𝑛𝑥𝑛 = 𝑏′2

⋮
𝑎′𝑛𝑛𝑥𝑛 = 𝑏′𝑛
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Gaussian Elimination Method – Matrix Notation

A ⃗𝑥 = �⃗� ⟹ A′ ⃗𝑥 = �⃗�′

where

A = (

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

) �⃗� = (

𝑏11
𝑏21

⋮
𝑏𝑛1

)

A′ = (

𝑎′11 𝑎12 ⋯ 𝑎′1𝑛
0 𝑎′22 ⋯ 𝑎′2𝑛
⋮ ⋮
0 0 ⋯ 𝑎′𝑛𝑛

) ⃗𝑏′ = (

𝑏′11
𝑏′21

⋮
𝑏′𝑛1

)

A′ is called the upper triangular matrix.
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Gaussian Elimination Method – Advantages of Representation
Change

A system given by an upper triangular matrix can be easily
solved using back substitution:

1. From the equation
𝑎′𝑛𝑛𝑥𝑛 = 𝑏′𝑛

we compute the unknown 𝑥𝑛.
2. We substitute the value of the unknown 𝑥𝑛 into the
equation

𝑎′𝑛−1 𝑛−1𝑥𝑛−1 + 𝑎′𝑛−1 𝑛𝑥𝑛 = 𝑏′𝑛−1
and compute the unknown 𝑥𝑛−1.

3. We proceed in this manner until we compute the unknown
𝑥1.

The complexity of this algorithm is Θ(𝑛2). 469/670



Gaussian elimination method – elementary operations

The matrix of the system A is transformed into an upper
triangular matrix A′ using elementary operations:

• swapping two equations in the system,
• multiplying an equation by a non-zero coefficient and
• adding or subtracting a multiple of another equation to
the given equation, i.e. a linear combination with another
equation.

Elementary operations do not change the solution of the
system of equations – the transformed system has the same
solution as the original system.
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Gaussian Elimination Method – Matrix Transformation

1. We choose 𝑎11 as the pivot and ”nullify” all coefficients in
the first column, except for 𝑎11.

A = (

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑛1 𝑎𝑛2 ⋯ 𝑎𝑛𝑛

)

”Nullification” – from the second equation, we subtract 𝑎21𝑎11
times the first equation, from the third equation, we
subtract 𝑎31𝑎11

times the first equation, and so on.
2. We choose 𝑎22 as the pivot and repeat the same
procedure.

Remark
Of course, we also perform changes for the vector of
right-hand sides �⃗�.
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Gaussian Elimination Method – Example

Let us have a system of equations

2𝑥1 − 𝑥2 + 𝑥3 = 1
4𝑥1 + 𝑥2 − 𝑥3 = 5
𝑥1 + 𝑥2 + 𝑥3 = 0

The augmented matrix of the system

(
2 −1 1 1
4 1 −1 5
1 1 1 0

)
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Gaussian Elimination Method – Example (cont.)

Forward Elimination

From the second row, we subtract 42 times the first row, from
the third row, we subtract 12 times the first row

(
2 −1 1 1
0 3 −3 3
0 3

2
1
2 −32

)

From the third row, we subtract
3
2
3 =

1
2 times the second row

(
2 −1 1 1
0 3 −3 3
0 0 2 −2

)
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Gaussian Elimination Method – Example (cont.)

Back Substitution

𝑥3 = −2
2 = −1

𝑥2 =
3 − (−3)𝑥3

3 = 3 − (−3)(−1)3 = 0

𝑥1 =
1 − 𝑥3 − (−1)𝑥2

2 = 1 − (−1)2 = 1
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Gaussian elimination method – forward elimination

Input : Matrix A of type 𝑛 × 𝑛 and column vector �⃗� of
dimension 𝑛

Output: Equivalent triangular matrix A and vector �⃗�
1 for 𝑖 ← 1 to 𝑛 − 1 do
2 for 𝑗 ← 𝑖 + 1 to 𝑛 do
3 𝑡𝑒𝑚𝑝 ← 𝐴[𝑗, 𝑖]/𝐴[𝑖, 𝑖];
4 for 𝑘 ← 𝑖 to 𝑛 do
5 𝐴[𝑗, 𝑘] ← 𝐴[𝑗, 𝑘] − 𝐴[𝑖, 𝑘] ∗ 𝑡𝑒𝑚𝑝;
6 end
7 𝑏[𝑗] ← 𝑏[𝑗] − 𝑏[𝑖] ∗ 𝑡𝑒𝑚𝑝;
8 end
9 end
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Gaussian Elimination Method – Forward Elimination

Partial Pivoting

• In the forward elimination algorithm, there is an error. If
𝑎𝑖𝑖 = 0, then division by zero occurs.

• The problem can be solved by swapping equations
(elementary operation) so that 𝑎𝑖𝑖 ≠ 0.

• It is also possible to simultaneously address potential
rounding errors – the pivot is chosen such that it is the
largest of all elements 𝑎𝑖𝑖 to 𝑎𝑛𝑖 in absolute value.
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Gaussian elimination method – partial pivoting

ALGORITHM BetterForwardElimination(A[1..n, 1..n], b[1..n])

//Implements Gaussian elimination with partial pivoting
//Input: Matrix A[1..n, 1..n] and column-vector b[1..n]
//Output: An equivalent upper-triangular matrix in place of A and the
//corresponding right-hand side values in place of the (n + 1)st column
for i ← 1 to n do A[i, n + 1] ← b[i] //appends b to A as the last column
for i ← 1 to n − 1 do

pivotrow ← i

for j ← i + 1 to n do
if |A[j, i]| > |A[pivotrow, i]| pivotrow ← j

for k ← i to n + 1 do
swap(A[i, k], A[pivotrow, k])

for j ← i + 1 to n do
temp ← A[j, i] / A[i, i]
for k ← i to n + 1 do

A[j, k] ← A[j, k] − A[i, k] ∗ temp
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Gaussian Elimination Method – Time Complexity

• Input size – number of equations in the system, i.e.,
dimension of matrix 𝑛.

• Basic operation – arithmetic operations, for historical
reasons multiplication. In the innermost cycle, the
number of multiplications corresponds to the number of
subtractions, it’s just a multiple of a constant 2.

• We will be interested in the number of multiplications
𝐶(𝑛) depending on the number 𝑛.
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Gaussian Elimination Method – Time Complexity (cont.)

𝐶(𝑛) =
𝑛−1
∑
𝑖=1

𝑛
∑
𝑗=𝑖+1

𝑛
∑
𝑘=𝑖
1 =

𝑛−1
∑
𝑖=1

𝑛
∑
𝑗=𝑖+1

(𝑛 − 𝑖 + 1)

=
𝑛−1
∑
𝑖=1
(𝑛 − 𝑖 + 1)

𝑛
∑
𝑗=𝑖+1

1 =
𝑛−1
∑
𝑖=1
(𝑛 − 𝑖 + 1)(𝑛 − 𝑖)

The last sum is expanded for individual 𝑖

𝑖 = 1 (𝑛 − 1 + 1)(𝑛 − 1) = 𝑛(𝑛 − 1)
𝑖 = 2 (𝑛 − 2 + 1)(𝑛 − 2) = (𝑛 − 1)(𝑛 − 2)

⋮ ⋮ ⋮ ⋮
𝑖 = 𝑛 − 2 (𝑛 − 𝑛 + 2 + 1)(𝑛 − 𝑛 + 2) = 3 ⋅ 2
𝑖 = 𝑛 − 1 (𝑛 − 𝑛 + 1 + 1)(𝑛 − 𝑛 + 1) = 2 ⋅ 1
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Gaussian Elimination Method – Time Complexity (cont.)

From the last column, it is clear that this is a sum of a series

1 ⋅ 2 + 2 ⋅ 3 + ⋯ + (𝑛 − 2)(𝑛 − 1) + (𝑛 − 1)𝑛 =
𝑛−1
∑
𝑙=1
𝑙(𝑙 + 1)

𝑛−1
∑
𝑙=1
𝑙(𝑙 + 1) =

𝑛−1
∑
𝑙=1
𝑙2 +

𝑛−1
∑
𝑙=1
𝑙

= 1
6𝑛(𝑛 − 1)(2𝑛 − 1) +

1
2𝑛(𝑛 − 1)

= 1
3𝑛

3 − 12𝑛
2 + 16𝑛 +

1
2𝑛

2 − 12𝑛

= 1
3𝑛

3 − 13𝑛
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Gaussian Elimination Method – Time Complexity (cont.)

And therefore

𝐶(𝑛) = 13𝑛
3 − 13𝑛 ≈

1
3𝑛

3 ∈ Θ(𝑛3)

Since the complexity of back substitution is Θ(𝑛2), the
complexity of the entire Gaussian elimination method is Θ(𝑛3).
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𝐿𝑈-decomposition of a matrix

Let us have the matrix A of the system of linear equations
from the previous example

A = (
2 −1 1
4 1 −1
1 1 1

)

Further, let us consider two matrices:

L = (
1 0 0
2 1 0
1
2

1
2 1

)

Coefficients from Gaussian
elimination

U = (
2 −1 1
0 3 −3
0 0 2

)

Result of Gaussian
elimination
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𝐿𝑈-decomposition of a matrix

Definition
Let A be a regular square matrix with elements from the real
numbers, for which it is not necessary to swap rows during
Gaussian elimination. Then there exist regular matrices L
and U, which are uniquely determined and satisfy the
following statement

A = LU,

where L is a lower triangular matrix with ones on the entire
main diagonal and U is an upper triangular matrix with
non-zero elements on the main diagonal.
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Solution of a system of equations by 𝐿𝑈 decomposition

Let us have a system of linear equations

A ⃗𝑥 = �⃗�
We replace matrix A with its 𝐿𝑈 decomposition

LU ⃗𝑥 = �⃗�
Furthermore, let us denote the product U ⃗𝑥 = ⃗𝑦. After
substitution, we obtain a system of equations

L ⃗𝑦 = �⃗�
This system can be easily solved because L is a lower
triangular matrix. And finally, we can also easily solve the
system

U ⃗𝑥 = ⃗𝑦,
because U is an upper triangular matrix.
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Solution of a systemof equations by 𝐿𝑈 decomposition, example

We have a system of equations

2𝑥1 − 𝑥2 + 𝑥3 = 1
4𝑥1 + 𝑥2 − 𝑥3 = 5
𝑥1 + 𝑥2 + 𝑥3 = 0

We perform the 𝐿𝑈 decomposition of the system matrix A

A = (
2 −1 1
4 1 −1
1 1 1

) = (
1 0 0
2 1 0
1
2

1
2 1

) (
2 −1 1
0 3 −3
0 0 2

)
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Solution of a systemof equations by 𝐿𝑈 decomposition, example
(cont.)

First, we solve the system L ⃗𝑦 = �⃗�

(
1 0 0
2 1 0
1
2

1
2 1

) (
𝑦1
𝑦2
𝑦3
) = (

1
5
0
)

𝑦1 = 1
𝑦2 = 5 − 2𝑦1 = 3
𝑦3 = 0 − 12𝑦1 −

1
2𝑦2 = −2
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Solution of a systemof equations by 𝐿𝑈 decomposition, example
(cont.)

Subsequently, we solve the system U ⃗𝑥 = ⃗𝑦

(
2 −1 1
0 3 −3
0 0 2

) (
𝑥1
𝑥2
𝑥3
) = (

1
3
−2
)

𝑥3 = −2
2 = −1

𝑥2 =
3 − (−3)𝑥3

3 = 3 − (−3)(−1)3 = 0

𝑥1 =
1 − 𝑥3 − (−1)𝑥2

2 = 1 − (−1)2 = 1
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𝐿𝑈-decomposition of a matrix, notes

• In practice, 𝐿𝑈-decomposition is used to solve systems of
linear equations.

• Using 𝐿𝑈-decomposition, it is possible to efficiently solve
multiple systems of equations with the same system
matrix.

• The matrices L and U can be stored together in one
matrix – from the matrix L we store only the elements
below the diagonal. Why?

• If it is necessary to perform partial pivoting in the matrix
A, i.e., to swap rows, then the decomposition has the form

PA = LU

and from this
A = P−1LU,

where P is a permutation matrix. 488/670



Permutation Matrix

• Represents a permutation of 𝑛 elements as a matrix
• A square binary matrix of order 𝑛, with one 1 in each row
and column, and the rest 0

• For every permutation matrix P applies:
• left multiplication, PM, results in a permutation of the
rows of matrix M, where M is a matrix with 𝑛 rows

• right multiplication, MP, results in a permutation of the
columns of matrix M, where M is a matrix with 𝑛 columns

• P is orthogonal, i.e. its inverse matrix is equal to its
transpose, P−1 = P𝑇
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Permutation matrix, example

𝜋 = (1 2 3 4
3 2 4 1) ↔ 𝑅𝜋 = (

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

)

↕ ↕

𝐶𝜋 = (

0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0

) ↔ 𝜋−1 = (1 2 3 4
4 2 1 3)
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Transform and Conquer
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Binary Search Trees – review

• Fundamental data structure for implementing sets,
dictionaries etc.

• Each node contains one key; a total order must be defined
over the keys.

• For each node, all keys in the left subtree are smaller than
the key in the given node and in the right subtree are all
keys greater.

• Average time complexity of search, insertion, and deletion
operations is Θ(log2 𝑛).

• Worst-case scenario is however still Θ(𝑛) – the tree
degenerates into a list.
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Balanced Search Trees

Possible solution for the worst case:

Proactive Measures

• transformation into a balanced binary tree using rotations
• various definitions of balance
• AVL trees, red-black trees, splay trees.

Representation Change

• multiple keys in one node,
• 2-3 trees, 2-3-4 trees, B-trees.
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AVL Trees

Authors
• Georgij Maximovič Adelson-Velskij and
• Jevgenij Michajlovič Landis

First published in 1962.

Definition
The balance factor of a node 𝑢 is the difference between the
heights of its left and right subtrees. The height of an empty
tree is defined as -1.

Definition
A binary search tree is called an AVL tree if and only if the
balance factor for each node in the tree is either -1, 0, or +1.
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AVL trees – example

AVL tree

E
1

C
0

B
1

A
0

D
-1

E
0

G
1

F
0

This is not an AVL tree

E
2

C
0

B
1

A
0

D
-1

E
0

G
0
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AVL trees – maintaining balance

• Insertion of a new node, or deletion of an existing one,
can cause imbalance in the AVL tree.

• Balance must be restored after each such operation.
• Balance is restored using rotations.
• Rotation is a local transformation of the tree at those
nodes where the balance factor reaches a value of -2 or 2.

• If there are multiple such nodes, we always start with the
node at the lowest level (closest to the leaves of the tree)
and proceed upwards towards the root of the tree.

• There are a total of four rotations – two pairs of mutually
mirror-symmetric rotations.
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Simple rotations

Right rotation

C
2

B
1

A
0

Operation
result

B
0

A
0

C
0

Left rotation

A
-2

B
-1

C
0

Operation
result

B
0

A
0

C
0
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Double rotations

Left-Right rotation

C
2

A
-1

B
0

Operation
result

B
0

A
0

C
0

Right-Left rotation

A
-2

C
1

B
0

Operation
result

B
0

A
0

C
0
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AVL trees – general scheme of right rotation

r

c

𝑇1

x

𝑇2
𝑇3

Operation
result

c

𝑇1

x

r

𝑇2 𝑇3
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AVL trees – general scheme of LR rotation

r
c

𝑇1

g

𝑇2

X

𝑇3

X

𝑇4

nebo

Operation
result

g

c

𝑇1

𝑇2

X

r

𝑇3

X 𝑇4nebo
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AVL trees – properties of rotations

• Constant time complexity – only pointers between nodes
are moved, not data.

• Rotations preserve the ordering of keys in the tree – after
completing a rotation, the “left” side always contains
smaller keys, the “right” side always contains larger keys.
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AVL Trees – Sequential Construction of the Tree

Insertion of
5

5
0

Insertion of
6

5
-1

6
0

Insertion of 8

5
-2

6
-1

8
0

Left Rotation of 5 6
0

5
0

8
0
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AVL Trees – Sequential Construction of the Tree (cont.)

Insertion of 3

6
1

5
1

3
0

8
0
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AVL Trees – Sequential Construction of the Tree (cont.)

Insertion of 2

6
2

5
2

3
1

2
0

8
0 Right Rotation of 5

6
1

3
0

2
0

5
0

8
0

503/670



AVL Trees – Sequential Construction of the Tree (cont.)

Insertion of 4

6
2

3
-1

2
0

5
1

4
0

8
0 Left-Right Rotation of 6

5
0

3
0

2
0

4
0

6
-1

8
0
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AVL Trees – Sequential Construction of the Tree (cont.)

Insertion of 7

5
-1

3
0

2
0

4
0

6
-2

8
1

7
0

Right-Left Rotation of 6
5
0

3
0

2
0

4
0

7
0

6
0

8
0
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AVL trees – properties

• The height of an AVL tree with 𝑛 nodes is bounded by

⌊log2 𝑛⌋ ≤ ℎ < 1.4405 log2(𝑛 + 2) − 1.3277

• Search and insertion operations therefore proceed with a
complexity of Θ(log2 𝑛) even in the worst case.

• The average height of an AVL tree constructed from a
random sequence of 𝑛 keys is 1.01 log2 𝑛 + 0.1.

• Node deletion is more complicated, but still falls within
the logarithmic complexity class.

• Disadvantages – a large number of rotations during tree
balancing.
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2-3 trees
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2-3 trees – types of nodes

2-node
𝑘

< 𝑘 𝑘 <

3-node
𝑘1, 𝑘2

< 𝑘1 (𝑘1, 𝑘2) 𝑘2 <
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Construction of a 2-3 tree from the sequence 9, 5, 8, 3, 2, 4, 7

9 5, 9 5, 8, 9 Operation
Result

8

5 9

8

3, 5 9

8

2, 3, 5 9
Operation
Result

3, 8

2 5 9

3, 8

2 4, 5 9
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Construction of a 2-3 tree from the sequence 9, 5, 8, 3, 2, 4, 7
(cont.)

3, 8

2 4, 5, 7 9
Operation
Result

3, 5, 8

2 4 7 9

Operation
Result

5

3

2 4

8

7 9
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Sources for independent study

• Book [2], chapter 6.3, pages 218 – 225
• Book [5], chapters 4.4.6, 4.4.7 and 4.4.8, pages 296 – 310
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Heap and Heap Sorting



Heap

Heap – a partially sorted data structure, especially
suitable for implementing a priority queue.

Priority Queue – a data structure understood as a multiset,
where elements are ordered according to priority
and supporting operations:
• finding the element with the highest priority,
• removing the element with the highest
priority and

• inserting a new element into the queue.
Usage of Priority Queue :

• task scheduling in OS
• graph algorithms such as Prim’s, Dijkstra’s etc.
• heap sorting – HeapSort
• and others...
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Heap – distinction of terminology

The term heap in computer science is used to denote:

• a data structure and
• a part of the operating memory during program execution.

In further explanation, we will deal with the heap exclusively
as a data structure.
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Heap

Definition
A heap is defined as a binary tree with one key in each node,
which satisfies the following two properties:

1. completeness, i.e., all levels of the tree are filled, except
for the last. In the last level, several leaves may be
missing from the right and

2. parent dominance, i.e., the key in each node is always
greater than or equal to the keys in all its children. In
leaves, any key is always considered greater than the keys
in non-existent children.
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Heap – example

Heap

10

5

4 2

7

1

Not every binary tree is a
heap!

These are not heaps – why?

10

5

2

7

1

10

5

6 2

7

1
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Heap – additional properties

For all heaps, it can be proven that:

1. The keys on each path from the root to a leaf form a
non-increasing sequence. Otherwise, there are no
relationships between the keys, e.g., smaller keys in the
left subtree than in the right etc.

2. For 𝑛 keys, there exists only one complete binary tree. Its
height is ⌊log2 𝑛⌋.

3. The largest key is always at the root of the heap.
4. Each node in the heap is always the root of a heap formed
by this node and its descendants.
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Heap – array representation

In an array, we store the heap from the root to the leaves and
from left to right: Then:

1. internal nodes – the first ⌊𝑛2 ⌋, leaves are the remaining ⌈
𝑛
2 ⌉,

2. the children of a node at position 𝑖, where 1 ≤ 𝑖 ≤ ⌊𝑛2 ⌋, are
located at positions 2𝑖 and 2𝑖 + 1. And conversely, the
parent of a node at position 𝑗, for 2 ≤ 𝑗 ≤ 𝑛, is located at
position ⌊ 𝑗2 ⌋.

Remark
A heap can be defined as an array 𝐻[1…𝑛] in which for each
element at index 𝑖 holds

𝐻[𝑖] ≥ 𝑚𝑎𝑥{𝐻[2𝑖], 𝐻[2𝑖 + 1]}

for all 𝑖 = 1, … , ⌊𝑛2 ⌋. 517/670



Heap – representation in an array, example

10

8

5

3 5

2

1

7

1 6

index 1 2 3 4 5 6 7 8 9 10
key 10 8 7 5 2 1 6 3 5 1

internal nodes leaves
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Construction of a heap

A heap can be constructed in two ways:

1. bottom-up and
2. top-down.
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Construction of a heap from the bottom up – example

Initial state of the heap

2

9

6 5

7

8

Step 1
2

9

6 5

7

8

Operation
result

2

9

6 5

8

7
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Construction of a heap from the bottom up – example (cont.)

Step 2

2

9

6 5

8

7

Step 3a
2

9

6 5

8

7

Operation
result

9

2

6 5

8

7
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Construction of a heap from the bottom up – example (cont.)

Step 3b

9

2

6 5

8

7

Operation
result

9

6

2 5

8

7

Finished heap
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Construction of a heap from the bottom up

Input : Array 𝐴[0…𝑛 − 1] with a defined ordering on
the array elements, 𝑖 root of the heap being
constructed

Output: Heap with the root at index 𝑖
1 procedure Heapify(𝐴, 𝑛, 𝑖)
2 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ← 𝑖;
3 𝑙 ← 2 ∗ 𝑖 + 1;
4 𝑟 ← 2 ∗ 𝑖 + 2;
5 if 𝑙 < 𝑛 ∧ 𝐴[𝑙] > 𝐴[𝑙𝑎𝑟𝑔𝑒𝑠𝑡] then 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ← 𝑙 ;
6 if 𝑟 < 𝑛 ∧ 𝐴[𝑟] > 𝐴[𝑙𝑎𝑟𝑔𝑒𝑠𝑡] then 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ← 𝑟 ;
7 if 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 ≠ 𝑖 then
8 Swap (𝐴[𝑖], 𝐴[𝑙𝑎𝑟𝑔𝑒𝑠𝑡]);
9 Heapify (𝐴, 𝑛, 𝑙𝑎𝑟𝑔𝑒𝑠𝑡);
10 end
11 end 523/670



Construction of a heap from the bottom up

Input : Array 𝐴[0…𝑛 − 1] with a defined ordering on
the array elements

Output: Heap in the array 𝐴
1 procedure MakeHeap(𝐴, 𝑛)
2 for 𝑖 ← ⌊𝑛2 ⌋ − 1 down to 0 do
3 Heapify (𝐴, 𝑛, 𝑖);
4 end
5 end
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Heap Construction from Bottom to Top – Time Complexity

For simplicity, let us assume that 𝑛 = 2𝑘 − 1, i.e., the heap forms
a complete binary tree.

The height of the heap is then ℎ = ⌊log2 𝑛⌋, which can be
written as

⌈log2(𝑛 + 1)⌉ − 1 = ⌈log2(2𝑘 − 1 + 1)⌉ − 1
= ⌈log2(2𝑘)⌉ − 1
= 𝑘 − 1
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Heap Construction from Bottom to Top – Time Complexity
(cont.)

Remark
The expression ⌈log2(𝑛 + 1)⌉ can be interpreted as the “height
of the heap with 𝑛 + 1 elements”. We assumed a complete
binary tree⇒ the tree with 𝑛 + 1 elements definitely has one
more level than the tree with 𝑛 elements.

Each key from level 𝑖 will be shifted, in the worst case, to the
leaf, i.e., to level ℎ.
Shifting by one level requires two comparisons:

1. finding the larger of both children and
2. testing whether an exchange with the parent is necessary.
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Heap Construction from Bottom to Top – Time Complexity
(cont.)

The number of comparisons is therefore 2(ℎ − 𝑖).
The total number of comparisons will be, in the worst case,
equal to

𝐶(𝑛) =
ℎ−1
∑
𝑖=0

∑
keys of level 𝑖

2(ℎ − 𝑖)

=
ℎ−1
∑
𝑖=0
2(ℎ − 𝑖)2𝑖 = 2ℎ

ℎ−1
∑
𝑖=0
2𝑖 − 2

ℎ−1
∑
𝑖=0
𝑖2𝑖

= 2𝑛 − 2 log2(𝑛 + 1)
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Heap Construction from Bottom to Top – Time Complexity
(cont.)

Constructing a heap with 𝑛 elements requires, in the worst
case, less than 2𝑛 comparisons.
Remark
In the derivation, we used the formulas:

𝑛
∑
𝑖=0
2𝑖 = 2𝑛+1 − 1

𝑛
∑
𝑖=1
𝑖2𝑖 = 1 ⋅ 2 + 2 ⋅ 22 + ⋯ + 𝑛2𝑛 = (𝑛 − 1)2𝑛+1 + 2
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Construction of a heap from top to bottom

• Repeated insertion of a new key into an existing heap.
1. We insert the new key at the end of the heap.
2. We compare the new key with its parent and potentially
move the new key up one level.

3. We continue this process until we encounter a larger
parent or reach the root of the heap.

• The height of a heap with 𝑛 elements is ≈ log2 𝑛, thus the
complexity of inserting a key into the heap is 𝑂(log𝑛).

• Construction from top to bottom is therefore more
complex than construction from bottom to top.
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Construction of a heap from top to bottom – example

Initial state of the heap

9

6

2 5

8

7

Step 1 – insertion of key 10 at the end of the heap
9

6

2 5

8

7

Operation
result

9

6

2 5

8

7 10
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Construction of a heap from top to bottom – example (cont.)

Step 2a – comparison of key 10 with parent
9

6

2 5

8

7 10

Operation
result

9

6

2 5

10

7 8

Step 2b – comparison of key 10 with parent
9

6

2 5

10

7 8

Operation
result

10

6

2 5

9

7 8
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Removal of the largest key from the heap

Algorithm principle:

1. Swapping the key in the root with the key at the end of the
heap.

2. Reducing the heap by one.
3. Heap restoration – testing whether the parent key is
greater than the keys in both children and, if necessary,
performing a swap. This process is repeated until the
parent key is greater than the keys in the children.

Remark
In principle, any key can be removed from the heap. But this
operation has no practical significance.
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Removal of the largest key from the heap – algorithm complexity

• The number of comparisons necessary to restore the heap
is proportional to the height of the heap – we “move” the
key from the root down through the levels.

• We always compare the parent with both children – we
must find the largest of the given trio.

• The height of the heap is ℎ ≈ log2 𝑛, so the number of
comparisons will not be greater than 2ℎ.

• The complexity of the algorithm is therefore 𝑂(log𝑛).
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Removal of the largest key from the heap – example

Initial state of the heap

9

8

2 5

6

1

Step 1 – swapping the root with the last element
9

8

2 5

6

1

Operation
result

1

8

2 5

6

9
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Removal of the largest key from the heap – example (cont.)

Step 2 – removal of the last node
1

8

2 5

6

9

Operation
result

1

8

2 5

6

Step 3 – heap restoration
1

8

2 5

6
Operation
result

8

5

2 1

6
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Heap Sorting – HeapSort

The algorithm works in two phases:

Heap Construction : for a given array, a heap is constructed.
Removal of Maximum : the algorithm for removing the largest

key from the progressively decreasing heap is
applied (𝑛 − 1) times.
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Heap Sorting – HeapSort

Input : Array 𝐴[0…𝑛 − 1] with a defined ordering on
the array elements

Output: Sorted array 𝐴
1 procedure HeapSort(𝐴, 𝑛)
2 BuildHeap (𝐴, 𝑛);
3 for 𝑖 ← 𝑛 − 1 downto 0 do
4 Swap (𝐴[0], 𝐴[𝑖]);
5 Heapify (𝐴, 𝑖, 0);
6 end
7 end
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Heap sorting – algorithm complexity

• The complexity of the first phase is 𝑂(𝑛).
• In the second phase, we progressively remove the largest
key from the heap of decreasing size 𝑛, 𝑛 − 1,… , 2. The
number of comparisons 𝐶(𝑛) is

𝐶(𝑛) ≤ 2 ⌊log2(𝑛 − 1)⌋ + 2 ⌊log2(𝑛 − 2)⌋ + ⋯ + 2 ⌊log2 1⌋

≤ 2
𝑛−1
∑
𝑖=1
log2 𝑖

≤ 2
𝑛−1
∑
𝑖=1
log2(𝑛 − 1) = 2(𝑛 − 1) log2(𝑛 − 1) ≤ 2𝑛 log2 𝑛

Thus, 𝐶(𝑛) ∈ 𝑂(𝑛 log𝑛).
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Heap sorting – algorithm complexity (cont.)

• For both phases, we get 𝑂(𝑛) + 𝑂(𝑛 log𝑛) = 𝑂(𝑛 log𝑛).
• Further complexity analysis can prove that the same
complexity applies to the average case as well. Therefore,
Θ(𝑛 log𝑛).

• Heap sorting is comparable to merge sorting.

• However, in practice, it is slower than QuickSort.
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Sources for Independent Study

• Book [2], chapter 6.4, pages 226 – 232
• Book [3], chapters 6.1 through 6.4, pages 161 – 172
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Horner’s Scheme



Value of a Polynomial at a Point

Problem Statement
Given is a polynomial

𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0.

Our task is to compute the value of the polynomial 𝑝(𝑥) at
the point 𝑥0.

Motivation
• Polynomials are used for function approximation, namely

1. How does a processor calculate the value of the function
sin(𝑥)?

2. Where do the values of the function sin(𝑥) in mathematical
tables come from?

Using the Taylor series expansion of a function, which is a
polynomial!

• Fast Fourier Transform
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Taylor expansion of the function 𝑦 = 𝑓(𝑥)

The function 𝑓(𝑥), which has finite derivatives up to order 𝑛 + 1
at point 𝑎, can be expressed in the vicinity of point 𝑎 as an
expansion

𝑓(𝑥) = 𝑓(𝑎)+ 𝑓
′(𝑎)
1! (𝑥−𝑎)+

𝑓″(𝑎)
2! (𝑥−𝑎)2+⋯+ 𝑓

(𝑛)(𝑎)
𝑛! (𝑥−𝑎)𝑛 +𝑅𝑓,𝑎𝑛+1(𝑥)

For 𝑎 = 0, the expansion is called Maclaurin

𝑓(𝑥) = 𝑓(0) + 𝑓
′(0)
1! 𝑥 +

𝑓″(0)
2! 𝑥2 + ⋯ + 𝑓

(𝑛)(0)
𝑛! 𝑥𝑛 + 𝑅𝑓,0𝑛+1(𝑥)
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Taylor expansion of the function 𝑦 = sin(𝑥) at point 0

sin(𝑥) = sin(0) + sin
′(0)
1! 𝑥 + sin

″(0)
2! 𝑥2 + ⋯ + sin

(𝑛)(0)
𝑛! 𝑥𝑛 + 𝑅sin,0𝑛+1 (𝑥)

Derivatives
sin(1) 0 = cos0 = 1
sin(3) 0 = − cos0 = −1

sin(2) 0 = − sin0 = 0
sin(4) 0 = sin0 = 0

sin(𝑥) = 0 + 11!𝑥 +
0
2!𝑥

2 + −13! 𝑥
3 + 04!𝑥

4 + ⋯ + 𝑅sin,0𝑛+1 (𝑥)

Approximation by a 13th-degree polynomial

sin(𝑥) ≈ 𝑥 − 𝑥
3

3! +
𝑥5
5! −

𝑥7
7! +

𝑥9
9! −

𝑥11
11! +

𝑥13
13!
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Taylor series expansion of the function 𝑦 = sin(𝑥) at point 0

−2𝜋 −32𝜋
−𝜋 −12𝜋 0 1

2𝜋
𝜋 3

2𝜋 2𝜋−10

−5

0

5

10

Taylor series
expansion:
degree 1
degree 3
degree 5
degree 7
degree 9
degree 11
degree 13

The function 𝑦 = sin(𝑥) is displayed in black.
544/670



Taylor series expansion of the function 𝑦 = sin(𝑥) of degree 13 at
point 0

−12𝜋 0 1
2𝜋

−1

−0.5

0

0.5

1
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Taylor series expansion of the function 𝑦 = sin(𝑥) at point 0,
approximation error

−12𝜋 0 1
2𝜋

−2

−1

0

1

2
⋅10−4
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Tables of function values

• Using Taylor series
expansion, we can
approximate the value of
the desired function and
construct tables.

• Manual calculation –
laborious and prone to a
vast number of errors.

• Breakthrough idea –
numerical computations
do not require
intelligence! They can be
performed mechanically!
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Charles Babbage – Difference Engine

Difference Engine
• first programmable computer in the
world

• 1819 – commencement of work
• 1822 – prototype completed
• 1823 – work begun on large machine
• 1833 – work halted
• 1842 – government support
terminated, 17 thousand pounds
spent on project, machine never
completed

• 1991 – functional replica!

Charles Babbage
1791 – 1871
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Difference Engine
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Difference Engine
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First programmer in the world?!

Augusta Ada King, Countess of Lovelace
(1815 – 1852)
Programmer of the Analytical Engine,
(Babbage 1837), which was the first
general-purpose Turing-complete
computer.
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Horner’s scheme – transformation

Basic idea:

• transformation of a polynomial into another form,
• we gradually extract the variable 𝑥 from parts of the
polynomial.

𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛−1𝑥𝑛−1 + 𝑎𝑛𝑥𝑛

= 𝑎0 + 𝑥 (𝑎1 + 𝑎2𝑥 + ⋯ + 𝑎𝑛−1𝑥𝑛−2 + 𝑎𝑛𝑥𝑛−1)
= 𝑎0 + 𝑥 (𝑎1 + 𝑥 (𝑎2 + ⋯ + 𝑎𝑛−1𝑥𝑛−3 + 𝑎𝑛𝑥𝑛−2))
⋮
= 𝑎0 + 𝑥(𝑎1 + 𝑥(𝑎2 + ⋯ + 𝑥(𝑎𝑛−1 + 𝑎𝑛𝑥)… ))

It is easy to see that this equality holds by successive
multiplication of all parentheses.
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Horner’s scheme – computation

The value of 𝑝(𝑥0) is computed ”from the inside” of the
parentheses, progressively calculating the values of 𝑏𝑖

𝑏𝑛 = 𝑎𝑛
𝑏𝑛−1 = 𝑎𝑛−1 + 𝑏𝑛𝑥0
𝑏𝑛−2 = 𝑎𝑛−2 + 𝑏𝑛−1𝑥0

⋮
𝑏0 = 𝑎0 + 𝑏1𝑥0

The value of 𝑏0 is then equal to 𝑝(𝑥0), since

𝑝(𝑥0) = 𝑎0 + 𝑥0(𝑎1 + 𝑥0(𝑎2 + ⋯ + 𝑥0(𝑎𝑛−1 + 𝑎𝑛𝑥0) … ))
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Horner’s scheme – computation (cont.)

and by progressively substituting 𝑏𝑖, we obtain

𝑝(𝑥0) = 𝑎0 + 𝑥0(𝑎1 + 𝑥0(𝑎2 + ⋯ + 𝑥0(𝑎𝑛−1 + 𝑏𝑛𝑥0) … ))

𝑝(𝑥0) = 𝑎0 + 𝑥0(𝑎1 + 𝑥0(𝑎2 + ⋯ + 𝑥0(𝑏𝑛−1) … ))

𝑝(𝑥0) = 𝑎0 + 𝑥0(𝑏1)
𝑝(𝑥0) = 𝑏0
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Horner’s scheme – manual calculation

Calculate the value of the polynomial 𝑝(𝑥) = 2𝑥3 − 6𝑥2 + 2𝑥 − 1
at the point 𝑥0 = 3.
𝑥0 𝑥3 𝑥2 𝑥1 𝑥0
3 2 -6 2 -1

6 0 6
2 0 2 5

Standard calculation

𝑝(3) = 2 × 33 − 6 × 32 + 2 × 3 − 1
= 2 × 27 − 6 × 9 + 2 × 3 − 1
= 54 − 54 + 6 − 1 = 5
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Horner’s scheme

ALGORITHM Horner(P [0..n], x)

//Evaluates a polynomial at a given point by Horner’s rule
//Input: An array P [0..n] of coefficients of a polynomial of degree n,

// stored from the lowest to the highest and a number x

//Output: The value of the polynomial at x

p ← P [n]
for i ← n − 1 downto 0 do

p ← x ∗ p + P [i]
return p
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Horner’s scheme – time complexity of the algorithm

It is clear that the number of multiplications 𝑀(𝑛) and the
number of additions 𝐴(𝑛) equals

𝑀(𝑛) = 𝐴(𝑛) =
𝑛−1
∑
𝑖=0
1 = 𝑛 ∈ Θ(𝑛)

Computation by brute force

Just for computing 𝑎𝑛𝑥𝑛, the following is needed:

• 𝑛 − 1 multiplications to compute the power
• 1 multiplication to multiply by 𝑎𝑛.

For the same number of multiplications, Horner’s algorithm
can also compute the remaining 𝑛 −1 terms of the polynomial!!!
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Sources for independent study

• Book [2], chapter 6.5, pages 234 – 239
• Book [3], chapter 30.1, pages 879 – 880

558/670



Transform and Conquer
Problem Reduction



Problem Reduction

The purpose of reduction is to transform the problem being
solved into another problem that we know how to solve.

Reduction Procedure

1. Problem 1 – what we want to solve
2. Reduction of Problem 1 to Problem 2
3. Problem 2 – solvable by algorithm 𝐴
4. Execution of algorithm 𝐴
5. Solution to Problem 2
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Least Common Multiple

The least common multiple 𝑙𝑐𝑚(𝑚, 𝑛) of two natural numbers
𝑚 and 𝑛 is defined as the smallest natural number that is
divisible by both 𝑚 and 𝑛.

Solution using Prime Factorization

24 = 23 ⋅ 31

60 = 22 ⋅ 31 ⋅ 51

lcm(24, 60) = 23 ⋅ 31 ⋅ 51 = 120

Solution using Greatest Common Divisor

It can be proven that

lcm(𝑚, 𝑛) = 𝑚𝑛
gcd(𝑚, 𝑛)

gcd(𝑚, 𝑛) can be computed efficiently using the Euclidean
algorithm.
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Number of walks in a graph

Problem statement: Calculate the number of walks between
pairs of vertices in a given graph 𝐺.
Solution: It can be proven that the number of different walks
of length 𝑘 between vertices 𝑖 and 𝑗 is equal to the element 𝑎𝑖𝑗
of the matrix A𝑘, where 𝐴 is the adjacency matrix of graph 𝐺.

a b

c d

A = (

𝑎 𝑏 𝑐 𝑑
𝑎 0 1 1 1
𝑏 1 0 0 0
𝑐 1 0 0 1
𝑑 1 0 1 0

) A2 = (

𝑎 𝑏 𝑐 𝑑
𝑎 3 0 1 1
𝑏 0 1 1 1
𝑐 1 1 2 1
𝑑 1 1 1 2

)

From 𝑎 to 𝑎, there are three walks of length 2: 𝑎 − 𝑏 − 𝑎, 𝑎 − 𝑐 − 𝑎,
𝑎 − 𝑑 − 𝑎
From 𝑎 to 𝑐, there is one walk of length 2: 𝑎 − 𝑑 − 𝑐 561/670



Reduction of Optimization Problems

Maximization Problem – finding the maximum of function 𝑓(𝑥)
Minimization Problem – finding the minimum of function 𝑓(𝑥)

How to Solve the Situation?

• We need to minimize function 𝑓(𝑥), but
• we only have a maximization algorithm available.

Can we use a maximization algorithm for a minimization
problem? Or vice versa?
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Reduction of Optimization Problems

−𝑓(𝑥𝑚)
𝑓(𝑥𝑚)

𝑥𝑚
𝑥

𝑦

min 𝑓(𝑥) = −max [ − 𝑓(𝑥)]
max 𝑓(𝑥) = −min [ − 𝑓(𝑥)]
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Goat, wolf and cabbage

• On the riverbank, there is a ferryman, a goat, a wolf, and
cabbage.

• The ferryman must transport the goat, the wolf, and the
cabbage to the other bank using a boat.

• The boat can hold at most one of the entities being
transported, in addition to the ferryman.

• On the same bank, the pairs goat and cabbage and wolf
and goat cannot be left together without the ferryman’s
supervision.

• The task is to devise a transportation plan or prove that
no solution exists.

The oldest written form of the problem dates back to the 9th
century…
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Goat, wolf and cabbage – state space

State – represents the occupancy of both riverbanks,
e.g. Gw||c

Transition between states – path from one riverbank to the
other, with possible transportation
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Goat, wolf and cabbage – state space graph

‖ Pgwc

Pw
‖ gc

w
‖
Pg
cPw
c
‖
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‖
w
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P

P

Pc

Pc

P

P

P

Pc

PcPg

Pg

Pg

Pg

Pw

P

Pw

Pw

P

Pw

Solution to the problem – finding a directed path from the
initial state to the final state through breadth-first traversal. 566/670



Sources for Independent Study

• Book [2], chapter 6.6, pages 240 – 248
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Thanks for your attention
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B-trees – motivation

• Processing a large amount of structured records (that can
be identified by a unique key) that exceeds the available
operating memory.

• Data must be stored in external memory, so-called ”on
disk”.

• The disk offers only a sequential file.
• We are looking for a data structure that allows efficient
searching, inserting, and deleting records in such a file.

• The answer is to trade off memory complexity for time
complexity, in other words, we increase memory
complexity (we sacrifice extra memory) to reduce the time
complexity of operations.
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B-trees

B-tree of order 𝑛 is a (2𝑛 + 1)-tree that satisfies the following
criteria:

1. Each page contains at most 2𝑛 keys.
2. Each page, with the exception of the root, contains at least
𝑛 keys.

3. Each page is either a leaf page, i.e. it has no children, or it
has 𝑚 + 1 children, where 𝑚 is the current number of keys
in the page.

4. All leaf pages are on the same level. In other words, the
tree is perfectly balanced.

Published by Rudolf Bayer in 1972 [6].
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B-trees – page schema

𝑘1 𝑘2 ⋯ 𝑘2𝑛

𝑝0 𝑝1 ⋯ 𝑝2𝑛−1 𝑝2𝑛

• Nodes in a B-tree are
traditionally called pages.

• The number of keys in a page
ranges from 𝑛 to 2𝑛, with the
exception of the root node.

• Keys in a page are sorted, i.e.,
𝑘1 ≤ 𝑘2 ≤ ⋯ ≤ 𝑘2𝑛.

• For keys in the subtrees referenced by pointers 𝑝0, … , 𝑝2𝑛,
the following holds

𝐾𝑝0 ≤ 𝑘1 ≤ 𝐾𝑝1 ≤ 𝑘1 ≤ ⋯𝐾𝑝2𝑛−1 ≤ 𝑘2𝑛 ≤ 𝐾𝑝2𝑛 ,
where 𝐾𝑝𝑖 is the set of all keys in the subtree rooted at the
page referenced by 𝑝𝑖.
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B-trees – example

2 3 5 7 17 22 45 55 66 68 70

10 50
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B-trees – notes

• From the definition, it is clear that a B-tree does not have
to be completely filled. The fill factor varies from 50 % to
100 %.

• Free space in the tree allows for easy insertion of
additional keys.

• Thanks to the tree structure, search, insert, and delete key
operations in a B-tree can be performed with logarithmic
time complexity.

• B-tree algorithms are a generalization of binary search
tree algorithms.
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B-trees – alternative definition, variants

• The above definition only allows B-trees with a maximum
capacity of 2𝑛 keys, i.e., an even number.

• However, the maximum capacity can be any number, even
odd.

• Some definitions denote the maximum capacity using the
number 𝑛.

• The number of keys in a page thus varies from ⌈𝑛2 ⌉ to 𝑛.
• The goal of our definition is easy understandability of the
B-tree operation principles and simple notation.

• Sometimes, one can also encounter a definition where the
number 𝑛 denotes the maximum number of children, not
the number of keys in a page.
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B-trees – variants

B+-tree • all keys are stored only in leaves
• leaves are mutually linked by pointers –
faster operation with contiguous key ranges,
”find all keys between 100 and 200”

• in Levitin’s book [2] is as a B-tree described
precisely this variant.

B*-tree • a page must be filled to at least two thirds,
• when inserting a key into a full page, keys are
first moved between siblings,

• results in a smaller number of page splits.
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B-trees – searching for a key 𝑥

1. At the beginning of the algorithm, we mark the root page
as the current page 𝑃.

2. If page 𝑃 does not exist, the search ends in failure.
3. Otherwise, assume that page 𝑃 contains 𝑚 keys 𝑘1, … , 𝑘𝑚
and corresponding child pointers 𝑝0, … 𝑝𝑚. Then:
3.1 If 𝑥 = 𝑘𝑖, for some 1 ≤ 𝑖 ≤ 𝑚, then the search ends in

success.
3.2 If 𝑥 < 𝑘1, then 𝑃 = 𝑝0 and back to point 2.
3.3 If 𝑥 > 𝑘𝑚 , then 𝑃 = 𝑝𝑚 and back to point 2.
3.4 Otherwise, we find such 𝑖, 1 ≤ 𝑖 < 𝑚, for which it holds that

𝑘𝑖 < 𝑥 < 𝑘𝑖+1. Then 𝑃 = 𝑝𝑖 and back to point 2.
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Examples of B-tree operations

𝑘1 𝑘2 ⋯ 𝑘2𝑛

𝑝0 𝑝1 ⋯ 𝑝2𝑛−1 𝑝2𝑛

In examples we will use B-tree for
𝑛 = 2, meaning each page contains
at least 2 and at most 4 keys.

Furthermore, each page refers to at least 3 and at most 5
children. The exception is the root of the tree.
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Example of searching in a B-tree – finding the key 50

2 3 5 7
𝐴

17 22 45
𝐵

55 66 68 70
𝐶

10 50
𝑅

Procedure

1. We start the search in the root 𝑅, so 𝑃 = 𝑅.
2. Page 𝑃 exists, we proceed to the next point.
3. Because 𝑥 = 𝑘2 the search ends in success.
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Example of searching in a B-tree – search for 3

2 3 5 7
𝐴

17 22 45
𝐵

55 66 68 70
𝐶

10 50
𝑅

Procedure

1. We start the search in the root 𝑅, thus 𝑃 = 𝑅.
2. Page 𝑃 exists, we proceed to the next point.
3. Since 𝑥 < 𝑘1, then 𝑃 = 𝑝0 = 𝐴.
4. Page 𝑃 exists, we proceed to the next point.
5. Since 𝑥 = 𝑘2 the search ends in success.

579/670



Example of searching in a B-tree – search for 45

2 3 5 7
𝐴

17 22 45
𝐵

55 66 68 70
𝐶

10 50
𝑅

Procedure

1. We begin the search at the root 𝑅, thus 𝑃 = 𝑅.
2. Page 𝑃 exists, we proceed to the next point.
3. Since 𝑘1 < 𝑥 < 𝑘2, then 𝑃 = 𝑝1 = 𝐵.
4. Page 𝑃 exists, we proceed to the next point.
5. Since 𝑥 = 𝑘3 the search ends in success.
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Example of searching in a B-tree – search for 57

2 3 5 7
𝐴

17 22 45
𝐵

55 66 68 70
𝐶

10 50
𝑅

Procedure

1. We begin the search at the root 𝑅, thus 𝑃 = 𝑅.
2. Page 𝑃 exists, we proceed to the next point.
3. Since 𝑥 > 𝑘2, then 𝑃 = 𝑝2 = 𝐶.
4. Page 𝑃 exists, we proceed to the next point.
5. Since 𝑘1 < 𝑥 < 𝑘2, then 𝑃 = 𝑝1 = 𝑛𝑢𝑙𝑙.
6. Since 𝑃 does not exist, the search ends in failure.
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B-trees – inserting key 𝑥

1. First, it is necessary to determine, using the search
algorithm, the leaf page 𝐿 where the key 𝑥 will be inserted.

2. Two cases can occur:
• Page 𝐿 is not completely filled – key 𝑥 is inserted into the
page so that the ordering of keys is preserved.

• Page 𝐿 is completely filled, then
2.1 key 𝑥 is sorted (e.g., in an auxiliary array) among the keys

from page 𝐿 so that the ordering of keys is preserved. We
obtain a sequence of 2𝑛 + 1 keys 𝑘′1 < 𝑘′2 < ⋯𝑘′2𝑛+1

2.2 a new page 𝑃 is created, with the same parent 𝑅 as 𝐿
2.3 distribution of keys to pages

Keys Action
𝑘′1, … , 𝑘′𝑛 remain in page 𝐿
𝑘′𝑛+1 insert into parent page 𝑅

𝑘′𝑛+2, … 𝑘′2𝑛+1 insert into new page 𝑃
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B-trees – insertion algorithm, notes

• The process of creating a new page and redistributing keys
is called page splitting.

• By inserting the key 𝑘′𝑛+1 into the parent page 𝑅, the
number of keys in this page increases, which in turn
increases the number of references to the child pages of
this page. Without moving 𝑘′𝑛+1, the page 𝑅 would lack a
free reference for attaching the page 𝑃.

• The insertion of the key 𝑘′𝑛+1 into page 𝑅 is performed
using the same algorithm as the insertion of key 𝑥 into 𝐿.
The insertion of 𝑘′𝑛+1 can cause the page 𝑅 to split.

• Page splitting can lead to the creation of a new root of the
entire tree, which is the only way for a B-tree to increase
its height.
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Example of Insertion into a B-Tree

• In this more extensive example, we will gradually build a
B-tree with the same parameters as in the search example.

• We will gradually insert the keys 3, 22, 10, 2, 17, 5, 66, 68, 50,
7, 55, 45, 70, 44, 6, 21, 67, 1, 4, 8, 9, 12, and 15 into the tree.
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Example of insertion into a B-tree – insertion of keys 3, 22 and
10

Insertion of key 3

3

Insertion of key 22

3 22

Insertion of key 10
3 10 22
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Example of insertion into a B-tree – insertion of key 2

2 3 10 22

The page is completely full, inserting any additional key will
cause a change in the structure of the B-tree.
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Example of insertion into a B-tree – insertion of key 17

2 3
𝐿

17 22
𝑃

10
𝑅

By inserting the key 17, the following occurred:

1. the page 𝐿 was split and half of the keys were moved to a
new page 𝑃,

2. a new root page 𝑅 was created and the key 10 was moved
to the new root.
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Example of insertion into a B-tree – insertion of key 5

2 3 5 17 22

10
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Example of insertion into a B-tree – insertion of key 66

2 3 5 17 22 66

10
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Example of insertion into a B-tree – insertion of key 68

2 3 5 17 22 66 68

10

The page with keys 17 to 68 is completely full, inserting another
key into this page will cause a change in the structure of the
B-tree.
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Example of insertion into a B-tree – insertion of key 50

2 3 5 17 22 66 68

10 50

By inserting the key 50, the following occurred:

1. the page split and half of the keys were moved to a new
page, and

2. at the same time, the newly inserted key 50, being the
median of the values in the original page, was moved to
the root page.
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Example of insertion into a B-tree – inserting key 7

2 3 5 7 17 22 66 68

10 50

The page with keys 2 to 7 is completely full, inserting another
key into this page will cause a change in the structure of the
B-tree.
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Example of insertion into a B-tree – insertion of key 55

2 3 5 7 17 22 55 66 68

10 50
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Example of insertion into a B-tree – insertion of key 45

2 3 5 7 17 22 45 55 66 68

10 50
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Example of insertion into a B-tree – insertion of key 70

2 3 5 7 17 22 45 55 66 68 70

10 50

The page with keys 55 to 70 is completely full, inserting another
key into this page will cause a change in the structure of the
B-tree.
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Example of insertion into a B-tree – insertion of key 44

2 3 5 7 17 22 44 45 55 66 68 70

10 50

All leaf pages are completely filled, inserting any additional key
will cause a change in the structure of the B-tree.

596/670



Example of insertion into a B-tree – insertion of key 6

2 3 6 7 17 22 44 45 55 66 68 70

5 10 50

Upon inserting key 6, the following occurred:

1. the page split and half of the keys were moved to a new
page, and

2. simultaneously, key 5 was moved to the root page.

597/670



Example of insertion into a B-tree – insertion of key 21

2 3 6 7 17 21 44 45 55 66 68 70

5 10 22 50

Upon the insertion of key 21, the following occurred:

1. the page split and half of the keys were moved to a new
page, and

2. key 22 was moved to the parent page.
3. At the same time, the root page of the tree became full.
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Example of insertion into a B-tree – insertion of key 67

2 3 6 7 17 21 44 45 55 66 68 70

5 10 50 67

22
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Example of insertion into a B-tree – insertion of key 67 (cont.)

Upon inserting key 67, the following occurred:

1. the page split and half of the keys were moved to a new
page, and

2. simultaneously, the newly inserted key 67, being the
median value in the original page, was moved to the
parent page.

3. Since this page was also fully occupied, it split, resulting in
the creation of a new root page with a single key 22.
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Example of insertion into a B-tree – insertion of key 67 (cont.)

Remarks
• At this point, the B-tree’s fill factor reaches its minimum
value of approximately 50%. The B-tree has maximum free
space for inserting additional keys.

• However, the minimal filling of the B-tree will cause the
removal of any key to result in page merging, including the
cancellation of the root and a subsequent decrease in the
height of the B-tree2.

2See the next part of the presentation
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Example of insertion into a B-tree – insertion of additional keys

Into the tree were further inserted keys 1, 4, 8, 9, 12, 15 and 46.
The order of key insertion, in this case, does not matter.

1 2 3 4 6 7 8 9 12 15 17 21 44 45 46 55 66 68 70

5 10 50 67

22
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B-trees – deletion of key 𝑥

1. First, it is necessary to find the key 𝑥 in the tree.
2. Let us denote the page with key 𝑥 as 𝑃.
3. Two cases can occur:

• page 𝑃 is an internal page of the tree or
• page 𝑃 is a leaf page.
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B-trees – deletion of key 𝑥 from internal page 𝑃

1. We replace key 𝑥 in page 𝑃 with the closest larger key 𝑦 to
it.

2. Key 𝑦 must be located in the subtree with keys greater
than 𝑥 and, at the same time, is the smallest among these
keys, so it must be located in a leaf page.

3. We have thus reduced the deletion of key 𝑥 from an
internal page of the tree to the deletion of key 𝑦 from a
leaf page of the tree.

604/670



B-trees – deleting key 𝑥 from leaf page 𝑃

1. We delete key 𝑥 from page 𝑃.
2. If page 𝑃 still contains at least 𝑛 keys after deletion, the
deletion process is terminated.

3. If 𝑃 then contains only 𝑛 − 1 keys, we must replenish the
missing key.
3.1 We determine the number of keys in the sibling page of 𝑃.

We denote the sibling as 𝑆. The common parent of pages 𝑃
and 𝑆 is denoted as 𝑅.

3.2 If there are more than 𝑛 keys in 𝑆, then
3.2.1 we move the nearest larger key than 𝑥 from 𝑅 to 𝑃 and
3.2.2 we move the smallest key from 𝑆 to 𝑅.

3.3 If there are exactly 𝑛 keys in 𝑆, then
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B-trees – deleting key 𝑥 from leaf page 𝑃 (cont.)

3.3.1 we move keys from page 𝑆 to page 𝑃 and obtain one page
with 2𝑛 − 1 keys.

3.3.2 We eliminate page 𝑆.
3.3.3 In page 𝑅, there is now one redundant pointer to a page. We

move the nearest larger key than 𝑥 from 𝑅 to page 𝑃, which
now contains exactly 2𝑛 keys.
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B-trees – deleting key 𝑥 from leaf page 𝑃 (cont.)
Remarks
• Usually, we choose a sibling with larger keys than 𝑥, i.e.,
the sibling to the “right” of 𝑃. In the previous explanation,
we assumed this choice.

• However, it is possible to choose a sibling with smaller
keys, i.e., the one to the “left” of 𝑃. The further procedure
is a mirror image of the “right” sibling.

• The process of moving keys from 𝑆 to 𝑃 and subsequent
elimination of page 𝑆 is called page merging.

• The process of page merging can continue progressively
up to the root of the tree and may lead to the extinction of
the current root of the tree. The new root of the tree will
then be the page resulting from the merging process. The
B-tree thus reduces its height. 607/670



Example of deletion in a B-tree – initial B-tree

1 2 3 4 6 7 8 9 12 15 17 21 44 45 46 55 66 68 70

5 10 50 67

22

In this state, we have left the B-tree at the end of the example
of inserting keys into the B-tree. Now we will gradually delete
keys from the B-tree.
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Example of deletion in a B-tree – deletion of key 3

Key 3 is located in a leaf page, where there are enough keys to
simply delete key 3. This results in the following B-tree.

1 2 4 6 7 8 9 12 15 17 21 44 45 46 55 66 68 70

5 10 50 67

22
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Example of deletion in a B-tree – deletion of keys 7 and 8

In the same way, we delete keys 7, 8 and obtain

1 2 4 6 9 12 15 17 21 44 45 46 55 66 68 70

5 10 50 67

22
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Example of deletion in a B-tree – deletion of key 6

1. After deleting key 6, page 𝑃 contains 𝑛 − 1 = 1 key, number
9.

2. Sibling 𝑆 contains more than 𝑛 keys.
3. The nearest larger key than 6, i.e. 10, is moved from 𝑅 to 𝑃.
4. The smallest key from 𝑆, i.e. 12, is moved to 𝑅.

1 2 4 9 10
𝑃

15 17 21
𝑆

44 45 46 55 66 68 70

5 12
𝑅

50 67

22
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Example of deletion in a B-tree – deleting key 22

1. Key 22 is located in the internal page 𝑃, see the following
figure.

2. We replace it with the nearest larger key – larger keys than
22 are in the subtree rooted at page 𝐴. From there, we
proceed to the leftmost leaf page, in our case to 𝐵.

3. We select the smallest key in 𝐵, i.e., 44.
4. We have thus reduced the deletion of key 22 to the
deletion of key 44.

5. After performing all operations corresponding to the
deletion of 44 (in this case, it only involves deleting 44
from page 𝐵), we replace key 22 with key 44.
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Example of deletion in a B-tree – deleting key 22 (cont.)

1 2 4 9 10 15 17 21 45 46
𝐵

55 66 68 70

5 12 50 67
𝐴

44
𝑃
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Example of deletion in a B-tree – deletion of key 46, phase I

State of the B-tree before deletion begins

1 2 4 9 10 15 17 21 45 46
𝑃

55 66
𝑆

68 70

5 12 50 67
𝐴

44
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Example of deletion in a B-tree – deletion of key 46, phase I
(cont.)

1. After deleting key 46, page 𝑃 contains 𝑛 − 1 keys, i.e., only
key 45.

2. Sibling 𝑆 contains exactly less than 𝑛 keys, we must merge
pages.

3. We move all keys from 𝑆 to 𝑃.
4. Page 𝑃 is the first child of page 𝐴, so we also move the first
key from 𝐴 to 𝑃.
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Example of deletion in a B-tree – deletion of key 46, phase I
(cont.)

Result of phase 1

1 2 4 9 10 15 17 21 45 50 55 66
𝑃 𝑆

68 70

5 12
𝐵

67
𝐴

44
𝐶
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Example of deletion in a B-tree – deletion of key 46, phase II

1. In page 𝐴, only 𝑛 − 1 keys remain, which contradicts the
definition of a B-tree.

2. Sibling 𝐵 contains exactly 𝑛 keys, so we must also perform
page merging at this level.

3. We move key 67 from page 𝐴 to page 𝐵.
4. And similarly, we also move one key from the parent page
𝐶 to 𝐵.

5. This results in the elimination of the root page and a
decrease in the height of the B-tree.
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Example of deletion in a B-tree – deletion of key 46, phase II
(cont.)

1 2 4 9 10 15 17 21 45 50 55 66
𝑃 𝑆

68 70

5 12 44 67
𝐵 𝐴

𝐶
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Example of deletion in a B-tree – deletion of key 46, result

1 2 4 9 10 15 17 21 45 50 55 66 68 70

5 12 44 67
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Example of deletion in a B-tree – deletion of keys 1, 17, and 55

.Keys 1, 17, and 55 are located in leaf pages, where there is a
sufficient number of keys to simply delete them.

2 4 9 10 15 21 45 50 66 68 70

5 12 44 67

620/670



Example of deletion in a B-tree – deletion of key 44

1. Key 44 is located on an internal page.
2. We replace it with the nearest larger key, i.e. key 45.

Resulting tree

2 4 9 10 15 21 50 66 68 70

5 12 45 67
𝑃

The B-tree is now in a state where the leaf pages are filled to
the minimum acceptable level. Deletion of any key will cause
page merging.
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Example of deletion in a B-tree – deletion of key 4

1. After deleting key 4, page 𝑃 contains only 𝑛 − 1 keys.
2. Sibling 𝑆 contains exactly 𝑛 keys.
3. We move the keys from 𝑆 to 𝑃.
4. We also move key 5 from the parent page 𝑅 to 𝑃, because
otherwise one child pointer in 𝑅 would be redundant.

Resulting tree

2 5 9 10
𝑃 𝑆

15 21 50 66 68 70

12 45 67
𝑅
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Example of deletion in a B-tree – deletion of key 45

The tree before deleting key 45

2 5 9 10 15 21 50 66
𝑃

68 70
𝑆

12 45 67
𝑅

1. Key 45 is located in the internal page 𝑅.
2. We replace it with the next larger key, i.e., key 50.
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Example of deletion in a B-tree – deletion of key 45 (cont.)

3. This reduces the deletion of key 45 to the deletion of key
50.

4. After deleting key 50, page 𝑃 contains only 𝑛 − 1 keys.
5. Sibling 𝑆 contains exactly 𝑛 keys.
6. We move keys from 𝑆 to 𝑃.
7. We also move the next larger key than 45, i.e., key 57, from
parent page 𝑅 to 𝑃, because otherwise one child pointer in
𝑅 would be left over.
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Example of deletion in a B-tree – deletion of key 45 (cont.)

Resulting tree

2 5 9 10 15 21 66 67 68 70
𝑃 𝑆

12 50
𝑅
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Example of deletion in a B-tree – deletion of key 15

After deleting 15, there remained only 𝑛 − 1 keys in page 𝑃. We
must therefore move one key from page 𝑆 through page 𝑅.

2 5 9 10 21 50
𝑃

67 68 70
𝑃

12 66
𝑅
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Example of deletion in a B-tree – deletion of keys 9, 10 and 67

Deletion of keys 9, 10 and 67 is very simple.

2 5 21 50 68 70

12 66
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Example of deletion in a B-tree – deletion of key 2

After deleting 2, there are only 𝑛 − 1 keys left in page 𝑃. The
sibling 𝑆 contains 𝑛 keys, so page merging occurs.

5 12 21 50
𝑃 𝑆

68 70

66
𝑅
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Example of deletion in a B-tree – deletion of key 70

5 12 21 50
𝑆

68 70
𝑃

66
𝑅
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Example of deletion in a B-tree – deletion of key 70 (cont.)

After deleting 70, page 𝑃 is left with only 𝑛 − 1 keys. Sibling 𝑆
contains more than 𝑛 keys, so a shift of 66 from 𝑅 to 𝑃 occurs
and the nearest smaller key from 𝑆 to 𝑅.

5 12 21
𝑆

66 68
𝑃

50
𝑅
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Example of deletion in a B-tree – deletion of key 21

Deletion of key 21 is very simple.

5 12 66 68

50
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Example of deletion in a B-tree – deletion of key 5

Deletion of key 5 is evident.

12 50 66 68
𝑃 𝑆

𝑅
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Example of deletion in a B-tree – deletion of key 5 (cont.)

Page 𝑃 has become the new root, and simultaneously the only
page, of the B-tree.

12 50 66 68
𝑃

Deletion of keys 12, 50, 66, and 68 is now a trivial matter.
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Thanks for your attention
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Dynamic Programming
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Dynamic Programming
Warshall’s algorithm



Warshall’s algorithm

R(𝑘)
𝑖,𝑗 =

⎧⎪⎪
⎨⎪⎪
⎩

R(𝑘−1)
𝑖,𝑗 path through vertices 1,… , 𝑘 − 1

∨

R(𝑘−1)
𝑖,𝑘 ∧R(𝑘−1)

𝑘,𝑗

paths from 𝑖 to 𝑘 and
from 𝑘 to 𝑗 through ver-
tices 1,… , 𝑘 − 1
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Warshall’s algorithm – example

Sample graph 𝐺

1

2

3

4

Adjacency matrix

A𝐺 = (

0 0 1 0
1 0 0 1
0 0 0 0
0 1 0 0

)
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Warshall’s algorithm – example, 𝑘 = 1
1

2

3

4

R(0) = (

0 0 1 0
1 0 0 1
0 0 0 0
0 1 0 0

)

1

2

3

4

R(1) = (

0 0 1 0
1 0 1 1
0 0 0 0
0 1 0 0

)

Edges for paths leading through vertex 1 have been added to
the graph.
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Warshall’s algorithm – example, 𝑘 = 2
1

2

3

4

R(1) = (

0 0 1 0
1 0 1 1
0 0 0 0
0 1 0 0

)

1

2

3

4

R(2) = (

0 0 1 0
1 0 1 1
0 0 0 0
1 1 1 1

)

Edges for paths leading through vertex 2 have been added to
the graph.
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Warshall’s algorithm – example, 𝑘 = 3

1

2

3

4

R(2) = (

0 0 1 0
1 0 1 1
0 0 0 0
1 1 1 1

)

1

2

3

4

R(3) = (

0 0 1 0
1 0 1 1
0 0 0 0
1 1 1 1

)

No edge was added to the graph – through vertex 3 no path
leads, edges lead only to vertex 3.
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Warshall’s algorithm – example, 𝑘 = 4
1

2

3

4

R(3) = (

0 0 1 0
1 0 1 1
0 0 0 0
1 1 1 1

)

1

2

3

4

R(4) = (

0 0 1 0
1 1 1 1
0 0 0 0
1 1 1 1

)

Edges for paths leading through vertex 4 have been added to
the graph.
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Warshall’s algorithm – example

Resulting transitive closure 𝑇

1

2

3

4

Adjacency matrix

A𝑇 = (

0 0 1 0
1 1 1 1
0 0 0 0
1 1 1 1

)
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Thanks for your attention
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Greedy Technique
Minimum Spanning Tree of a Graph



Minimum Spanning Tree of a Graph
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Minimum Spanning Tree – Example

Graph 𝐺 has a total of 4 spanning trees

A B

C D

1

5 2

3

A B

C D

1

2

3

A B

C D

1

5

3

A B

C D

1

5 2

Graph 𝐺 𝑤(𝐾1) = 6 𝑤(𝐾2) = 9 𝑤(𝐾3) = 8

The minimum spanning tree is spanning tree 𝐾1.
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Minimum spanning tree of a graph

B C

A F D

E

3

6

5

1

4 64

8

5

2
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Minimum spanning tree of a graph (cont.)

B C

A F D

E

3

6

5

1

4 64

8

5

2
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Minimum spanning tree of a graph (cont.)

B C

A F D

E

3

6

5

1

4 64

8

5

2
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Minimum spanning tree of a graph (cont.)

B C

A F D

E

3

6

5

1

4 64

8

5

2
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Minimum spanning tree of a graph (cont.)

B C

A F D

E

3

6

5

1

4 64

8

5

2

649/670



Minimum spanning tree of a graph (cont.)

B C

A F D

E

3

6

5

1

4 64

8

5

2
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Minimum spanning tree of a graph (cont.)

B C

A F D

E

3

6

5

1

4 64

8

5

2
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Minimum spanning tree of a graph

B C

A F D

E

3

6

5

1

4 64

8

5

2
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Minimum spanning tree of a graph (cont.)

B C

A F D

E

3

6

5

1

4 64

8

5

2

653/670



Minimum spanning tree of a graph (cont.)

B C

A F D

E

3

6

5

1

4 64

8

5

2
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Minimum spanning tree of a graph (cont.)

B C

A F D

E

3

6

5

1

4 64

8

5

2
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Minimum spanning tree of a graph (cont.)

B C

A F D

E

3

6

5

1

4 64

8

5

2
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Minimum spanning tree of a graph (cont.)

B C

A F D

E

3

6

5

1

4 64

8

5

2
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Quick Union

1 2 3 4 5 6

4

1

2 3 5 6

4

1

2

5

3 6
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Quick Union (cont.)

1

4 5

2

3 6

1

4 5

2

3

6
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Quick Union (cont.)

4 5 3

1

2 6
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QuickUnion, representation of the tree in an array

Initial state after performing 𝑚𝑎𝑘𝑒𝑠𝑒𝑡(1), … ,𝑚𝑎𝑘𝑒𝑠𝑒𝑡(6)

1 2 3 4 5 6

Element Parent
1 null
2 null
3 null
4 null
5 null
6 null
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QuickUnion, representation of the tree in an array (cont.)

Final state after performing all 𝑢𝑛𝑖𝑜𝑛 operations

4 5 3

1

2 6

Element Parent
1 null
2 5
3 1
4 1
5 1
6 3
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Greedy Technique
Dijkstra’s algorithm



Shortest path tree vs. minimum spanning tree of the graph

• The result of Dijkstra’s algorithm is not the minimum
spanning tree of the graph.

• The result is the shortest path tree from a given initial
vertex.

• The shortest path tree is just one of the graph’s spans, but
it does not have to be minimal.

• The minimum spanning tree of the graph minimizes the
sum of edge weights in the span.

• The shortest path tree minimizes path length from a given
initial vertex. The shape of the tree depends on the initial
vertex.
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Shortest paths tree vs. minimum spanning tree of the graph,
example

Shortest paths tree from A

A

B C

D E

8 5
9

11
15

10
7

Minimum spanning tree of
the graph

A

B C

D E

8 5
9

11
15

10
7
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Greedy Technique
Huffman code



Thanks for your attention
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Iterative Improvement
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Thanks for your attention
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Limitations of Algorithm Power
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Thanks for your attention

666/670



Coping with Limitations of Algorithm Power
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